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Abstract

Simultaneous localization and mapping (SLAM) technology is ubiquitously employed in ground robots, unmanned aerial vehicles,

and autonomous cars. This paper presents LTA-OM: an efficient, robust, and accurate LiDAR SLAM system. Employing

FAST-LIO2 and Stable Triangle Descriptor as LiDAR-IMU odometry and the loop detection method, respectively, LTA-OM

is implemented to be functionally complete, including loop detection and correction, false positive loop closure rejection, long-

term association mapping, and multi-session localization and mapping. One novelty of this paper is the real-time long-term

association (LTA) mapping, which exploits the direct scan-to-map registration of FAST-LIO2 and employs the corrected history

map to constrain the mapping process globally. LTA leads to more globally consistent map construction and drift-less odometry

at revisit places. We exhaustively benchmark LTA-OM and other state-of-the-art LiDAR systems with 18 data sequences.

The results show that LTA-OM steadily outperforms other systems regarding trajectory accuracy, map consistency, and time

consumption. The robustness of LTA-OM is validated in a challenging scene - a multi-level building having similar structures

at different levels. Besides, a multi-session mode is designed to allow the user to store current session’s results, including the

corrected map points, optimized odometry, and descriptor database for future sessions. The benefits of this mode are additional

accuracy improvement and consistent map stitching, which is helpful for life-long mapping. Furthermore, LTA-OM has valuable

features for robot control and path planning, including high-frequency and real-time odometry, drift-less odometry at revisit

places, and fast loop closing convergence. Moreover, LTA-OM is versatile as it is applicable to both multi-line spinning and

solid-state LiDARs, mobile robots and handheld platforms.
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Abstract

Simultaneous localization and mapping (SLAM) technology is ubiquitously employed in
ground robots, unmanned aerial vehicles, and autonomous cars. This paper presents LTA-
OM: an efficient, robust, and accurate LiDAR SLAM system. Employing FAST-LIO2 and
Stable Triangle Descriptor as LiDAR-IMU odometry and the loop detection method, re-
spectively, LTA-OM is implemented to be functionally complete, including loop detection
and correction, false positive loop closure rejection, long-term association mapping, and
multi-session localization and mapping. One novelty of this paper is the real-time long-term
association (LTA) mapping, which exploits the direct scan-to-map registration of FAST-
LIO2 and employs the corrected history map to constrain the mapping process globally.
LTA leads to more globally consistent map construction and drift-less odometry at revisit
places. We exhaustively benchmark LTA-OM and other state-of-the-art LiDAR systems
with 18 data sequences. The results show that LTA-OM steadily outperforms other systems
regarding trajectory accuracy, map consistency, and time consumption. The robustness of
LTA-OM is validated in a challenging scene - a multi-level building having similar structures
at different levels. Besides, a multi-session mode is designed to allow the user to store current
session’s results, including the corrected map points, optimized odometry, and descriptor
database for future sessions. The benefits of this mode are additional accuracy improvement
and consistent map stitching, which is helpful for life-long mapping. Furthermore, LTA-OM
has valuable features for robot control and path planning, including high-frequency and
real-time odometry, drift-less odometry at revisit places, and fast loop closing convergence.
Moreover, LTA-OM is versatile as it is applicable to both multi-line spinning and solid-state
LiDARs, mobile robots and handheld platforms.



1 Introduction

Simultaneous localization and mapping (SLAM) is a critical technology in ground robots, unmanned aerial
vehicles, and autonomous cars. A SLAM system can estimate the trajectory of a moving platform and the
map of the surrounding environment (e.g. Fig. 1) in real-time by processing the data from LiDARs (Zhang
and Singh, 2014; Xu et al., 2022) or cameras (Mur-Artal et al., 2015; Qin et al., 2018). Trajectory and map
are fundamental for robot navigation, control, and path planning. However, a visual SLAM using cameras
is sensitive to light condition variation and often provides a sparse map. In contrast, a LiDAR SLAM does
not suffer from these problems and holds high potential for safety-critical applications such as autonomous
cars.

The past decade has witnessed a significant development in LiDAR SLAM. A LiDAR SLAM system consists
of three core modules: LiDAR odometry (LO) (Zhang and Singh, 2014; Shan and Englot, 2018; Ye et al.,
2019; Shan et al., 2020; Lin and Zhang, 2020; Li et al., 2021; Pan et al., 2021; Xu et al., 2022), LiDAR loop
detection (He et al., 2016; Kim et al., 2021; Dubé et al., 2018; Liu et al., 2019; Chen et al., 2022; Yuan
et al., 2022) and pose graph optimization (PGO) (Grisetti et al., 2011; Kaess et al., 2012). Some of the LO
methods fuse LiDAR data with inertial measurement unit (IMU) data (Shan et al., 2020; Ye et al., 2019;
Li et al., 2021; Xu et al., 2022) and thus are also called LiDAR-IMU odometry (LIO). LIO only fulfills the
local map consistency, and the global map consistency is achieved via integrating LIO with loop detection
and pose graph optimization. More specifically, LiDAR loop detection can detect revisited places where loop
constraints can be exploited to correct the long-term odometry drift in pose graph optimization. A global
map is also generated using the pose graph optimization result.

We develop a complete LiDAR SLAM system with all these three modules. For the front-end odometry, we
use FAST-LIO2 (Xu et al., 2022) because of its superior accuracy, efficiency, and robustness for different
LiDAR types and environments. For the loop detection, we employ our recent work called Stable Triangular
Descriptor Loop Closure Detection (STD-LCD) (Yuan et al., 2022), which achieves state-of-the-art precision-
recall and provides a loop closure candidate index with reliable 6 degrees of freedom (DoF) transformation.
Besides, STD-LCD is well suited to different LiDAR types, from multi-line spinning LiDARs to emerging
solid-state LiDARs, and can detect loop closures for revisited places with a small overlap and drastic changes
in viewpoint.

When a loop is detected, a natural usage of the loop is adding loop constraints into the pose graph opti-
mization to do loop optimization. Exploiting the relative poses estimated from the LIO and loop detection
modules, pose graph optimization does not ensure the live map and the history map at revisited places can
always align after the loop closure scan, due to the lack of direct constraints on map consistency. To address
this issue, we propose to reload map points from history maps to globally constrain the online localization
and the live map construction of LIO, serving as a direct constraint on the map consistency at revisit places.
In detail, we first correct points in history maps using the odometry updated by loop optimization and then
insert these map points into the live map of LIO module on the fly. Finally, the upcoming LiDAR scans
are registered to the live map, consisting of points from recent and corrected history maps. This approach
is called long-term association (LTA) mapping, significantly reducing the odometry drift at revisited places
and improving map consistency therein. When the robot moves out of the previously mapped areas, the
system adds new points to the live map and grows the map seamlessly.

