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Abstract

Traditional stormwater control measures are designed to handle system loadings induced by fixed-size storm events. However,

climate change is predicted to alter the frequency and intensity of flooding events, stimulating the need to explore another

more adaptive flooding solution like real-time control (RTC). This study assesses the performance of RTC to mitigate impacts

of climate change on urban flooding resilience. A simulated, yet realistic, urban drainage system in Salt Lake City, Utah,

USA, shows that RTC improves the flooding resilience by up to 17% under climatic rainfall changes. Compared with green

stormwatrer infrastructure (GSI), RTC exhibits a lower resistibility, lower flooding failure level, and higher recovery rate in

system performance curves. Results articulate that keeping RTC’s performance consistent under ‘back-to-back’ storms requires

a tradeoff between upstream dynamical operation and downstream flooding functionality loss. This research suggests that RTC

provides a new path towards smart and resilient stormwater management strategy.
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  29 

Abstract: Traditional stormwater control measures are designed to handle system loadings 30 

induced by fixed-size storm events. However, climate change is predicted to alter the frequency 31 

and intensity of flooding events, stimulating the need to explore another more adaptive flooding 32 

solution like real-time control (RTC). This study assesses the performance of RTC to mitigate 33 

impacts of climate change on urban flooding resilience. A simulated, yet realistic, urban drainage 34 

system in Salt Lake City, Utah, USA, shows that RTC improves the flooding resilience by up to 35 

17% under climatic rainfall changes. Compared with green stormwatrer infrastructure (GSI), RTC 36 

exhibits a lower resistibility, lower flooding failure level, and higher recovery rate in system 37 

performance curves. Results articulate that keeping RTC’s performance consistent under ‘back-to-38 

back’ storms requires a tradeoff between upstream dynamical operation and downstream flooding 39 
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functionality loss. This research suggests that RTC provides a new path towards smart and resilient 40 

stormwater management strategy.  41 

 42 

Keywords:  smart city, urban drainage modeling, rainfall nonstationarity, nonlinear dynamical 43 

control, continuous flood modeling, long-term resilient stormwater management  44 

   45 

1. Introduction 46 

Urban flooding will become more frequent due to climate change increasing the frequency of 47 

higher intensity storm event. Historical rainfall changes have contributed approximately 36% of 48 

cumulative flooding damages across the U.S. from 1988 to 2017 (Davenport et al., 2021). A 1% 49 

increase in historical rainfall intensity increased the urban flooding volume by 1.8% in Salt Lake 50 

City, Utah, USA (Li and Burian, 2022). The anticipated continued changes in rainfall patterns 51 

challenge the use of historical rainfall and the stationary assumption for design of UDSs (Wright 52 

et al., 2019). Given financial constraints and priorities, cities expect UDSs to serve their purpose 53 

for 50 years and are now anticipating infrastructure system durability to be 100 years. Considering 54 

the present challenges and uncertain future conditions, cities need to consider building adaptability 55 

and resilience into their UDSs. 56 

 57 

The resilience approach aims to minimize the consequences of system failure through adaptation 58 

to changing conditions without permanent loss of functionality (Park et al., 2013). In engineering 59 

systems, resilience is defined as the adaptive capacity to resist to, recover from, and adapt to 60 

intentional anthropogenic attacks, unpredictable natural events, and human-made disturbances 61 

(Holling, 1973). The stormwater engineering field incorporates resilience design complementarily 62 
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to risk-based design to minimize flooding duration and magnitude (Jiada Li et al., 2023b; Jiada. 63 

Li, 2021). The key benefit of adding resilience design is to mitigate exceptional disturbances, such 64 

as rainfall and imperviousness changes, leading to the system functionality loss (Butler et al., 2017). 65 

Resilience applied in stormwater engineering can be interpreted as designing a UDS by optimizing 66 

resilience profiles composed of resistance, failure, recovery, and adaptation (Ahern, 2011; Ouyang 67 

et al., 2012). However, with the use of resilience analysis recently being introduced, questions 68 

remain about how rainfall change and imperviousness change will affect the resilience phases of 69 

resistance, failure, recovery, and adaptation (Butler et al., 2014).  70 

 71 

Urban flooding can be mitigated by upgrading and re-sizing stormwater infrastructure, such as 72 

pipes, pump stations, and storage tanks, which convey stormwater runoff into downstream 73 

receiving water bodies. Previous studies focused on enhancing resilience through rehabilitating 74 

and redesigning UDSs (Mohammadiun et al., 2020), adding system storage components (Mugume 75 

et al., 2015), and optimizing the drainage system's structure (Bakhshipour et al., 2021). The 76 

locations of structural facilities and the layout of pipelines affect UDS resilience (Zhang et al., 77 

2021). Green stormwater infrastructure (GSI), particularly permeable pavement, bio-retention, and 78 

green roofs, are more cost-effective than system rehabilitation when seeking to introduce resilience 79 

to climate change and urbanization (Dong et al., 2017; Salerno et al., 2018). GSI, which mimics 80 

the natural hydrological process to absorb excess discharge and reduce surface runoff in the form 81 

of small-scale distributed practices, is a proven effective solution for small-scale pluvial flooding 82 

