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Abstract

We study the Lagrangian structure of Vlasov-Maxwell equations. We show that for sufficiently regular initial conditions,

renormalized solutions of these systems are Lagrangian and that these notions of solution, in fact, coincide. As a consequence,

finite-energy solutions are shown to be transported by a global flow. These results extend to our setting those obtained by

Ambrosio, Colombo, and Figalli [3] for the Vlasov-Poisson system and by the first author and Marcon for relativistic Vlasov

systems [5]; here, we analyze the electromagnetic fields with bounded variation under Maxwell equations.
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ON THE LAGRANGIAN STRUCTURE OF VLASOV-MAXWELL EQUATIONS

FOR ELECTROMAGNETIC FIELD WITH BOUNDED VARIATION

HENRIQUE BORRIN*

Abstract. We study the Lagrangian structure of Vlasov-Maxwell equations. We show that for
sufficiently regular initial conditions, renormalized solutions of these systems are Lagrangian and
that these notions of solution, in fact, coincide. As a consequence, finite-energy solutions are shown
to be transported by a global flow. These results extend to our setting those obtained by Ambrosio,
Colombo, and Figalli [3] for the Vlasov-Poisson system and by the first author and Marcon for
relativistic Vlasov systems [5]; here, we analyze the electromagnetic fields with bounded variation
under Maxwell equations.
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1. Introduction

1.1. Overview. In this paper, we are interested in the Lagrangian structure of Vlasov-Maxwell
equations. This system of equations describes the evolution of a nonnegative distribution function
f : (0,∞)× R3 × R3 −→ [0,∞) under the action of a self-consistent Lorentz acceleration:

∂tft + v̂ · ∇xft + (Et + v̂ ×Ht) · ∇vft = 0 in (0,∞)× R3 × R3;

ρt(x) =
∫
R3 ft(x, v) dv, Jt(x) =

∫
R3 v̂ft(x, v) dv in (0,∞)× R3;

divEt = ρt, divHt = 0 in (0,∞)× R3;

∂tHt + curlEt = 0, ∂tEt − curlHt = −Jt in (0,∞)× R3.

(1.1)

Here, ft(x, v) denotes the distribution of particles with position x and velocity v at time t and
v̂ is the velocity of particles. We may assume the classical mechanics case, where v̂ = v or the
relativistic one, where v̂ := (1 + |v|2)−1/2v (we assume the speed of light is c = 1). Such system is
very important in mathematical physics and appear in a variety of physical models, in particular
at plasma physics. Typically, ρt and Jt represent the charge density and the current density and
Et and Ht the electric and magnetic fields, respectively.

Concerning the existence of classical solutions of (1.1), we refer to [8, 19, 21], where the existence
of solutions with small velocities is proven. As mentioned in [23], very little is known regarding the
existence of global solutions for general initial data. Existence results can be found, for instance,
for Vlasov-Poisson, relativistic Vlasov-Darwin, and relativistic Vlasov-Maxwell equations, assum-
ing further hypothesis on initial data; see [17, 18, 27, 28]. In the aforementioned results, higher
integrability assumptions and moment conditions on the initial data are required. Nonetheless,
global existence results are available for weak solution [14, 24]. More recently, a discontinuous
Galerkin method were developed for numerical results [9]; see also [10, 29] and references therein.
Regarding the hypothesis of bounded variation, this is not a novelty: in [6, 26], the authors ob-
tained renormalization property for Vlasov system with general coefficients of bounded variation

*Instituto de Matemática, Estat́ıstica e Computação Cient́ıfica , UNICAMP-Universidade Estadual
de Campinas, Address:Rua Sérgio Buarque de Holanda, 651. Campinas, SP, Brazil. Zip Code 13083-859.

E-mail address: h216763@dac.unicamp.br (Corresponding author).
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2 H. BORRIN

and conservation of total energy for weak solutions for electromagnetic field with local bounded
variation, respectively. Moreover, regarding only the structure of the vector field, [11] obtained
well-posedness of regular Lagrangian flows. However, since the most physically relevant hypothesis
for ft is to be integrable, we are not able to use the aforementioned results, since they also require
boundedness of density distribution. We thus consider renormalized solutions, which allow us to
establish a Lagrangian structure for (1.1) for ft ∈ L1(R3). Moreover, under suitable (and physically
relevant) integrability assumptions, we are able to prove the flow’s global well-posedness. Such re-
sults were obtained for the Vlasov-Poisson system [3] and for relativistic Vlasov systems [5], not
including Vlasov-Maxwell equations.