LiDAR SLAM systems employ robust estimators such as Huber loss (Huber, 1973) or Cauchy loss to make the
system robust against false-positive loop closures. However, such robust estimators would considerably soften
the correction brought by loop constraints, especially when the LIO drift is significant. In detail, the first few
loop constraints have large initial residuals, and the optimization with robust estimators would falsely treat
them as outliers, assigning small optimization weights for them. Consequently, the significant drift would
sustain for a long period until a sufficient number of correct loop constraints are introduced to the pose graph.
We call this phenomenon the slow loop closing convergence problem. Besides, robust estimators cannot close
the loop correctly when dealing with high false positive ratio cases. We propose actively rejecting false-



positive loop closures by an optimize-and-recover mechanism to address these challenges. More specifically,
when the system detects a loop scan, the system optimizes the graph using the corresponding loop closures
constraints. Then, the constraint residuals inside the graph loop cycle are examined to assess if the resultant
graph is consistent. If not, the system rejects the loop constraints and recovers the pose graph back to its
previous status. This optimize-and-recover mechanism decouples the loop optimization from the LIO module
so that false-positive loop closures will not cause the system to breakdown (e.g., as in LIO-SAM (Shan et al.,
2020) and LILIOM (Li et al., 2021)). The loop optimization result is conveyed to the LIO module only if
the graph consistency check is passed.

In summary, the main contributions of this report are:

1. LTA-OM: an efficient, robust, and accurate SLAM system. We integrate FAST-LIO2, STD-LCD,
and loop optimization into the system. The efficiency and accuracy of LTA-OM are proven to outperform
state-of-the-art LiDAR systems on extensive benchmark experiments, including urban, campus, and non-
man-made environments with the same or reverse direction, small-overlap revisit, and various time duration
(8 ∼ 112 mins) or travel distances (1.1 ∼ 7.5 km). We also test our system against a structurally-similar
scene - a multi-level building having similar corridors at different levels, and our system can still function
properly and build a nice map.

2. Real-time long-term association. Our work leverages history map points at revisited places to globally
constrain LIO’s online localization and mapping. When loop optimization is done, we correct the pose state
of FAST-LIO2 with the loop optimization result and dynamically reload map points from history maps to
the live map for online LIO. With this, LIO’s map construction becomes globally consistent, and LIO’s
localization becomes driftless due to the usage of the corrected history map. Besides, the mechanism of pose
correction and live map update is well-designed to achieve real-time performance and avoid long LIO delays.

3. Multi-session mode. The long-term association in our SLAM system extends naturally to a multi-
session mode where a user can store the map of LTA-OM in the previous session and load it for relocalization
in the current session. More specifically, in this mode, the system first relocates in the pre-stored map using
the loop detection module of LTA-OM. Then, the LIO module of LTA-OM dynamically loads the pre-stored
map to the live map built in the current session to constrain the online localization and mapping. As a result,
the pre-stored and live maps are naturally stitched, and the LIO pose becomes driftless on the pre-stored
map. When the robot enters unexplored areas in the pre-stored map, LTA-OM appends new points to the
stitched map, which automatically grows the map without further merging.

The rest of this report is organized as follows. A literature review of relevant works will be presented in Sec.
2. The methodology of our system will be illustrated in Sec. 3 and 4. Experiments will be conducted in Sec.
5. Finally, a conclusion is drawn in Sec. 6.

2 Related Works

2.1 LiDAR Inertial Odometry

A pioneering work in LiDAR odometry and mapping is LOAM (Zhang and Singh, 2014). It proposes to utilize
the smoothness of the local surface at each point to extract geometrical features such as edges and planes for
consecutive scan matching. However, the smoothness computation for a dense point cloud is time-consuming
and impacts the performance when computation resource is limited. LeGO-LOAM (Shan and Englot, 2018)
is a lightweight alternative to LOAM. It proposes to segment features in range images generated from the
360 degrees LiDAR and utilizes a two-step optimization to make the system operate on an embedded system
in real-time. It allows users to optionally import IMUs’ onboard estimated poses to provide inter-scan
transformation prior for improved robustness. Subsequently, LIOM, (Ye et al., 2019) LIO-SAM (Shan et al.,
2020), and LILIOM (Li et al., 2021) propose to maintain a sliding window and register scans to the local map



Figure 1: The constructed map (blue points) and estimated trajectory (red curve) by LTA-OM (proposed)
on NCLT 2012-02-02 sequence. The constructed map is compared with the corresponding satellite image.
The dash boxes are zoom-in regions showing that the map matches the outline of buildings with nice global
consistency.

with an optimization approach. LIOM and LIO-SAM use IMU pre-integration method (Forster et al., 2015)
to deskew the motion distortion on LiDAR scans. LILIOM uses IMU pre-integration method to introduce
inertial constraints between keyframes. FAST-LIO2 (Xu et al., 2022) is a more lightweight LIO system.
Compared with the optimization-based methods LIOM, LIO-SAM, and LILIOM, FAST-LIO2 is based on an
iterative extended Kalman filter, which tightly couples the high-rate measurements to deskew a LiDAR scan
and makes the system robust against rapid motions. FAST-LIO2 further develops an incremental kd-Tree
(ikd-Tree) to enable fast and efficient scan-to-map registration. Due to the high computation efficiency and
robustness of FAST-LIO2, we choose it for the LIO part of our SLAM system.

2.2 LiDAR Loop Closure Detection

Kim and Kim propose Scan Context (Kim and Kim, 2018), which projects the cloud into the ground plane
and encodes the height information as an image. The image is transformed into a ring key vector, enabling
fast loop closure candidates retrieval with KD-tree searching. They further upgrade Scan Context to Scan
Context++ (Kim et al., 2021) with lower descriptor extraction and retrieval time. Yuan et al. (Yuan et al.,
2022) propose STD-LCD, which extracts key points in the cloud using local density and describes the cloud
as a set of triangular descriptors using triplets of key points. In the loop closure retrieval phase, triangular
descriptors quickly suggest candidates using hash values retrieval and accelerate the subsequent geometrical
verification. STD-LCD can detect loop closures quickly and provide a reliable 6D transformation between
the history and current maps. Furthermore, STD-LCD is versatile because it is applicable to both multi-line
spinning and solid-state LiDARs, and it can handle various environments such as indoor, urban, and wild
fields. Therefore, we use STD-LCD as our loop detection method.

2.3 False Positive Rejection

Loop closure detection algorithms cannot always promise 100% precision, necessitating a false positive re-
jection (FPR) module to reject false-positive loop closures. Robust estimators such as Huber loss (Huber,
1973) and Cauchy loss are traditional methods to keep optimization away from the impact of false-positive



loop closures. However, robust estimators have a slow loop closing convergence problem when LIO drifts
severely. Sunderhauf and Protzel (Sünderhauf and Protzel, 2012) propose to add switchable factors into
the graph so that inconsistent factors can be disabled automatically by corresponding switchable factors.
The extra computation burden in optimization brought by switchable factors is heavy. Latif et al. (Latif
et al., 2013) propose the RRR algorithm, which first checks consistency for intra-clusters and inter-clusters
constraints. After that, if some inconsistent constraints are rejected, the consistency check is conducted
again for the reminder constraints. These three consistency check requires three PGO executions that bring
significant latency to SLAM systems. Their method is designed to handle theoretically challenging cases
such as a batch of false positive loop closures concurrently appearing at different times or places, and we
focus on the case of online SLAM where loop closures come in sequences, not in batch. We adopt the idea of
graph consistency check to do active rejection. If a false positive loop constraint is rejected, the pose graph
is recovered back to its previous status. Therefore, we do not need to re-estimate graph parameters after
the rejection as performed in RRR (see Sec. 4.3.2).