(Feng et al., 2016; Li et al., 2019b). However, Hou et al. (2020) found that current stormwater gray 83 

and green infrastructure are insufficient to ensure the future resilience of UDSs under climate 84 

change. Additionally, these passive and static flood controls are designed to meet fixed 85 
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performance criteria, but once constructed, they fail to adapt to the exceptional climate changes 86 

(Jiada Li, 2021).  87 

 88 

Smart stormwater systems with real-time control (RTC) have re-emerged as an adaptive solution 89 

to improve infrastructure performance in mitigating urban flooding dynamically. The 90 

implementation of RTC contributes to reducing the drainage peak flow (Schmitt et al., 2020; 91 

Shishegar et al., 2019), diminishing urban flooding volume (Li, 2020; Mullapudi et al., 2020), 92 

controlling combined sewer overflow (Rathnayake and Faisal Anwar, 2019), keeping streams 93 

healthy (Xu et al., 2020), and improving water and stormwater quality (Sharior et al., 2019; 94 

Troutman et al., 2020). Implementing RTC involves retrofitting (or building with new) UDSs with 95 

water level sensors, flow sensors, actuators, and moveable gates to achieve real-time sensing and 96 

controlling of system operations (Marchese et al., 2018; Schütze et al., 2004). Sensors provide 97 

real-time system states for actuators, which accordingly open or close gates to some extent until 98 

the next sensed information changes operations (Li et al., 2023; Li et al., 2020b, 2019a). UDSs can 99 

be controlled in real-time to make full use of the available or under-used storage capacity, to retain 100 

water in a tank and GSI, or to selectively discharge water before the next storm comes (Lewellyn 101 

and Wadzuk, 2017).  102 

 103 

The potential to enhance flooding resilience under future rainfall conditions needs further study. 104 

Prior studies solely consider assessing resilience changes under artificially designed single rainfall 105 

events (Dong et al., 2017; Mugume et al., 2014). Wang et al. (2019) found that measuring 106 

resilience based on single storms overestimates the resilience by 18% to 33%, compared with 107 

continuous rainfall, in study of changes due to climate change. When simulating RTC under a 108 
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single event, the storage volumes are initially empty or partially filled, and once the storm has 109 

passed, tanks are slowly drained. However, in back-to-back storm scenarios, where another storm 110 

begins before the tanks have been entirely drained, those partially drained tanks might not retain 111 

sufficient storage capacity to buffer incoming rainfall-runoff events (Wong and Kerkez, 2018). 112 

Assessing RTC performance uses long-term data to inform decisions beyond what a short-term 113 

event can provide giving more temporal dynamics and flexibility in control actions, which is 114 

crucial to improve stormwater system response to continuous rainfall events (Bowes et al., 2020; 115 

Sadler et al., 2020). The leading resilience solution, GSI, presents concerns for long-term 116 

effectiveness because it requires more frequent on-site inspection and maintenance than gray and 117 

smart infrastructures. GSI requires intensive maintenance and performs inconsistently over long 118 

periods, which may trigger early system functionality loss (Brasil et al., 2021; Li et al., 2023a; Li 119 

et al., 2021, 2019c). 120 

 121 

This study seeks to answer the following question: can RTC outperform GSI in enhancing flooding 122 

resilience for future design storms and continuous rainfall for a long-term resilient stormwater 123 

management? To that end, this study compares the performance between RTC-equipped and GSI-124 

equipped UDSs located in Salt Lake City, Utah, USA. The primary contribution of this work not 125 

only improves the understanding of how smart RTC to tackle the climate-driven urban flooding 126 

risks but also address the public concerns of the long-term performance in RTC. This is achieved 127 

by assessing resilience based on the performance dynamics in the form of time-dependent 128 

performance curves. The novelty of the current study comes from utilizing different stages of 129 

performance curves to reflect how stepwise RTC actions enhance resilience in a quantitative and 130 

graphical manner.  131 
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 132 

2. Methodology  133 

2.1. System performance curves 134 

Flooding resilience is estimated by the area between the original system performance curve and 135 

the actual performance curve at any time after the occurrence of a storm (Mugume et al., 2015). 136 

Fig. 1 shows the time-dependent graph profile of the system performance curve, also called the 137 

resilience profile graph or resilience envelope, for a failure-causing rainfall event. The system 138 

performance curve consists of the original state from 𝑡𝑡𝑜𝑜 to 𝑡𝑡𝑓𝑓𝑓𝑓 without flooding, flooding state 139 

from 𝑡𝑡𝑓𝑓𝑓𝑓 to 𝑡𝑡𝑟𝑟, and adapted state from 𝑡𝑡𝑟𝑟 to 𝑡𝑡𝑛𝑛 without flooding. The flooding phase includes the 140 

resistance stage from 𝑡𝑡𝑓𝑓𝑓𝑓 to 𝑡𝑡𝑚𝑚𝑓𝑓, failure stage from 𝑡𝑡𝑚𝑚𝑓𝑓 to 𝑡𝑡𝑟𝑟𝑓𝑓, and recovery stage from 𝑡𝑡𝑟𝑟𝑓𝑓 to 𝑡𝑡𝑟𝑟. 141 