1.2. Main results. In order to use the machinery developed in [2], we write the first equation in
(1.1) as

∂tft + bt · ∇x,vft = 0, (1.2)

where, for each fixed t > 0, the vector field bt : R6 −→ R6 is given by bt(x, v) = (v̂, Et + v̂ ×Ht).
Since

∇x,v · bt = ∇v · (v̂ ×Ht) = (∇v × v̂) ·Ht − v̂ · (∇v ×Ht) = 0, (1.3)

we also have a continuity form of (1.2), so it is expected that solutions have a Lagrangian
structure, meaning that the initial condition f0 is transported to ft by an associated flow, as
well as conservation of such quantity through the flow. In the weak regularity regime, however,
the existence of such flow is not guaranteed by the classical Cauchy-Lipschitz theory if we only
assume finite number of particles, i.e., ft ∈ L1(R6). Indeed, Maxwell equations (formally) imply
the wavelike behavior of the electromagnetic field:

(∂tt −∆)Et = −∇ρt − ∂tJt;

(∂tt −∆)Ht = curlJt.
(1.4)

Therefore, by assuming initial data (E0, H0) with compatibility conditions

divE0 = ρ0, divH0 = 0, (1.5)

we are able to explicitly write (Et, Ht) as a sum of solutions depending on the densities (ρt, Jt)
1

and on initial conditions (E0, H0, f0):

Et(x) =−
∫
∂Bt(x)

E0(y) + t(ω(y − x) · ∇)E0(y) + t curlH0(y)− tJ0(y)− tρ0(y)ω(y − x) dS(y)

− 1

4π

∫
Bt(x)

[ρt(y)]ret (x)
ω(y − x)

|y − x|2
+ [Jt(y)]ret (x) · ω(y − x)

ω(y − x)

|y − x|2

+ ([Jt(y)]ret (x)× ω(y − x))× ω(y − x)

|y − x|2
+ ([∂tJt(y)]ret (x)× ω(y − x))× ω(y − x)

|y − x|
dy;

Ht(x) =−
∫
∂Bt(x)

H0(y) + t(ω(y − x) · ∇)H0(y)− t curlE0(y)− tJ0(y)× ω(y − x) dS(y)

− 1

4π

∫
Bt(x)

[Jt(y)]ret (x)×
ω(y − x)

|y − x|2
+ [∂tJt(y)]ret (x)×

ω(y − x)

|y − x|
dy,

(1.6)

where ω(z) := z/|z| and [ft(y)]ret (x) := ft−|y−x|(y). Notice that if the initial data is in Lebesgue
spaces, the surface integrals do not make sense. Moreover, if we only assume finite number of
particles for all times, i.e., f ∈ L∞([0, T ];L1(R6)), then the time derivative of J is also ill-defined.
Since the main results for Lagrangian structure in the quasistatic limits [3, 5] heavily use the

1Such a solution is known as Jefimenko’s equations; see [20, 29].



LAGRANGIAN STRUCTURE OF VLASOV-MAXWELL EQUATIONS 3

explicit expression of the electromagnetic field, new ideas are needed, and we intend to work with
the explicit expression (1.6) in a future work.

One may use the weak solution approach: since bt is divergence-free, (1.2) can be rewritten as

∂tft +∇x,v · (btft) = 0.

The latter can be interpreted in the distributional sense provided bf is locally integrable which,
however, does not follow only from the assumption ft ∈ L1(R6), since one cannot assure that
bt ∈ L∞

loc(R6). To treat this problem, we introduce a function β ∈ C1(R) ∩ L∞(R) such that

∂tβ(ft) +∇x,v · (btβ(ft)) = 0 (1.7)

whenever ft is a smooth solution of (1.2); of course, such equality holds since bt is divergence-free
and due to the chain rule. Hence, btβ(ft) ∈ L1

loc, which leads to the concept of a renormalized
solution; as in the celebrated results by DiPerna-Lions [15, 16].