2.4 LiDAR Inertial SLAM

LeGO-LOAM, LIO-SAM, and LILIOM are complete LiDAR SLAM systems, and they integrate LIO with
simple region search loop detection and PGO. Kim et al., (Kim et al., 2022) well-integrate FAST-LIO2,
LIOSAM, and LeGO-LOAM with a more sophisticated loop detection algorithm - Scan Context, and the
resultant systems are called FAST-LIO-SC, LIOSAM-SC, and LeGO-LOAM-SC, respectively. Scan Context
and region search loop detection cannot provide a 6D loop closure transformation. As a result, these systems
require time-consuming ICP to compute transformation between the current scan (or submap) and the loop
scan (or submap). Furthermore, ICP can verify loop closure pairs with a heuristic ICP residual threshold.
STD-LCD, providing loop closure pairs with 6D transformation, allows us to avoid using ICP but still requires
us to verify the correctness of the provided loop closure pairs and transformations for system robustness. We
use the graph consistency check in our FPR module to verify the correctness. Overall, due to the elimination
of ICP, our system is efficient and avoids introducing the latency caused by ICP.

Moreover, LIO-SAM and LILIOM couple the local mapping and localization with global loop optimization in
PGO. In comparison, we decouple them to avoid the temporally degenerated PGO in FPR module causing
frontend mapping and localization to fail.

2.5 Multi-session SLAM

In the multi-session mode, ORB-SLAM3 (Campos et al., 2021) online merges the local active map to the
previous session’s map in a separate thread. By exploiting the previous map, ORB-SLAM3 becomes robust
against fast motion scenarios even without IMU, and the drifting level is significantly alleviated in some
sequences. However, our method does not require extra map merging operation as the new scan points
are automatically registered to pre-stored maps in the odometry module of our system. LT-mapper (Kim
and Kim, 2022), a LiDAR multi-session framework, leverages Scan Context and ICP verification to find
map correspondence between the previous and current sessions and stitches maps using map correspondence
with PGO. As pointed out by the authors, this framework has inherent map alignment errors (though their
LT-removert module is proposed to handle that), while the map stitching in our work is done seamlessly
using LTA. LSMS (Large-Scale Multi-Session) (Labbe and Michaud, 2014), an RGBD SLAM framework,
also stitches maps in a PGO fashion with inter-session map correspondence. Map correspondence in LSMS
is found via visual loop detection and RANSAC transformation verification. LSMS and LT-mapper focus
more on large-scale map management compared with our work. LSMS introduces a memory forgetting
mechanism to achieve real-time loop detection and PGO, while LT-mapper extracts map change areas to
enable storing the new map as a persistent map and the map change areas only. In comparison, our work
focuses on the driftless odometry on a pre-stored map, robust relocalization, and efficient and nice map
stitching performance.



3 System Description

The pipeline of our system is summarized in Fig. 2. Our system consists of four core modules: LiDAR-IMU
odometry (LIO), loop detection, loop optimization, and loop correction.

The pipeline workflow is briefly illustrated here. The LIO module, a variant of FAST-LIO2 incorporating
long-term association, provides the registered scan and estimated odometry to the loop detection module.
The loop detection module, STD-LCD, extracts the key points and detects the loop closure for the loop
optimization backend. Then, the loop optimization employs the provided odometry, key points, and loop
closure information to construct and maintain a pose graph and then optimize the pose graph upon a loop
closure is detected. Once a successful loop optimization is done, loop correction employs the optimized
odometry to correct the pose state and replace the map (i.e., ikd-Tree) of the LIO module.
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Figure 2: Main system components of LTA-OM. The components with the notation “ * ” are required only
when a pre-stored map is available (so-called multi-session mode).

4 System Modules

4.1 LiDAR-IMU Odometery

We employ FAST-LIO2 as our LIO module. FAST-LIO2 is based on a tightly coupled iterated Kalman
filter. It handles the motion distortion problem present in LiDAR measurement and provides online extrinsic
estimation for LiDAR and IMU frames. Furthermore, it employs incremental kd-tree (ikd-Tree) to enable
fast direct (i.e., without feature extraction) scan-to-map registration and state update.

1)Localization : FAST-LIO2 maintains a state vector containing states of global IMU pose, global IMU
velocity, IMU bias, gravity vector, and LiDAR-to-IMU transformation. It uses IMU measurement and IMU
noise models to forward-propagate states. Subsequently, using a kinematic model with IMU measurement,
it backward-propagates LiDAR points to accurate positions. Backward propagation can compensate for the
motion distortion of points. Then, compensated points are used to compute state update residuals and the
Kalman gain. Finally, FAST-LIO2 iteratively updates states until convergence.

2)Mapping with long-term Association : FAST-LIO2 introduces ikd-Tree to enable incremental point
insertion and deletion. When a new point is inserted into a conventional kd-Tree, the original balance of the
tree is broken, and a time-consuming tree rebuild is required. The ikd-Tree introduces box-wise deletion with
lazy labels to improve point deletion efficiency and a parallel tree rebuild strategy to protect the mapping
module from the rebuild delay. Besides, the residual computation mentioned in the localization module
depends on ikd-Tree. An unregistered point is used as the reference point to search five neighboring points



on the ikd-Tree. These neighboring points are fitted with a plane, and the state update residual is computed
as the point-plane distance. By iteratively minimizing the residual, the new scan pose can be obtained,
which then registers the new scan to the ikd-Tree and also the global history map.

A key difference of our odometry from the standard FAST-LIO2 is the long-term association (LTA) employed
in the mapping module. Besides merging new scan, we propose to load points from the global history map to
ikd-Tree so that the global history map constrains the online state update globally. In detail, we dynamically
load map points around the current robot position from the history map to the ikd-Tree. The ikd-Tree,
referred to as the live map, hence contains points from both new scans and the global history map, which
then registers the subsequent LiDAR scans with long-term constraints arising from the history map.

We load the points contained in history scans whose pose is in a certain range (i.e., the load range) of the
current LIO pose. During loading points from the history scans, we correct the point position using the scan
pose updated by the loop optimization module. Then, the history scan indices are marked as “loaded” if
already considered in the previous loading process to avoid redundant operation. Therefore, the dynamic
loading is performed periodically with a limited frequency: the next dynamic loading will occur when the
LIO pose approaches the boundary of the last load range. Moreover, this dynamic loading strategy naturally
leads to an interesting property: when the robot moves to previously explored areas, LTA will automatically
take effect to merge live map with history map after loop correction, and when the robot moves to unexplored
areas (no surrounding history scans), live map will grow automatically from history map without the effect
of LTA.

4.2 Loop Closure Detection

We use STD-LCD as our loop closure detection module. STD-LCD can efficiently detect loop closure and
provide reliable loop closure geometrical transformation. Furthermore, it can handle the challenge cases of
small overlap revisits.

The detailed workflow of STD-LCD is stated in Fig. 2. In detail, submap accumulation component is to
accumulate sufficient registered scans from LIO (by default, 20 moving LiDAR scans for multi-line spinning
LiDAR). The pose of the accumulated submap is chosen as the scan pose (i.e., the LiDAR coordinate frame
w.r.t. the global coordinate frame) of the final scan. Besides, submap indices are employed to label the scans
stored in history map for future map point correction processes. Other components are explained as follows
with detail.