The black solid horizontal line, 𝑃𝑃𝑜𝑜  represents the original performance level of service. The actual 142 

system performance curve is 𝑃𝑃𝑖𝑖(𝑡𝑡), at any time t after the occurrence of the ith storm that leads to 143 

system failure. Failure is defined as the occurrence of a flooding event.  𝑃𝑃𝑚𝑚𝑓𝑓 corresponds to the 144 

system's maximum failure level resulting from the considered threat. The flooding magnitude is 145 

quantified as the distance from 𝑃𝑃o  to Pmf. The flooding duration corresponds to the period of 146 

flooding state, which is equal to the failure duration. The system resistibility or resistance is 147 

featured as the falling limb of the performance curve. Before the resistance stage, the resilience 148 

envelope is called system robustness. The slope from the maximum system failure level to the 149 

original performance level is defined as the recovery rate. After the recovery stage, the resilience 150 

graph is regarded as the system reliability. Enhancing resilience can be achieved by reshaping the 151 

system performance curve. For example, the dashed blue line in Fig. 1 represents a more resilient 152 

UDS with a greater resistibility, lower maximum failure magnitude, and a higher quicker recovery 153 

rate than the solid black line. 154 
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 155 

 156 

Fig. 1. The system performance curve of an urban drainage system for a failure-causing rainfall event (The 𝑡𝑡𝑜𝑜 is the 157 

time of occurrence of storms; The 𝑡𝑡𝑓𝑓𝑓𝑓 is the flood starting time; The 𝑡𝑡𝑚𝑚𝑓𝑓 is the starting time of maximum failure; The  158 

𝑡𝑡𝑟𝑟𝑓𝑓 is the ending time of maximum failure; The 𝑡𝑡𝑟𝑟 is the recovery ending time; The 𝑡𝑡𝑓𝑓 is the flooding duration; The 𝑡𝑡𝑛𝑛 159 

is the total simulation time). 160 

 161 

2.2. Flooding resilience computation  162 

The definition of flooding resilience (𝑅𝑅𝑅𝑅𝑅𝑅 ) is a single quantitative index comprised of the 163 

magnitude and duration of the system's functional failure during storm events (Casal-Campos et 164 

al., 2018; Ouyang et al., 2012). Flooding resilience can be categorized into functional resilience 165 

and structural resilience based on the different failure modes (Mugume et al., 2015). This study 166 

only focuses on functional flooding resilience under external drivers such as climate change and 167 

urban redevelopment. Resilience below refers to functional flooding resilience. The flooding 168 

resilience can be quantified by using the concept of flooding severity 𝑆𝑆𝑅𝑅𝑆𝑆, which is a function of 169 

failure magnitude and failure duration (Hwang et al., 2015; Mugume et al., 2014). Traditionally, 170 
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the total flooding volume and mean duration of nodal flooding are used to represent the failure 171 

magnitude and duration, respectively. The 𝑆𝑆𝑅𝑅𝑆𝑆 is quantitatively represented as the shaded area 172 

(Fig.1) between the original system performance level, 𝑃𝑃o  and the actual system performance 173 

curve, 𝑃𝑃𝑖𝑖(𝑡𝑡) . The shaded rectangular area can be computed by Equation 1, which has been 174 

simplified to Equation 2 to approximate the volumetric 𝑆𝑆𝑅𝑅𝑆𝑆. The 𝑅𝑅𝑅𝑅𝑅𝑅 is estimated as one minus 175 

the computed 𝑆𝑆𝑅𝑅𝑆𝑆, shown in Equation 3. However, adopting mean nodal flooding duration to 176 

represent the system flooding duration is limited. Firstly, the mean nodal flooding duration is an 177 

empirical flooding duration computation. When the nodal flooding duration is not statistically 178 

uniform, a mean value might not be representative of all nodes’ flooding duration. Secondly, the 179 

initially ponded flooding water in the last storm event might be repetitively counted in the next 180 

storm events if ‘back-to-back’ storms continuously occur. The repetitive computation in nodal 181 

flooding volume would lead to the over-estimation of flooding duration in continuous modeling. 182 

To addresses these issues, this study develops a new resilience computation method for long-term 183 

modeling situatios. We used the event flooding duration separated by the inter-event period 184 

interval to replace the mean nodal flooding duration of 𝑡𝑡𝐹𝐹 in Equations (4) and (5). This method 185 

extends the applicability of flooding resilience for continuous simulations.  186 

  187 

                                    𝑆𝑆𝑅𝑅𝑆𝑆 = 𝑓𝑓�𝑆𝑆𝑅𝑅𝑆𝑆𝑝𝑝, 𝑡𝑡𝑓𝑓� =  1
𝑃𝑃0
∫ (𝑡𝑡𝑛𝑛
𝑡𝑡0

𝑃𝑃0 −  𝑃𝑃𝑖𝑖(𝑡𝑡))𝑑𝑑𝑡𝑡                                            (1) 188 

Where 𝑡𝑡𝑓𝑓 is the failure duration; 𝑡𝑡0 is the time of occurrence of the threat;  𝑡𝑡𝑛𝑛 is the total modeling 189 

time.  190 

                                            𝑆𝑆𝑅𝑅𝑆𝑆 = 𝑉𝑉𝑇𝑇𝑇𝑇
𝑉𝑉𝑇𝑇1

× 𝑡𝑡𝑟𝑟−𝑡𝑡𝑓𝑓𝑓𝑓
𝑡𝑡𝑛𝑛−𝑡𝑡𝑜𝑜

= 𝑉𝑉𝑇𝑇𝑇𝑇
𝑉𝑉𝑇𝑇1

× 𝑡𝑡𝑓𝑓
𝑡𝑡𝑛𝑛

                                                        (2) 191 
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                                            𝑅𝑅𝑅𝑅𝑅𝑅 = 1 −  𝑆𝑆𝑅𝑅𝑆𝑆 = 1 − 𝑉𝑉𝑇𝑇𝑇𝑇
𝑉𝑉𝑇𝑇1