Definition 1.1 (Renormalized solution). For a Borel vector field b ∈ L1
loc([0, T ]×R6;R6), we say

that a Borel function f ∈ L1
loc([0, T ] × R6) is a renormalized solution of (1.2) starting from f0 if

(1.7) holds in the sense of distributions, that is,∫
R6

ϕ0(x, v)β(f0(x, v)) dx dv +

∫ T

0

∫
R6

[
∂tϕt(x, v) +∇x,vϕt(x, v) · bt(x, v)

]
β(ft(x, v)) dx dv dt = 0

(1.8)
for all ϕ ∈ C1

c ([0, T )× R6) and β ∈ C1(R) ∩ L∞(R).
Moreover, f ∈ L∞((0, T );L1(R6)) (and vft ∈ L∞((0, T );L1(R6)) if v̂ = v) is called a renormal-

ized solution of (1.1) starting from f0 and electromagnetic field starting from (E0, H0) satisfying
(1.5) if, by setting

ρt(x) :=

∫
R3

ft(x, v) dv, Jt(x) :=

∫
R3

v̂ft(x, v) dv, bt(x, v) := (v̂, Et(x) + v̂ ×Ht(x)),

where (Et, Ht) ∈ L1
loc([0, T ]× R3;R3)2 satisfy in a weak sense

divEt = ρt, divHt = 0, ∂tHt + curlEt = 0, ∂tEt − curlHt = −Jt, (1.9)

we have that ft satisfies (1.8), for every ϕ ∈ C1
c ([0, T )× R6) and β ∈ C1(R) ∩ L∞(R).

Observe that the integrability assumption of ft is used so that ρt, Jt are well defined. Moreover,
(1.6) satisfies (1.9) for initial condition sufficiently regular.

Our first main result shows that distributional or renormalized solutions of (1.1) are in fact
Lagrangian solutions. This gives a characterization of solutions of (1.1), since Lagrangian solutions
are generally stronger than renormalized or distributional solutions.

Theorem 1.1. Let T > 0, f0 ∈ L1
+(R6) (and vf0 ∈ L1(R6), that is, J0 ∈ L1(R3) if v̂ = v), and

E0, H0 ∈ L2(R3) satisfying (1.5). Moreover, assume that (E,H) are in L1([0, T ]; BV(R3;R3))2.
Assume f ∈ L∞([0, T );L1

+(R6)) is weakly continuous in the sense that

t 7−→
∫
R6

ft φdx dv is continuous for any φ ∈ Cc(R6),

Assume further that:

(i) either f ∈ L∞((0, T );L∞(R6)) and ft is a distributional solution of (1.1) starting from f0; or
(ii) ft is a renormalized solution of (1.1) starting from f0.

Then, ft is a Lagrangian solution transported by the Maximal Regular Flow X(t, x) associated
to bt(x, v) = (v̂, Et(x) + v̂ × Ht(x)) (see Definition 2.1 and Definition 2.2), starting from 0. In
particular, ft is renormalized.



4 H. BORRIN

Remark 1.1. As a simple example of an electromagnetic field which is not regular enough for
Cauchy-Lipschitz theorem, one may look at solutions with only regularity on initial condition
J0 ∈ W 1,1(R3) and (E0, H0) ∈ W 2,1(R3)2, which by wave equation kernel regularity (see [22]), we
have that homogeneous solutions are in L1((0, T );W 1,1(R3))2, and it follows that homogeneous
solutions are in L1((0, T ); BV(R3)) by the embedding W 1,1 ⊂ BV. Therefore, even if one mimics
the proof of Glassey-Strauss theorem [19] for inhomogeneous terms, by the above reasoning, one
cannot infer the existence of classical flow; nevertheless, Theorem 1.1 provides a suitable structure
of Lagrangian solution.

Our second main result provides conditions to obtain a globally defined flow, so that there is no
finite-time blow up; namely, if one has time integrability of the total energy of the system. Since
relativistic and kinetic energies provide different moment control on v−marginals of f , we split the
statement for each case.

Theorem 1.2. Fix T > 0 and let f be a nonnegative renormalized solution as in Theorem 1.1. If
v̂ = v, assume that ∫ T

0

∫
R6

|v|3ft(x, v) dx dv dt+
∫ T

0

∫
R3

|Ht|2 dx dt <∞, (1.10)

that is, the transport kinetic and the magnetic energies are integrable in time. Then,

(i) The maximal regular flow X(t, ·) associated to bt = (v̂, Et + v̂ × Ht) and starting from 0 is
globally defined on [0, T ] for f0-a.e. (x, v);

(ii) ft is the image of f0 through this flow, that is, ft = X(t, ·)#f0 = f0◦X−1(t, ·) for all t ∈ [0, T ];
(iii) the map

[0, T ] ∋ t 7−→
∫
R6

ψ(ft(x, v)) dx dv

is constant in time for all Borel ψ : [0,∞) −→ [0,∞).