1)Key points extraction and descriptors construction : With the accumulated submap, STD-LCD
voxelizes the submap and finds plane voxels by checking the on-plane point ratio. The plane voxels are
merged into larger planes. The points of non-plane voxels are projected onto adjacent planes to construct
images. With images, key points are extracted by finding the pixels with local maximum point-plane distance.
Furthermore, a spatial non-maximum suppression is conducted to enhance extraction repeatability. Every
triple of extracted key points can build up a triangle. Based on the triangle, STD-LCD designs the descriptor
as a six-dimensional array, including three ascending triangular edge lengths and three projection normal
vector dot product values. The projection normal vector is defined as the normal of each key point at point
cloud surface.

2)Loop closure retrieval and verification : Loop closure retrieval and verification consist of three parts:
rough loop detection, fine loop detection, and geometrical verification. Rough loop detection can quickly
propose N possible candidates by searching the matched historical descriptors in the hash table of the
descriptor database. Fine loop detection verifies the proposed candidates by computing all transformation
matrices between paired triangles and clustering the transformations to find the transformation with the
most supporters. Fine candidates are those with maximum transformation supporters larger than 4 (by
default). Finally, fine candidates’ point-plane distances are computed, and the best candidate is selected
as the one with the smallest distance. The best candidate is accepted as the loop closure result only when



its overall point-plane distance is smaller than a threshold. The point-plane distance computation is fast
because a nice initial guess is provided by fine loop detection, and only key points (< 50) of source submap
are used for the point-plane distance computation.

Remark 1 : Accumulating tens of LiDAR scans in loop detection inevitably introduces a delay to the sub-
sequent loop optimization and correction process. However, with good local accuracy and small delay, our
online LIO odometry also satisfies the needs of path planning or robot control that often require local in-
formation. Furthermore, LIO odometry will also have good global accuracy at revisit places after one loop
correction (see Sec. 4.4).

4.3 Loop Optimization

This subsection includes the three key parts of loop optimization: graph construction and optimization, false
positive rejection, and key points factors marginalization.

4.3.1 Graph Construction and Optimization
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Figure 3: Graph overview.

A graph represents the relation between different constraints in the optimization problem. The graph we
employed (see Fig. 3) is a variant version of a conventional pose graph. A conventional pose graph consists
of pose nodes, odometry factors, and loop closure factors. The mathematical expression of pose graph
optimization is shown as follows.

{GX} = argmin
∑

(i,j)∈O

||Log(T̃−1

ij Tij)||2 +
∑

(i,j)∈L

||Log(T̃−1

ij Tij)||2 (1)

Where {GX} denotes the collection of estimated submap pose w.r.t. global coordinate frame with index
k = [1, ..,M ], M the number of submap poses, T̃ij and Tij the measured and the estimated transformation
between the i and j submap poses, O and L the sets of index pairs of the odometry constraints and loop
constraints, respectively.

We employ the extracted key points from loop detection module (see Sec. 4.2) and add key point factors for
adjacent pose nodes. Furthermore, we employ loop closure key point factors instead of loop closure factors.
The mathematical expression of our pose graph optimization is shown as follows.

{GX} = argmin
∑

(i,j)∈O

||Log(T̃−1

ij Tij)||2 +
∑

(i,j)∈KN

||LP̃i − TL
ijP̃j ||2 +

∑
(i,j)∈KL

||LP̃i − TL
ijP̃j ||2 (2)

Where LP̃i and
LP̃j denotes the associated key point pairs of the i and j submaps respectively, LP̃ the key

points w.r.t. the local submap coordinate frame, KN and KL the sets of index pairs of the neighboring and
loop closure key point constraints, respectively. Neighboring key point pairs are associated by using kd-tree
searching with a radius threshold in the global coordinate frame, while STD-LCD associates loop closure key



point pairs. Once loop closure key point constraints are inserted into the graph, pose graph optimization
will be executed to do loop optimization.

4.3.2 False Positive Rejection

False-positive loop closures heavily impact pose graph optimization, and we introduce an FPR module to
reject them. Our FPR method is based on the fact that the optimized key point factors shall output
reasonable residual magnitudes. Equivalently speaking, when false-positive loop constraints are introduced
to the loop optimization, an apparent separation of the same surface or edge in the resultant map will
appear, causing large key point pair distances (i.e., irrational factor residuals). The detailed pseudo-code
of the proposed FPR method is shown in Alg. 1. We first calculate and threshold the overlap ratio of the
loop closure submap pair. Though STD-LCD can handle small overlap cases, we only trust the loop closure
with an overlap ratio larger than 0.5 in our system (Lines 1 ∼ 3). Before each loop closure optimization,
we back up the graph and its variable values (Line 8). Then, we try pose graph optimization with loop
closure key point factors and consistency check (i.e., check if the outcome residuals of key point factors are
smaller than a threshold. Lines 14 ∼ 21). When the graph becomes inconsistent, we reject this loop closure
and recover the graph to the backup (Lines 9 ∼ 13). The threshold to control the key point factor residual
can be regarded as a point-to-point distance threshold. It is a one-dimensional variable and, thus, easy to
tune. However, when dealing with the first loop closure or a loop closure on the condition that the distance
between current pose and loop closure pose is large (e.g., greater than 10% of the maximum range of x, y,
and z on the map), we need to be more careful as this loop closure will heavily influence consequent loop
closure acceptance. To better handle these cases, we maintain a container Lp that temporarily stores key
point factors that are not added to the graph (Line 4). We propose to check two consecutive loop closures at
one go in these cases because they are unlikely false-positive once both their inter-consistency and in-graph
consistency are fine (Lines 5 ∼ 7).

Our FPR module does not execute PGO but simply recovers the graph to the previous status, avoiding
introducing an extra delay to the systems as performed in RRR (Latif et al., 2013). Compared with robust
estimators, it is more robust against a structurally similar scene (see Sec. 5.4) and has fast loop closing
convergence.

4.3.3 Key Point Factors Marginalization
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Figure 4: Illustration of key point factors marginalization.

Introducing key point factors to the loop optimization will gradually slow down the optimization because the
optimization time is proportional to factor number, necessitating the marginalization of key point factors to
prevent factor number from increasing unboundedly. In addition, an incremental optimization framework
called ISAM2 (Kaess et al., 2012) is also employed for optimization efficiency.

The idea of key point factors marginalization is illustrated with a simple example shown in Fig. 4. Using
this figure as an example, when a robot moves from the first pose to the fifth pose, a loop closure is detected



Algorithm 1: False Positive Rejection

Input : Factor graph G;
Loop closure key point factors lp;
Overlap ratio between loop submaps ratioo;
The distance between current pose and loop closure pose d;
Map range (xrange, yrange, zrange);
Residual threshold thrr;
Overlap threshold thro;

Output : Corrected factor graph G.