× 𝑡𝑡𝑓𝑓
𝑡𝑡𝑛𝑛

                                                      (3) 192 

Where 𝑉𝑉𝑇𝑇𝐹𝐹  is the total flood volume, 𝑉𝑉𝑇𝑇1  is the total inflow into the system, 𝑡𝑡𝑓𝑓  is the mean 193 

duration of nodal flooding;  𝑡𝑡𝑛𝑛 is the total simulation time. 194 

 195 

                                        𝑆𝑆𝑅𝑅𝑆𝑆 = 𝑉𝑉𝑇𝑇𝑇𝑇
𝑉𝑉𝑇𝑇1

× 𝑡𝑡𝑟𝑟−𝑡𝑡𝑓𝑓𝑓𝑓
𝑡𝑡𝑛𝑛−𝑡𝑡𝑜𝑜

= 𝑉𝑉𝑇𝑇𝑇𝑇
𝑉𝑉𝑇𝑇1

× 𝑡𝑡𝑇𝑇
𝑡𝑡𝑛𝑛

                                                            (4) 196 

                                       𝑅𝑅𝑅𝑅𝑅𝑅 = 1 − 𝑆𝑆𝑅𝑅𝑆𝑆𝑖𝑖 = 1 − 𝑉𝑉𝑇𝑇𝑇𝑇
𝑉𝑉𝑇𝑇1

× 𝑡𝑡𝑇𝑇
𝑡𝑡𝑛𝑛

                                                          (5) 197 

Where 𝑉𝑉𝑇𝑇𝐹𝐹 is the total flood volume, 𝑉𝑉𝑇𝑇1the total inflow into the system, 𝑡𝑡𝐹𝐹 the event flooding 198 

duration and 𝑡𝑡𝑛𝑛 the total simulation time. 199 

 200 

For a given external disturbance like storm events, 𝑅𝑅𝑅𝑅𝑅𝑅 quantifies the UDS residual functionality 201 

as a function of total flooding volume and mean duration of nodal flooding.  The 𝑅𝑅𝑅𝑅𝑅𝑅 ranges from 202 

0 to 1. A value of 0 for 𝑅𝑅𝑅𝑅𝑅𝑅 indicates the lowest level of resilience, while 1 is the highest level of 203 

resilience. The solid blue line in Fig. 1 represents a more resilient UDS with a small shaded area. 204 

Reshaping the resilience graph is to lower maximum failure level and flooding magnitude or to 205 

improve resistibility and recovery rate.  206 

 207 

3. Case study  208 

3.1 Study drainage catchment overview 209 

The case study drainage catchment is located in the southeastern corner of Salt Lake City, Utah, 210 

USA (Fig. 2). Salt Lake City has a semi-arid climate with an average annual precipitation depth 211 

of 412 mm, and more than 85% of the rainfall occurring during the spring and summer seasons 212 
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(NOAA, 2010). Changes in rainfall intensity from climate change are projected to magnify runoff 213 

volume and worsen over-loadings in the local UDSs during rainfall extremes. Consequently, 214 

changes in hydrological regimes like the water depths have raised great flooding concerns from 215 

local residents (Jiada Li, 2021).  216 

 217 

 218 

Fig. 2. The study area in the Sugar House area of Salt Lake City, Utah, USA showed alongside the urban drainage 219 

network model used in the study. 220 

 221 

3.2 Urban drainage model 222 

For this study, we use a drainage system model built using the U.S. Environmental Protection 223 

Agency Storm Water Management Model (SWMM) Version 5.1 (Rossman 2015). The model 224 

includes 28 sub-catchments, 184 conduits, and 181 junctions, and one rain gauge (Fig. 2). The 225 

details of the model development, validation, and parameter settings can be found in previous work 226 

(Li and Burian, 2022).   227 

 228 
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3.2.1 Simulating the effect of adaptation strategies on UDS performance 229 

In this study, two adaptation strategies, RTC of distributed storage tanks and GSI, are implemented 230 

to improve resilience.The GSI adaptation strategy used in this study consists of three bio-retention 231 

cells and two permeable pavements distributed in the drainage sub-catchments (Fig. 1: bio-232 

retentions in sub-catchments SC15 and 16, permeable pavement in sub-catchments SC1, 4, and 18) 233 

of the SWMM model. Bioretention cells and permeable pavement are selected because of the 234 

installation accessibility, construction and maintenance budgets, usage of existing facilities, and 235 

their performance in a semi-arid environment. These GSI practices are designed to capture the 236 