Moreover, if v̂ = (1 + |v|2)−1/2v, by changing (1.10) hypothesis to∫ T

0

∫
R6

√
1 + |v|2ft(x, v) dx dv dt+

∫ T

0

∫
R3

1
2 |Et|2 + 1

2 |Ht|2 dx dt <∞

that is, the relativistic and electromagnetic energies are integrable in time, then properties (i)-(iii)
hold.

We remark that for the relativistic case v̂ = (1+|v|2)−1/2v, the computation done in [5, Corollary
2.1] is applicable to Vlasov-Maxwell system; we merely state the results Theorem 1.2 in such case
for the sake of completeness.

Aknowledgements. I would like to thank my advisor Prof. Marcelo Santos for corrections and
insightful remarks. This paper is partially supported by CAPES through a Doctorate’s scholarship
through grant 88887.616370/2021-00. This work does not have any conflicts of interest.

2. Lagrangian solution and associated flow

In this section, we prove Theorem 1.1 which states that Lagrangian and renormalized solutions
of (1.1) are equivalent. For this, we use the machinery developed in [3, Sections 4 and 5], which is a
application of the theory created by the same authors [2, Sections 5, 6, and 7]. More precisely, the
existence, uniqueness, and a semigroup property for the maximal regular flow (see Definition 2.1)
follow at once from [2, Theorems 5.7, 6.1, 7.1], which only requires three main properties of the
vector field b:

(H1)
∫ T
0

∫
BR

|bt(x)| dx dt <∞ for all R > 0;
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(H2) for any ρ̄ ∈ L∞
+ (R3) with compact support and any closed interval [a, b] ⊂ [0, T ], the continuity

equation
d

dt
ρt +∇x,v · (btρt) = 0 in (a, b)× R6

have at most one solution in the class of all nonnegative weakly* continuous functions starting
at ρa = ρ̄ and ∪t∈[a,b] supp ρt ⋐ R6;

(H3) div bt ≥ m(t) in R6, where m(t) ∈ L1((0, T )).

Since for our vector field, property (H1) holds and it is diverge-free, so that (H3) hold for m(t) ≡
0, one expects that if we reversed the time variable, which is equivalent to property (H2) be
strengthened for continuity equation with both vector fields ±bt, then volume is conserved by the
flow, and the incompressibility constant (ii) in Definition 2.1 equals 1; see [3, Theorem 4.3] for a
concise statement. Therefore, we aim to prove (H2) for our case adapting [3, Theorem 4.4], [5,
Lemma 2.1], which in turn are adaptations of the main result of [4].

From now on, we denote by M (Rd) the space of (signed) measures in Rd with finite total mass,
by M+(Rd) the space of nonnegative measures with finite total mass, by AC(I;Rd) the space of
absolutely continuous curves on the interval I with values in Rd, and by L d the Lebesgue measure
in Rd. We begin with the preliminary definition of maximal regular flow:

Definition 2.1 (Maximal regular flow). For every s ∈ (0, T ), a Borel map X(·, s, ·) is said to
be a maximal regular flow (starting at s) if there exist two Borel maps T+

s,X : R6 −→ (s, T ],

T−
s,X : R6 −→ [0, s) such that X(·, s, x) is defined in (T−

s,X(x), T+
s,X(x)) and

(i) for a.e. x ∈ R6, we have that X(·, s, x) ∈ AC((T−
s,X, T

+
s,X);R6) and that it solves the equation

ẋ(t) = bt(x(t)) a.e. in (T−
s,X, T

+
s,X) with X(s, s, x) = x;

(ii) there exists a constant C > 0 such that X(t, s, ·)#(L 6 {T−
s,X < t < T+

s,X}) ≤ CL 6 for all

t ∈ [0, T ]. As before, this constant C can depend of X and s;
(iii) for a.e. x ∈ R6, either T+

s,X = T and X(·, s, x) ∈ C([s, T ];R6), or limt↑T+
s,X

|X(t, s, x)| = ∞.