1 if ratioo < thro then
2 return;
3 end
4 Lp ← Lp ∪ {lp}; /* Store lp to a constraint set Lp */

5 if lp is the first loop closure key points factor OR d > 0.1 ∗max(xrange, yrange, zrange) then
6 return; /* Wait for more loop closure key points factor */

7 end
8 G′ ← G; /* Back up graph */

9 Add Lp to G and optimize G; /* Try optimize graph with Lp */

10 if !ConsistencyCheck(G, thrr) then
11 G← G′; /* If map not consistent, recover graph to reject the loop closure */

12 end
13 Lp ← Ø;

14 Function ConsistencyCheck(G, thrr)
15 for f ← key point factors of G do
16 if f.residual > thrr then
17 return false;
18 end

19 end
20 return true;

21 end

and accepted by the FPR module. After the optimization, the loop-closed graph will be used to recalculate
the relative transformation between consecutive poses. The recalculated relative poses are inserted into the
graph as new odometry factors to replace the previous factors, including both key point factors and old
odometry factors. Then, marginalization is done for the loop cycle of {1, 2, 3, 4, 5}. Similarly, when the
robot moves from the fifth to the sixth pose, another loop closure is accepted, followed by marginalization
for the loop cycle of {1, 2, 5, 6}.

4.4 Loop Correction

In this subsection, we first use a sequence flow diagram (see Fig. 5) to show how loop correction module
works, and then we detail the four key steps, including the dynamic loading, map points correction, ikd-Tree
rebuild, and scan re-registration in the pipeline (Fig. 2)

It is worth noting that we employ a separate thread called the “ikd-Tree rebuild thread” to do the extra
tasks. This asynchronous operation prevents the original FAST-LIO2 thread from significant hangup. More
implementation details are discussed in the following subsections.

4.4.1 Points Correction and Ikd-Tree Rebuild

Naive ikd-Tree rebuild for all history points is time-consuming, and dynamic loading of history points can
alleviate this problem. After receiving the optimized odometry from the loop optimization node (see Fig.
5), the ikd-Tree rebuild thread loads the history points surrounding the current position. This dynamic
loading is based on a kd-Tree of scan positions. All scan positions in optimized odometry are used to create
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Figure 5: Workflow of loop correction.

a position kd-Tree for searching the neighboring scans in dynamic loading. The loaded points are corrected
with the optimized odometry and used to rebuild a new ikd-Tree.

Remark 2 : The stored submap points for points correction are the on-tree downsampling result of FAST-
LIO2, and thus the point number is inherently far smaller than the raw point number. Besides, when the
revisit occurs repeatedly, the downsampling ratio will increase; thus, the number of stored submap points
will not rise unboundedly. The detailed time consumption is discussed in Sec. 5.2.

4.4.2 Pose Correction and Ikd-Tree Replacement

During loop detection, loop optimization, points correction, and ikd-Tree rebuild, LIO pose has moved

forward from Xk to Xk+m. The loop optimized k-th pose X
′

k is outdated w.r.t. the up-to-date LIO pose

Xk+m (see Fig. 5). We cannot directly reset LIO pose to be X
′

k. Instead, we need to transform Xk+m

to X
′

k+m with the transformation from Xk to X
′

k (denoted as Tk′ ,k). However, Tk′,k is not always precise

enough to fit X
′

k+m with the rebuilt ikd-Tree because of the imperfect optimization result. We need to do

the ICP to re-register the projected scan using X
′

k+m to the rebuilt ikd-Tree (“Scan Re-registration” in Fig.
2), during which FAST-LIO2 must be hung up for the ICP taking average only about 8 ms (see Tab. 7).
After that, the FAST-LIO2 thread corrects its pose as X∗

k+m and replaces its ikd-Tree with the rebuilt one in
a short time (<1 ms) to bring LTA into service. In summary, the optimal LIO pose is calculated as follows:

X∗
k+m = TicpTk′ ,kXk+m = TicpX

′

kX
−1
k Xk+m. (3)

Where Ticp denotes the ICP result. Let pose correction transformation Tcorr be:

Tcorr = TicpX
′

kX
−1
k (4)



Then,
X∗

k+m = TcorrXk+m. (5)

4.4.3 Maintenance Policy

As the accuracy of optimized odometry is gradually enhanced with more and more loop constraints, we
execute loop correction with a frequency to allow the long-term association to utilize the newest loop opti-
mization result. The frequency is controlled with a spatial interval (50 m by default). All the scans marked
as “loaded” in the last loop correction execution will be reset as “not loaded” for the current loop correction
execution.

4.4.4 Odometry Factor Recalculation

Pose correction introduces an abrupt pose state change to the LIO module, which impacts the accuracy
of odometry factor calculation. We need to recalculate the impacted odometry factor. Suppose the pose
correction occurs between the consecutive submap poses Xi and Xj (where i > j), Xj must be recalculated
as:

X∗
j = TcorrXj (6)

Then, the recalculated odometry factor measurement is:

T̃
∗−1

ij = XiX
∗−1
j = XiX

−1
j T−1

corr (7)

4.5 Multi-session Mode

When LTA-OM processes one data sequence, we can store the resultant odometry, map, and descriptor
database as prior information for future localization, mapping, and loop detection. Loading the prior infor-
mation from one sequence to process another is called multi-session mode. This mode is proven to enhance
current session accuracy (see Fig. 10). Besides, this mode enables building the live map consistent with the
pre-stored map (called map stitching, see Tab. 8). Multi-session mode is useful for robot navigation since it
avoids rebuilding the map when the robot performs a repetitive task in a specified area.

Implementation of multi-session mode is briefly included in Fig. 2. There are four major differences between
single-session mode and multi-session mode, including 1. pre-stored map is loaded to the FAST-LIO node
for the LTA module, but pre-stored map points are not needed to correct; 2. pre-stored descriptor database
is loaded to the loop detection node for the loop closure retrieval on the prior map, and we set its priority
higher than the retrieval on the history map; 3. pre-stored submap poses are loaded to loop optimization
node for prior factor calculation; 4. relocalization is implemented to correct the LIO pose onto the pre-stored
map.

Remark 3 : Considering the loop detection result is not always correct, we must carefully reject false-positive
loop closure to avoid disastrous system breakdown. Thanks to our FPR module, we can actively reject them,
which is not achievable using conventional robust estimators. When two consecutive loop closures against
the prior descriptor database are detected, we can compute the corresponding prior factors for the online
submap poses and try optimizing the graph with the prior factors. If they are consistent with each other,
we accept them and accomplish subsequent relocalization.



5 Experiments

In this section, experiments in terms of accuracy, map consistency, and computational efficiency are con-
ducted. We compare our system with other four state-of-the-art LiDAR SLAM systems including FAST-
LIO-SC1, LIOSAM-SC2, LeGO-LOAM-SC3 and LILIOM4. The first three LiDAR systems (Kim et al., 2022)
are integrating Scan Context with FAST-LIO2, LIOSAM, and LeGOLOAM by the authors of Scan Con-
text. Note that LeGOLOAM-SC requires IMU measurement while LeGOLOAM does not. Our experiment
platform is a 2.90 GHz 16-cores Intel i7-10700 CPU and 15.5 GB RAM.