80th percentile rainfall event, which is the local standard (12.7 mm rainfall depth) (Department of 237 

Environmental Quality, 2018), by increasing in SWMM the number GSI units in a sub-cathcment 238 

until the stormwater is completely retained. Converting 15% of the impervious area to bio-239 

retention units and 10% to permeable pavement is able to fully retain the stormwater in the study 240 

area (SLCDPU, 2018). In the SWMM model, the percent imperviousness of each sub-catchment 241 

is accordingly changed to account for the impacts of GSI implementation. For each sub-catchment, 242 

50% of the impervious area is routed to its corresponding bio-retention units, and the other 50% 243 

routed to its permeable pavement. The SWMM parameters used in modeling the bio-retention and 244 

pervious pavement are listed in Table 1. 245 

 246 

Table 1. SWMM model parameter settings for simulating bio-retention cells and permeable pavement (data sources 247 
for designing GSIs are referred to previous GSI studies in Salt Lake City (Burian et al., 2009; Feng et al., 2016; 248 
Tavakol-Davani et al., 2016, 2019)) 249 

Attributes Parameters Bio-retention Cells Permeable Pavement 
 
Surface 

Berm height (m) 0.15  0.025 
Vegetation volume fraction 0.45 0.1 
Surface roughness 0.1 0.02 
Surface Slope (%) 1 2 

 
 
 

Thickness (m) 0.075 0 
Porosity 0.7 0.7 
Field capacity 0.16 0.16 
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Soil Wilting point 0.1 0.1 
Conductivity (mm/hr) 75 75 
Conductivity slope (%) 30 30 
Suction head (m) 0.5 0.5 

 
 
Storage 

Thickness (m) 0.15 0.3 
Voids ratio 0.25 0.75 
Seepage rate (mm/hr) 18 5 
Clogging factor 0 0 

 
Drainage 

Flow coefficient (mm/hr) 0 0 
Flow exponent 0.5 0.5 
Offset height (m) 0.05 0 

 
 
Pavement 

Thickness (m) None 0.2 
Void Ratio None 0.15 
Imperviousness None 0 
Permeability (m/hr) None 2.54 
Clogging Factor None 0 

 250 

RTC adaptation strategy is developed to control three hypothetical orifice gates and three 251 

corresponding storage tanks with sizes of 4000, 5000, and 5000 m3 (Li et al., 2021). The storage 252 

volume is designed to meet the capacity to accommodate the total stormwater runoff volume from 253 

the upstream contributing sub-catchments and to prevent the tanks’ outflow from exceeding the 254 

predevelopment system peak flow under the same rainfall event of design GSI. The RTC strategy 255 

automatically adjusts the gate opening to control the tank storage volume and outflow. Actions in 256 

gates (% openings of gates) are computed by the nonlinear control Equation (4).  257 

 258 

                                        𝐺𝐺𝐺𝐺𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚 �1, 𝐷𝐷𝑖𝑖∗𝑅𝑅𝑖𝑖
𝐴𝐴∗ �2∗𝑔𝑔∗𝑄𝑄2

𝑖𝑖
 �  × 100%                                                (4) 259 

 260 

Where 𝐺𝐺𝐺𝐺𝑖𝑖 is the gate percentage opening at the ith time step; 𝐷𝐷𝑖𝑖 is the tank water depth at the ith 261 

time step; 𝑅𝑅𝑖𝑖 is the rainfall intensity at the ith time step; 𝑄𝑄𝑖𝑖 is the tank outflow at the ith time step; 262 

𝐴𝐴 is the maximum opening area of the gate, and this study assumes the maximum area to be 1 m2; 263 

𝑔𝑔 is the acceleration of gravity (9.8 m2/s); 𝑚𝑚𝑚𝑚𝑚𝑚 is to select the minimum value between the actual 264 

opening output and 1 as the final gate opening, which avoids the gate opening over 100%.  265 
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  266 

 In the nonlinear control equation, including rainfall forecasts as control inputs allows the RTC 267 

system to compute coordinated gate actions in advance and prepare available storage volumes for 268 

incoming storm events. Meanwhile, the consideration of tank water level and outflow is 269 

advantageous to prevent local overflow and downstream flooding issues. Detailed explanations 270 

about the development of control rules used in the RTC strategy can be found in Li et al. (2020a) 271 

and Li et al. (2021). All adaptation strategies are simulated by using PySWMM, which is a Python 272 

language software package for the creation, manipulation, and study of the structure, dynamics, 273 

and function of SWMM models throughout stepwise rainfall-runoff simulations (McDonnell et al., 274 

2020).  275 

 276 

3.2.2 Future scenarios  277 

Future (2035-2049) daily precipitation datasets from Coupled Model Intercomparison Project 278 

Phase 5 (CMIP5) were acquired for the Global Circulation Model (CCSM) 4.1. The CCSM 4.1 279 

was chosen due to the favorable performance in reproducing historical climate for the study area 280 

and the wide connection between climatic variability and mean monthly precipitation (Smith et al., 281 