Analogousy, either T−
s,X = 0 and X(·, s, x) ∈ C([0, s];R6), or limt↓T−

s,X
|X(t, s, x)| = ∞.

Here, we denote by X#µ the pushforward of a measure µ by X and by ν B the restriction of
the measure ν to the set B.

We now define Lagrangian solutions, which are by [3, Theorem 4.10] a stronger notion of solution
than renormalized one.

Definition 2.2 (Lagrangian solutions). Let b : (0, T ) × R6 −→ R6 be a Borel vector field having
a maximal regular flow X. We say that u is a Lagrangian solution of the continuity equation with
vector field b starting from u0 if ut = X(t, 0, ·)#(u0 {T+

0,X > t}).

We now wish to prove that the vector field associated to Vlasov-Maxwell’s equations satifies
assumption (H2). We remark, however, that no W 1,1 estimates are proven in order to use the stan-
dard techniques, as pointed out by DiPerna-Lions [13]. Nevertheless, by imposing more regularity
on the electromagnetic field:

(E,H) ∈ L1([0, T ]; BV(R3;R3))2. (2.1)

The main idea in imposing (2.1) is to use the following: for u ∈ BV (R3;R3), there exists a
constant C > 0 and a L 3−negligible set L such that

|u(x)− u(y)| ≤ C|x− y|(M(Du)(x) +M(Du)(y)) ∀x, y ∈ R3 \ L, (2.2)

where Du is the distributional derivative of u (which is also a finite Radon measure) and M is the
maximal operator; see [25].
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Remark 2.1. It is known that (H2) holds for a class of vector fields with space bounded variation
[1, 6]. Nevertheless, in [12] it has proven that there exists time-dependent space BV−vector fields
that does not satisfy (H2).

Proposition 2.1. Let b : (0, T )× R6 −→ R6 be given by bt(x, v) = (b1t(v), b2t(x, v)), where

b1 ∈ L∞((0, T );W 1,∞
loc (R3;R3)),

b2t(x, v) = Et(x) + b1t(v)×Ht(x),

where (Et, Ht) satisfy (2.1). Then, the vector field b satisfies property (H2).

Proof. We follow the same strategy as [3, Theorem 4.4], [5, Lemma 2.1]. We begin by setting P(X)
as the set of probability measures on X and

et : C([0, T ];R6) −→ R6

the evaluation map at time t, which means et(η) := η(t). By the same argument as in [3] (which
heavily uses the extended superposition principle [3, Theorem 5.1]), it is enough to show that given
η ∈ P(C([0, T ];BR × BR)) for some BR ⊂ R3 concentrated on integral curves of b such that
(et)#η ≤ C0L 6 for all t ∈ [0, T ], the disintegration ηz of η with respect to e0 is a Dirac delta for
(e0)#η−a.e. z = (x, v) ∈ BR × BR. Recall that the disintegration of η with respect to e0 is a
family of measures ηz such that, for all E ∈ C([0, T ];BR ×BR),

η(E) =

∫
R6

ηz(E ∩ e−1
0 (x)) dz.

For this purpose, the authors of [3] consider the function

Φδ,ζ(t) :=

∫∫∫
log

(
1 +

|γ1(t)− η1(t)|
ζδ

+
|γ2(t)− η2(t)|

δ

)
dµ(η, γ, z),

where dµ(η, γ, z) := dηz(γ)dηz(η)d(e0)#η(z)
2, δ, ζ ∈ (0, 1) are small constants to be chosen later,

t ∈ [0, T ], with notation

η(t) = (η1(t), η2(t)) ∈ R3 × R3,

and assume by contradiction that ηz is not a Dirac delta for (e0)#η−a.e. z, which means that
there exists a constant a > 0 such that∫∫∫ (∫ T

0
min{|γ(t)− η(t)|, 1}dt

)
dµ(η, γ, z) ≥ a.