The datasets used for benchmark comparison are Mulran dataset (Kim et al., 2020) and NCLT dataset
(Carlevaris-Bianco et al., 2016). Both datasets comprise 10 Hz LiDAR data, more than 100 Hz IMU data,
and good quality 6 DoF ground truth trajectory with timestamps. Mulran dataset has three challenging
scenarios for benchmarking LiDAR SLAMs, including DCC, KAIST, and riverside sequences. DCC and
KAIST sequences have buildings, a mountain, trees, moving cars, etc. They include both same-direction
and reverse revisits, and reverse revisits have low scans overlap. It is difficult for a loop detection method to
detect all the loop closures in these sequences. Riverside sequences have trees, a river, bridges, and moving
cars. Trees and bridges have repetitive structures, which are hard for a loop detection method to detect
loop closures correctly and for LiDAR SLAM to alleviate the impact of false-positive loop closures. The
NCLT dataset includes sequences collected in different seasons at the University of Michigan North Campus,
a scene with bushes, trees, and campus buildings. Compared with Mulran sequences, NCLT sequences have
more frequent revisits in the same and opposite directions, more significant variance in the z-direction, and
larger average time duration. More details of sequences are listed in Tab. 10.

5.1 Benchmark: Trajectory Accuracy and Map Consistency

To evaluate the accuracy of LiDAR SLAMs, we use the EVO trajectory evaluation tool5 to compute the
absolute trajectory error for their result trajectories. The evaluation tool aligns the trajectory estimation to
the ground truth trajectory using the Umeyama algorithm (Umeyama, 1991) and computes the estimation’s
root mean square error (RMSE). Furthermore, we run our system for all sequences with the factor residual
threshold of FPR module = 2 and loop closure overlap ratio threshold = 0.5.

The result is displayed in Tab. 1 and 2. To obtain each number of the tables, we repeat the trial five
times and take the average of the results to make the comparison more statistically persuasive. Our system
outperforms the competing SLAM systems on eight out of nine data sequences. The only exception is on
DCC01 where our result is slightly worse than that of FAST-LIO-SC. The result proves the advantage of
our system in trajectory accuracy. We also spot that our system outperforms FAST-LIO-SC even though
both systems employ the same LIO module with identical configuration files. The accuracy advantage of
our system against the competing SLAM systems is due to our system being well-engineered and -designed
to exert the capability of all modules and make them function harmoniously.

The comparisons of the constructed maps by LTA-OM, FAST-LIO-SC, LIOSAM-SC, and LeGOLOAM-SC
on riverside02 and DCC02 sequences are shown in the right pictures of Fig. 6 and Fig. 7, respectively.
It is seen that the map generated by LTA-OM is the most consistent one. An exception is in the case of
riverside02, where the map constructed by LIO-SAM-SC shows similar consistency. The complete maps
by LTA-OM for riverside02 and DCC02 sequences are shown in the left pictures of Fig. 6 and Fig. 7,
respectively, and they show a global consistency. The map consistency advantage comes from the proposed
LTA module, and Sec. 5.3 provides more evidence. Note that the LIO module of LILIOM is not working
properly on Mulran dataset. Therefore, the constructed map by LILIOM is not comparable to those by the

1retrieved from https://github.com/gisbi-kim/FAST_LIO_SLAM on Sep. 2021
2retrieved from https://github.com/gisbi-kim/SC-LIO-SAM on Sep. 2021
3retrieved from https://github.com/irapkaist/SC-LeGO-LOAM on Sep. 2021
4retrieved from https://github.com/KIT-ISAS/LILIOM on Mar. 2022
5retrieved from https://github.com/MichaelGrupp/evo on Mar. 2022

https://github.com/gisbi-kim/FAST_LIO_SLAM
https://github.com/gisbi-kim/SC-LIO-SAM
https://github.com/irapkaist/SC-LeGO-LOAM
https://github.com/KIT-ISAS/LILIOM
https://github.com/MichaelGrupp/evo


other systems and thus not included in the comparison.

To display the global consistency of the map by LTA-OM, we compare the map with the Google Earth
satellite image of the University of Michigan North Campus (see Fig. 1). The satellite image can be treated
as the indirect ground truth of the map. Four zoom-in close shots spread all over the campus, showing
that the map globally matches the actual outline of campus buildings. In other words, the map is globally
consistent.

Table 1: The absolute trajectory error (RMSE, meters) comparison on Mulran dataset.

R1 R2 R3 K1 K2 K3 D1 D2 D3 Avg

LTA-OM (proposed) 6.98 6.32 10.38 3.25 3.10 3.06 5.29 2.94 2.17 4.83
FAST-LIO-SC 7.96 7.21 10.67 3.44 3.90 3.12 5.26 5.26 4.21 5.67
LIOSAM-SC 9.27 8.05 11.62 3.77 3.81 3.59 5.77 3.50 3.02 5.82
LeGOLOAM-SC 24.6 19.21 31.85 319.58 76.49 4.74 224.86 4.13 3.58 78.78
LILIOM >999 >999 457.69 >999 30.38 201.92 >999 34.04 x >999

1
Ö denotes that the system totally failed.

Table 2: The absolute trajectory error (RMSE, meters) comparison on NCLT dataset.

N1 N2 N3 N4 N5 N6 N7 N8 N9 Avg

LTA-OM (proposed) 1.46 1.61 1.38 1.52 1.76 1.90 1.79 0.90 1.75 1.56
FAST-LIO-SC 2.44 2.17 2.71 1.74 2.36 2.88 6.96 1.00 3.21 2.83
LIOSAM-SC 42.03 224.25 59.67 1.76 267.13 2.85 425.00 3.36 651.49 186.39
LeGOLOAM-SC 288.59 275.61 220.54 86.87 83.42 96.83 273.89 83.51 43.81 161.45
LILIOM >999 >999 >999 3.65 132.98 5.63 154.43 1.55 246.98 >999

5.2 Benchmark: Time Consumption

This section compares the overall time consumption per scan of LTA-OM, FAST-LIO-SC, LIOSAM-SC,
LeGOLOAM-SC, and LILIOM. We record and sum up all running threads’ (lidar odometry, mapping, loop
optimization, etc.) execution times of these systems for each data sequence. After that, we divide the time
sum by the total number of LiDAR measurements of the sequence to get the overall time consumption
per scan. This time calculation method can ensure a fair comparison because systems employ different
keyframe selection methods, submap accumulation policies, and thread execution frequencies. Also, this
time calculation method can help us judge if a system is real-time, i.e., if its overall time consumption per
scan is smaller than the one LiDAR scan duration (100 ms). The times are listed in Tab. 3 and 4.

Comparing the averages of overall times per scan in Tab. 3 shows that LTA-OM is roughly x2, x5, x3, and
x2.3 more efficient than FAST-LIO-SC, LIOSAM-SC, LeGOLOAM-SC, and LILIOM on Mulran dataset,
respectively. All systems can perform in real-time on Mulran dataset except LIOSAM-SC. According to
Tab. 4, LTA-OM is roughly x1.5, x4, x2.7, and x4.5 more efficient than FAST-LIO-SC, LIOSAM-SC,
LeGOLOAM-SC, and LILIOM on NCLT dataset, respectively. All systems can perform in real-time on
NCLT dataset.