2015). Climate scenarios proposed by the Intergovernmental Panel on Climate Change (IPCC) 282 

were Representative Concentration Pathways (RCPs), which reflect the radiative forcing level of 283 

climate systems (O’Neill et al. 2016). We selected RCP 4.5 and 8.5 since they cover the range of 284 

greenhouse gas emissions from low to high levels. RCP 4.5 represents a moderate scenario that 285 

assumes future trends throughout the 21st century will follow the historical patterns, while RCP 286 

8.5 is the worst greenhouse gas emission scenario. The future daily precipitations were downscaled 287 

by using the combined change factor method due to its simplicity, efficiency, and acceptable 288 

accuracy (Hansen et al., 2017). The downscaled data assumes changes from the historical to the 289 
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projection period, so we conducted bias-correction with the linear scaling method implemented in 290 

the CMhyd tool (Teutschbein and Seibert, 2012). We further disaggregated daily precipitations 291 

into hourly resolution by using NetSTORM (Heineman, 2004). This study focused on the warm 292 

season months in Salt Lake City (May to September), so the October to April period was not 293 

considered in the simulation.  294 

 295 

For the design storm part of the study, hourly rainfall projections were analyzed to generate the 296 

future Intensity-Duration-Frequency (IDF) curves using the same approach as the NOAA 297 

(National Oceanic and Atmospheric Administration) Atlas 14 for design rainfall events (United 298 

States Department of Agriculture, 2009). Fig. 3a shows the future rainfall intensities corresponding 299 

to durations of 1-, 3-, 6-, 12-, 24-, and 48-hour and return periods of 1-, 2-, 10-, 25-, 50-, and 100-300 

year for the RCP 4.5 and 8.5 climate scenarios, respectively. These future IDF curves show 301 

consistent results to previous studies quantifying climate change impacts on rainfall extremes in 302 

Western U.S. cities, like Tucson, Arizona (Tousi et al., 2021). Because of their general relevance 303 

for stormwater management, the present study only considers the 3-hour duration and 2-, 10-, 100-304 

year average recurrence interval future rainfalls, which are assigned the Farmer-Fletcher rainfall 305 

time distribution developed for the region (Fig. 3b) (Humphrey, 2009). All future rainfalls peak at 306 

1:15, and have rainfall intensity with an average of 13% (RCP 4.5) and 25% (RCP 8.5) higher than 307 

the historical estimates of NOAA Atlas 14 point precipitation frequency. Fig. 3c shows the 2049 308 

continuous rainfalls for RCP 4.5 and 8.5 scenarios. RCP 4.5 includes 7 rainfall events, while RCP 309 

8.5 has 8 events highlighted in purple dashed squares. These rainfall events are selected since they 310 

cover short- to long-duration and low- to high-intensity events, and these events have an average 311 

depths of 21 mm and 20 mm for RCP 4.5 and 8.5 scenarios, respectively; these rainfall depths are 312 
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close to the average rainfall depth  of 2-year and 3-hour rainfall event in the study area.  313 

 314 

Fig. 3. A graphic combination of a) future IDF curves, b) future design rainfalls of 3-hour duration and 2-, 10-, and 315 

100-year return periods, and c): 2049 future continuous rainfalls under RCP4.5 and 8.5 climate scenarios. 316 

 317 

We compared the RTC and GSI performance for enhancing flooding resilience under the following 318 

simulation scenarios: 319 

1) Future Baseline (BS): SWMM model driven by future design storms and continuous 320 

rainfall of RCP 4.5 and 8.5 without GSI and RTC 321 

2) GSI: Same as BS but with GSI retrofits; 322 

3) RTC: Same as BS but with control retrofits. 323 

Continuous modeling outcomes, including time-series gate opening, tank outflow, system inflow, 324 

and flooding volume and duration, were collected at each timestep to quantify the system 325 

performance curve and resilience changes and investigate the system responses after adaptation.  326 
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 327 

4. Results  328 

4.1 Performance comparison under future design storms 329 

System performance curves are significantly reshaped by GSI and RTC adaptation strategies. Fig. 330 

4 shows that GSI and RTC elevate the UDS’s maximum failure (worst performance) level and 331 

accelerate the system recovery rate, compared with the baseline scenario. GSI and RTC have 332 

smaller flooding severity volumetric areas than the baseline system, indicating GSI and RTC can 333 

improve the UDS performance on RCP 4.5 climate scenario. Particularly, the top subplot of Fig. 334 

4 shows that GSI enables the system to have a higher maximum failure level of 0.97 than the RTC 335 

(0.96) for the 2-year 3-hour event. As storm size increases to 10-year, the maximum failure level 336 

of GSI drops slightly below the RTC, but it is still higher than the baseline in the middle subplot 337 

of Fig. 4. As the storm return period increases to 100-year, GSI shows limited influences on 338 

subsiding the flooding severity volumetric area in comparison to the baseline system (bottom 339 

subplot of Fig. 4).  340 

 341 
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 342 

Fig. 4. System performance curves for the 3-hour and 2-year, 10-year, and 100-year future rainfall events under RCP 343 

4.5 climate scenario.  344 

 345 

RTC retains the adaptive capacity as rainfall intensity increases. Fig. 5 shows that RTC has few 346 

changes in failure level and flooding severity volumetric area from small to large rainfall events. 347 