Furthermore, we experiment to compare the execution times of loop closure relevant modules, including loop
detection, geometrical verification, and PGO. The execution times are listed in Tab. 5 and 6. Firstly, we
can see that the average loop detection execution times of LTA-OM are 71.11 ms and 40.18 ms, significantly
higher than those of other systems. The loop detection method used in FAST-LIO-SC, LIOSAM-SC, and
LeGOLOAM-SC is the highly optimized version of SC where SC image augmentation is disabled, and only
10 % pixels of SC image are involved in image comparison. These tricks dramatically decrease SC execution
time from about 100 milli-seconds as reported (Kim and Kim, 2018) to a few milli-seconds. At the same time,



these tricks degenerate the loop detection performance. This performance degeneration is not problematic
due to the usage of ICP for further verification. The region search loop detection method used in LILIOM
is efficient but also requires ICP verification. The ICP, however, takes hundreds of milli-seconds (see Tab.
5 and 6), impacting system efficiency and causing a significant delay. The geometrical verification times
of LTA-OM are zeros because LTA-OM does not need ICP to verify the proposed loop candidates by loop
detection module. Moreover, the average PGO execution times of LTA-OM for loop closures are the smallest
among these systems except LILIOM on Mulran dataset. The PGO execution times of LILIOM are all zeros
on Mulran dataset because its odometry drifting is severe, and region search does not propose any correct
loop closure for optimization. In summary, taking all loop closure relevant modules into account, our system
is more efficient than the other systems.

Besides, due to LTA-OM introducing loop correction module to enable LTA, we conduct a time consumption
analysis for loop correction module. This module has three key steps: points correction, ikd-Tree rebuild,
and scan re-registration. We test these steps on Mulran dataset, and their execution times per running are
recorded as shown in Tab. 7. For each sequence, we compute the overall time of loop correction module.
Besides, we compute the average step execution and overall times among nine sequences. In summary, points
correction, ikd-Tree rebuild, and scan re-registration take an average of 8.68, 67.14, and 8.06 ms, and the
average overall time is 83.87 ms. This overall time is smaller than one LiDAR scan duration of 100 ms;
thus, this module runs in real time. In addition, this module executes at a very low frequency because the
loop detection frequency is far smaller than LiDAR measurement frequency, and a space interval of 50 m is
applied to control the loop correction frequency in practice (see Sec. 4.4.3).

5.3 Improvement by Long-term Association

We introduce the idea of long-term association to enable a globally consistent mapping, and here we exper-
iment to compare the constructed maps with and without this module by turning on and off the long-term
association module, respectively. We checked all the details in both cases’ maps and found some map dif-
ferences. The map differences are shown in Fig. 8, where we can see that the long-term association module
improves the map consistency. Due to the limited space, the other examples are not displayed here.

5.4 Robustness against Structurally Similar Scene

We test our FPR module against a multi-level building scenario with similar structures at different levels. In
the scene, three similar rectangular corridors of the same height and width exist. Half of the detected loop
closures are false-positive as a point cloud-based loop detection module cannot distinguish the structurally
similar corridors well. Our FPR works robustly and enables the system to construct a nice map shown in
the left picture of Fig. 9. When Cauchy robust estimator replaces our FPR module, loop closing fails (see
the right one) as the Cauchy robust estimator cannot handle high false positive rate cases. This dataset is
collected with a Livox Avia Lidar and its embedded IMU. The data collection route is floor 1 → floor 2 →
floor 3 → floor 2 → floor 1.

5.5 Multi-session Mode Result

In this experiment, we validate the accuracy improvement by multi-session mode and map stitching perfor-
mance. For each Mulran scene, including Riverside, KAIST, and DCC, we use the sequence with the smallest
RMSE to generate a prior map and the rest sequences to run multi-session mode, both by running our LTA-
OM. According to the experiment result displayed in Tab. 8, multi-session has a lower absolute trajectory
error than the single-session (copied from Tab. 1). This enhancement is mainly because the pre-stored map
can eliminate the drift of the LIO and improve odometry factor accuracy. Besides, to further validate the
fast response of the proposed multi-session mode, we also record the required scan number and time to
accomplish relocalization (map switch) in Tab. 9. The result shows that our system can robustly relocalize



on the pre-stored map in seconds in our tests (the time for two submaps accumulation, loop detection, and
loop correction modules). The quick map switching response enables other robot modules (e.g., autonomous
navigation) to obtain global map information earlier.

The map stitching result is shown in Fig. 10, where we can see that the pre-stored map and the live map are
consistent. Furthermore, when the robot enters unexplored areas (the middle part of live map), the newly
appended points are stitched seamlessly with the pre-stored map without further map merging. This result
is generated from the DCC01 sequence using prior information from the DCC02 sequence.

Table 3: Overall time consumption (milli-seconds per scan) comparison on Mulran dataset.

LTA-OM (proposed) FAST-LIO-SC LIOSAM-SC LeGOLOAM-SC LILIOM

R1 27.52 30.60 139.49 67.64 51.43
R2 26.74 34.98 130.42 77.01 45.85
R3 24.26 45.30 124.37 79.78 42.36
K1 33.43 79.32 149.79 73.35 63.33
K2 33.83 89.08 159.58 101.10 100.28
K3 32.37 94.15 163.93 100.27 106.40
D1 38.46 79.65 157.66 108.69 95.10
D2 32.82 44.39 137.71 113.74 74.07
D3 40.51 94.94 169.88 98.62 x

Ave 32.22 65.82 148.09 91.13 72.35
1
Ö denotes that the system totally failed, and thus the time consumption is unavailable.

Table 4: Overall time consumption (milli-seconds per scan) comparison on NCLT dataset.

LTA-OM (proposed) FAST-LIO-SC LIOSAM-SC LeGOLOAM-SC LILIOM

N1 23.44 33.33 72.88 73.93 114.50
N2 15.77 24.36 92.87 62.09 31.80
N3 22.10 19.22 63.46 60.88 76.57
N4 20.07 36.66 107.64 45.11 119.08
N5 23.39 30.91 89.24 63.72 119.72
N6 29.52 34.75 95.07 51.20 113.81
N7 14.71 29.24 49.14 58.48 91.15
N8 14.53 26.19 62.73 32.31 66.74
N9 22.06 41.51 91.76 58.86 35.46

Ave 20.62 30.69 80.53 56.29 96.54

Table 5: The execution time (milli-seconds per running) comparison of loop closure relevant modules on the
Mulran dataset. Terms “LD”, “Ge”, “Op”, and “Ave” denote loop detection, geometrical verification, pose
graph optimization, and average.

LTA-OM (proposed) FAST-LIO-SC LIOSAM-SC LeGOLOAM-SC LILIOM

LD/Ge/Op LD/ Ge/Op LD/Ge/Op LD/Ge/Op LD/Ge/Op
R1 60.07/0/10.72 0.68/479.80/30.95 1.12/584.51/13.06 1.22/158.83/14.36 0.18/0/0
R2 62.76/0/13.45 0.60/523.55/26.66 1.11/694.06/13.86 1.34/199.67/15.19 0.16/0/0
R3 57.05/0/20.00 0.65/557.49/43.51 1.05/498.85/11.01 1.40/177.32/17.45 0.15/0/0
K1 79.12/0/12.73 0.87/822.90/125.81 1.44/693.13/21.84 1.31/190.21/10.40 0.24/0/0
K2 72.85/0/14.53 0.83/778.78/123.61 1.57/921.62/28.67 1.61/234.31/15.07 0.19/890.72/0
K3 72.93/0/11.18 0.87/905.55/114.38 1.57/925.18/25.98 1.55/207.13/14.33 0.17/883.93/0
D1 83.85/0/10.03 0.83/727.90/52.71 1.18/743.52/6.86 1.47/276.28/12.40 0.13/777.79/0
D2 65.48/0/10.76 0.72/613.85/45.76 1.39/969.64/12.10 1.54/338.73/10.51 0.15/778.87/0
D3 85.85/0/8.98 0.94/1471.4/109.57 1.44/1280.0/13.57 1.36/272.61/7.78 x/x/x

Ave 71.11/0/12.49 0.78/764.58/74.77 1.32/812.28/16.33 1.42/228.34/13.05 0.17/832.83/0
1
Ö denotes that the system totally failed, and thus the time consumption is unavailable.



Table 6: The execution time (milli-seconds per running) comparison of loop closure relevant modules on
NCLT dataset. Terms “LD”, “Ge”, “Op”, and “Ave” denote loop detection, geometrical verification, pose
graph optimization, and average.

LTA-OM (proposed) FAST-LIO-SC LIOSAM-SC LeGOLOAM-SC LILIOM

LD/Ge/Op LD/ Ge/Op LD/Ge/Op LD/Ge/Op LD/Ge/Op
N1 46.45/0/72.84 0.77/1380.1/86.56 2.02/369.22/78.82 3.53/132.25/75.16 1.00/479.85/113.02
N2 29.13/0/23.53 0.66/615.99/71.43 1.60/426.95/20.45 2.70/129.38/53.09 0.22/211.75/29.85
N3 48.84/0/66.06 0.56/517.32/30.85 1.30/339.14/16.08 3.50/125.29/34.36 0.84/219.42/58.87
N4 38.51/0/12.97 0.71/1041.1/39.00 1.46/449.23/2.88 1.81/135.97/12.27 0.61/378.02/87.96
N5 40.74/0/50.13 0.65/866.52/100.73 1.64/538.12/272.93 3.33/115.65/47.77 1.83/366.72/73.85
N6 60.12/0/22.28 0.68/1609.8/53.39 1.26/491.67/3.60 2.74/112.84/14.02 0.61/353.11/42.63
N7 26.48/0/25.55 0.68/1177.3/76.65 1.30/381.13/21.66 2.45/114.16/81.29 0.84/456.35/67.69
N8 28.43/0/3.61 0.57/870.00/17.86 0.86/371.20/0.93 1.18/99.54/3.76 0.39/206.94/11.16
N9 42.92/0/18.34 0.64/1175.2/101.82 1.29/685.54/21.68 2.82/160.35/17.64 0.80/760.04/265.01

Ave 40.18/0/32.81 0.66/1028.1/64.25 1.41/450.24/48.78 2.67/125.05/37.71 0.79/381.35/83.34

Table 7: The execution time (milli-seconds per running) of the loop correction module on the Mulran dataset.

Points Correction ikd-Tree Rebuild Scan Re-registration Overall

R1 7.12 58.59 13.02 78.73
R2 6.82 70.47 9.52 86.81
R3 7.41 64.10 11.85 83.36
K1 9.04 80.01 2.74 91.79
K2 7.62 76.71 4.20 88.53
K3 10.84 60.17 9.39 80.40
D1 10.28 63.40 10.90 84.58
D2 7.43 49.93 3.94 61.30
D3 11.53 80.85 6.97 99.35

Ave 8.68 67.14 8.06 83.87

Figure 6: The full map constructed by LTA-OM with noted comparison region (a) and the maps comparison
(b,c,d,e) on riverside02 sequence.



Figure 7: The full map constructed by LTA-OM with noted comparison region (a) and the maps comparison
(b,c,d,e) on DCC02 sequence.

Figure 8: Map consistency improvement by long-term association. The terms “with LTA” and “no LTA”
means the resultant maps using and without using long-term association, respectively.

Table 8: Multi-session absolute trajectory error (RMSE, meters) on Mulran dataset. The term “R2-1”
denotes testing on R1 with prior information from R2, and other terms follow the same notation manner.

R2-1 R2-3 K3-1 K3-2 D3-1 D3-2

Single-session 6.98 10.38 3.25 3.10 5.29 2.94
Multi-session 6.16 8.36 3.10 2.99 5.31 2.85



Figure 9: Comparison between the constructed map of our FPR module (the left) and Cauchy robust
estimator (the right) on multi-level building dataset. There exist three similar rectangular corridors at
different levels.

Figure 10: Map stitching result of multi-session mode. The white cloud is the pre-stored map, while the
blue cloud is the live map.

Table 9: Multi-session relocalization response scan number and time (seconds) on Mulran dataset. The
terms “Starting Scan” and “Finish Scan” denote the LiDAR scan indices when the platform starts moving
in the pre-stored map and LTA-OM finishes relocalization, respectively.

R2-1 R2-3 K3-1 K3-2 D3-1 D3-2

Starting Scan 280 78 61 63 108 80
Finish Scan 332 136 112 112 157 155
Response Scan Number 52 58 51 49 49 75
Response Time (s) 5.2 5.8 5.1 4.9 4.9 7.5



Table 10: Dataset sequences information. The sequences on the left and right are Mulran and NCLT datasets,
respectively.

Name
Duration
(min:sec)

Distance
(km)

Name
Duration
(min:sec)

Distance
(km)

R1 riverside01 8:59 6.5 N1 2012-01-15 111:46 7.5
R2 riverside02 10:54 6.0 N2 2012-01-22 87:19 6.1
R3 riverside03 17:05 7.3 N3 2012-02-02 98:37 6.2
K1 KAIST01 13:26 6.1 N4 2012-04-29 43:17 3.1
K2 KAIST02 14:40 6.0 N5 2012-05-11 84:32 6.0
K3 KAIST03 14:10 6.3 N6 2012-06-15 55:10 4.1
D1 DCC01 8:51 5.0 N7 2012-12-01 75:50 5.0
D2 DCC02 12:20 4.3 N8 2013-01-10 17:02 1.1
D3 DCC03 12:17 5.5 N9 2013-04-05 69:06 4.5

6 Conclusion

This paper proposes LTA-OM, an efficient, robust, and accurate LiDAR SLAM system. LTA-OM is a system-
complete integration framework of FAST-LIO2, Stable Triangular Detector loop closure detection, and loop
optimization. The accuracy of LTA-OM is proved to be competitive or significantly higher than those of
the other state-of-the-art LiDAR systems in an exhaustive benchmark experiment. By comparing the map
details, we can spot that the map consistency of LTA-OM is outstanding among the LiDAR systems. This
advantage is because the proposed long-term association module brings global consistency to LTA-OM. We
prove that by comparing the maps generated with and without the module. Also, the time cost of LTA-OM
is significantly less than the others in the benchmark experiment. The submap accumulation policy and the
elimination of ICP for geometrical verification cause this efficiency advantage.

Furthermore, LTA-OM can actively reject false-positive loop closures and construct a fine map for the scene
with structurally similar places. A multi-session mode is also implemented, enabling robust relocalization,
saving, and loading prior map and descriptors. This mode facilitates consistently stitching the live map
with the pre-stored map and enhances extra accuracy. Besides, LTA-OM provides some excellent features
for robot navigation, control, and path planning: drift-free odometry at revisited places, high-frequency and
real-time odometry, and fast loop closing convergence.
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