This finding illustrates that RTC is able to protect the system's functionality by addressing the 348 

impacts across a range of design storms. Without adaptations, the maximum failure level 349 
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significantly declines from 0.9 to about 0.6, and the flooding severity volumetric area doubles from 350 

small (top subplot of Fig. 5) to large (middle subplot of Fig. 5) storms. With GSI retrofits, the UDS 351 

has the maximum failure level decreasing from 0.95 to 0.78 from 2-year to 100-year rainfall events. 352 

Even worse, GSI lessens the system functionality in the RCP 8.5 scenario. The middle subplot of 353 

Fig. 5 shows that the maximum failure level of GSI surprisingly falls below the baseline system, 354 

and induces a significantly larger severity volumetric area than RTC during the 100-year 3-hour 355 

storm event (bottom subplot of Fig. 5). GSI is designed like the passive gray stormwater 356 

infrastructure to meet fixed stormwater criteria, but increased rainfall volume and intensity can 357 

surpass these design standards leading to increases in flooding. In contrast, RTC adjusts the system 358 

operations to cope with the changes in rainfall and runoff volume.  359 

 360 
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 361 

Fig. 5. System performance curves for the 3-hour and 2-year, 10-year, and 100-year future rainfall events under RCP 362 

8.5 climate scenario. Please note the left y-axis has different intervals and ranges for each subplot. 363 

 364 

 Although the system is overwhelmed in the 100-year storm event, RTC makes full use of the 365 

available storage to retain the additional flooding volume. This operation can be done by 366 

expanding gate opening magnitude and extending the duration of 100% full opening. In general, 367 

RTC opens gates a larger percentage under 100-year event than under the 2- or 10-year event 368 
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loadings (Fig. 6). RTC senses the runoff peaking time in advance so that outflow can be timely 369 

discharged to prepare sufficient storage for incoming events. For instance, Fig. 6 shows that RTC 370 

continues opening the gate to 100% for 20 minutes (1:10-1:30) at the 100-year rainfall peaking 371 

time, and then gradually closes the gate to about 20% from 1:30 to 3:00. During this period, the 372 

storage tanks release the biggest amount of outflow to prepare the maximum storage volume. The 373 

dynamic operation is found to be the key reason why RTC is advantageous to the GSI’s static 374 

performance when dealing with future rainfall extremes.  375 

 376 

  377 

Fig. 6. RTC dynamically opens the gate to release outflow for preparing sufficient storage volume for storm events 378 

under RCP 4.5 and RCP 8.5 climate scenarios. 379 

 380 
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RTC shows greater performance for achieving higher resilience for rainfall events beyond the 10-381 

year design storms. GSI amplifies the flooding resilience up to 5% and 13% for RCP 4.5 and RCP 382 

8.5 100-year storms in Fig. 7. RTC improves the resilience up to about 6% and 17% at the 100-383 

year event for RCP 4.5 and RCP 8.5, respectively.  384 

 385 

 386 

Fig. 7. Resilience relative changes from GSI or RTC adaptation strategy to the baseline model under future artificially-387 

designed rainfalls of RCP 4.5 and RCP 8.5 climate scenarios.  388 

 389 
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4.2. Performance comparison under future continuous rainfalls 390 

RTC consistently outperforms GSI during the long-term continuous simulations. During rainfall 391 

peaks, the RTC and GSI adaptations significantly improve upon the baseline system performance 392 

(blue curves in Fig. 8). Events 1-4 (05/01/2049 to 06/01/2049) show larger differences in flooding 393 

severity volumetric areas between the baseline curve and adaptation curve than other storms after 394 

June 2049. This can be attributed to the fact that events 1-4 generally have longer storm durations 395 

than events 5-8, shown in Table 2. In RCP 4.5 climate scenario, RTC has higher performance 396 

curves (red curves) than GSI (black curves) at any time the occurrence of storm events in Fig.8. 397 

Still, such a finding is not applicable to the rainfall events of RCP 8.5 climate scenario. This 398 

discovery can be explained by Fig. 9, which shows that GSI has relatively higher performance than 399 

RTC at the system resistance stage. Especially under ‘back-to-back’ events 5-8 (medium or high 400 

rainfall intensity) of RCP 8.5, GSI has slower falling limbs of performance curves than RTC (Fig. 401 

9), indicating that GSI retrofit is more important to improve system resistibility than RTC.  402 

 403 
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 404 

Fig. 8. System performance curves for 2049 continuous future rainfalls under a) RCP 4.5 and b) RCP 8.5 climate 405 

scenarios. 406 

 407 

However, improving system resistibility does not necessarily mean enhancing system resilience. 408 

RTC has lower failure levels and faster recovery rates than GSI (recovery stage of Fig. 9), resulting 409 

in a higher resilience than GSI in future storms ranging from the short to long duration and low to 410 

high intensity.The advantage of the RTC is to improve system maximum failure level and recovery 411 

rate, while GSI is superior to improve the system resistance capacity. These adaptation benefits, 412 

consequently, promote system resilience under future climatic impacts. 413 

 414 
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 415 

Fig. 9. System performance curves under continuous storm events of RCP 8.5 climate scenario. During the resistance 416 

stage, GSI (black curves) has higher performances than RTC (red curves), but this phenomenon reverses at the 417 

recovery stage. 418 

     419 

5. Discussion 420 

The present research finds that RTC has inconsistent performance during continuous ‘back-to-421 

back’ storms due to the system functionality loss in the resistance stage of performance curves. 422 

During the ‘back-to-back’ storms, RTC only opens gates from 0% up to 25% when runoff peaks, 423 

and ends up fully closing the gate when rainfall recesses. In this way, water is still retained in the 424 

storage tank when the subsequent storm comes. This operation avoids releasing overloaded water 425 

to the downstream catchments to cause downstream flooding. Also, it ensures a certain amount of 426 
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stormwater discharge and prepares sufficient storage volume for the incoming storms. However, 427 

the deposited water diminishes the initial storage capacity of the UDS system and loses the 428 

system's functionality. The RTC’s performance curve drops earlier than GSI in events of RCP 8.5 429 

climate scenario (Fig. 9), which is the reason why GSI has resistibility exceeding RTC during the 430 

initial flooding stage. Such a case does not exist in designed storm events. During a single storm 431 

event, RTC gradually opens the gate to 100% when rainfall peaks, and ends up partially closing 432 

the gate when rainfall goes away (Fig. 6). In this case, no water is ponded in the storage tank when 433 

the next storm comes. As such, the RTC remains stable in performance without resistance 434 

functionality loss for design storms. 435 

 436 

The functionality loss in RTC can be offset by the following smaller failure level and quicker 437 

recovery speed than GSI. Referring to the recovery stages of performance curves in Fig. 9, we 438 

discover that RTC performance stops declining at a higher bottom point and then reverses back to 439 

original states with a higher performance than GSI. These changes reflect the high level of 440 

adaptivity and flexibility of RTC due to dynamic operations to cope with changing conditions. The 441 

increased adaptivity and flexibility, as two resilience attributes, directly enhance the system's 442 

resilience. Fig. 10 shows that RTC has higher resilience than GSI, but the resilience differences 443 

become smaller from RCP4.5 to RCP8.5 scenarios. Future work will focus on how to maintain 444 

consistency in RTC performance during long-term simulations with various flooding events of 445 

different volumes, durations, and intensities. RTC retains water in the system after prior storms, 446 

which reduces the initial storage capacity available for the next storms, but prevents the floods 447 

from occurring in downstream hotspots (Li et al., 2020b). In contrast, GSI completely infiltrates 448 

and discharges water into drainage inlets during storm events, which promotes the initial storage 449 
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capacity and system resistibility for the next rainfall events. These findings coincide with those 450 

reported in previous literature (Dong et al., 2017; Tavakol-Davani et al., 2016), but GSI still fails 451 

to handle large (100-year) floods in our case.  452 

 453 

The 100% gate opening for mitigating the runoff peaks is acceptable since the RTC operation has 454 

the potential to reduce functionality loss and enhance flooding resilience. However, fully opening 455 

the gate would cause a higher outflow to trigger downstream flooding when the next storm arrives 456 

before discharge ends. Simply releasing upstream storage tanks’ outflow into downstream 457 

catchments cannot boost the flooding resilience, which agrees with the catchment flooding 458 

resilience study (Wang et al., 2019). The resilience improvement under ‘back-to-back’ storms 459 

needs a system view. Thus, building the tradeoff between the gates’ dynamical operation and 460 

system’s functionality loss is crucial to keep consistent control performance in the long-term 461 

period. Control operation process increases system storage capacity but may lead to system 462 

functionality loss due to the occurrence of downstream flooding. This information is of great 463 

importance for guiding stormwater engineers, who have expertise in stormwater infrastructure 464 

design and can gain from understanding controls and how to implement RTC to adapt to future 465 

rainfall changes. 466 

  467 

6. Conclusions 468 

In the age of climate adaptation, the present study contributes to resilience advancements in Urban 469 

Drainage Systems (UDSs) by smart and green stormwater infrastructure retrofits for long-term 470 

resilient stormwater management. This research work compares the performance of real-time 471 

control (RTC) and green stormwater infrastructure (GSI) to mitigate the impacts of climate change 472 
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on urban flooding in Salt Lake City, Utah, USA. The comparison of resilience changes highlights 473 

that RTC can perform better than GSI as a crucial component of long-term resilient stormwater 474 

management. This study covers the flooding resilience assessment under various disturbances 475 

induced by future single and continuous rainfalls scenarios, which is helpful to improve the 476 

understanding of the temporal dynamics in system performance and functionality loss. Under a 477 

single storm, we summarized that both GSI and RTC are effective adaptation strategies by 478 

improving resilience by up to 13% and 17%, respectively, by 2049. As the storm size increases 479 

over the 10-year return period, GSI is less capable of enhancing system performance and resilience 480 

than RTC. Under future ‘back-to-back’ storms, we concluded that the performance curves of GSI 481 

have a stronger resistance capability while RTC has a faster recovery future from RCP 482 

(Representative Concentration Pathway) 4.5 to 8.5 climate scenarios. Our research represents the 483 

first step to explore how to build a long-term climate-adaptation strategy tailored for existing UDSs 484 

under various rainfall scenarios for smart stormwater community.  485 
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