Indeed, if ηz is a Dirac delta for (e0)#η−a.e. z, the integrand above would vanish.
Moreover, they show that, without loss of generality, by assuming a ≤ 2T , there exists t0 ∈ [0, T ]

such that

Φδ,ζ(t0) ≥
a

2T
log
(
1 +

a

2δT

)
. (2.3)

Of course, we wish to show that such bound is impossible. In order to prove it, we compute the
time derivative of Φδ,ζ and conclude that

dΦδ,ζ

dt
(t) ≤

∫∫∫ (
|b1t(γ2(t))− b1t(η

2(t))|
ζ(δ + |γ2(t)− η2(t)|)

+
ζ|b1t(γ2(t))× (Ht(γ

1(t))−Ht(η
1(t)))|

ζδ + |γ1(t)− η1(t)|

+
|(b1t(γ2(t))− b1t(η

2(t)))×Ht(η
1(t))|

δ + |γ2(t)− η2(t)|
+
ζ|Et(γ

1(t))− Et(η
1(t))|

ζδ + |γ1(t)− η1(t)|

)
dµ(η, γ, z).

(2.4)

2Note that µ ∈ P(C([0, T ];BR)
2 ×BR) and Φδ,ζ(0) = 0.
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By our assumption on b1t, the first summand is easily estimated using the Lipschitz regularity of
b1t in BR: ∫∫∫

|b1t(γ2(t))− b1t(η
2(t))|

ζ(δ + |γ2(t)− η2(t)|)
dµ(η, γ, z) ≤

∥∇b1∥L∞((0,T )×BR)

ζ
. (2.5)

Analogously, the third summand is estimated using that Ht is locally integrable (since BV(R3) ⊂
L3/2(R3) ⊂ L1

loc(R3)), the condition (et)#η ≤ C0L 6, and the Lipschitz regularity of b1 in BR:∫∫∫
|(b1t(γ2(t))− b1t(η

2(t)))×Ht(η
1(t))|

δ + |γ2(t)− η2(t)|
dµ(η, γ, z) ≤ ∥∇b1∥L∞((0,T )×BR)

∫∫∫
|Ht(η

1(t))|dµ

≤ ∥∇b1∥L∞((0,T )×BR)C0|BR|∥Ht∥L1(BR).
(2.6)

For the second term, we have∫∫∫
ζ|b1t(γ2(t))× (Ht(γ

1(t))−Ht(η
1(t)))|

ζδ + |γ1(t)− η1(t)|
dµ(η, γ, z)

≤ C∥b1∥L∞((0,T )×BR)

∫∫∫
ζ|Ht(γ

1(t))−Ht(η
1(t))|

ζδ + |γ1(t)− η1(t)|
dµ(η, γ, z).

By the result proven in [7, Lemma 2.2], for p ∈ (1,∞], there exists constant Cp > 0 such that

∥u∥L1(µ) ≤ Cp∥u∥L1
w(µ)

[
1 + log

(
∥u∥Lp

w(µ)

∥u∥L1
w(µ)

)]
if p <∞; (2.7)

where Lp
w stands for the weak Lp space. We now claim that∫ t0

0

∫∫∫
ζ|Et(γ

1(t))− Et(η
1(t))|

ζδ + |γ1(t)− η1(t)|
dµ(η, γ, z) dt ≤ Cζ

(
1 + log

(
C

ζδ

))
. (2.8)

Of course, the same proof will provide the same estimate for the magnetic field H. By (2.2), we
have that ∫∫∫

ζ|Et(γ
1(t))− Et(η

1(t))|
ζδ + |γ1(t)− η1(t)|

dµ(η, γ, z) ≤ Cζ

∫∫∫
g(t, η, γ, z)dµ(η, γ, z), (2.9)

where

g(t, η, γ, z) := min

{
M(DEt(γ

1(t))) +M(DEt(η
1(t))),

|Et(η
1(t))|
ζδ

+
|Et(γ

1(t))|
ζδ

}
.

By recalling that dµ(η, γ, z) = dηz(γ)dηz(η)d(e0)#η(z), the condition (et)#η ≤ C0L 6, and the
estimate ∥M(u)∥L1

w(R3) ≤ C∥u∥L1(R3) , we have

∥gt∥L1
w(µ) ≤ 2∥M(DEt(η

1(t)))∥L1
w(η) ≤ 2C0∥M(DEt)∥L1

w(BR×BR,L 6)

= 2C0|BR|∥M(DEt)∥L1
w(BR) ≤ 2CC0|BR||DEt|(R3) ≤ CR∥Et∥BV(R3).

By similar argument, using the estimate ∥M(u)∥L3/2(R3) ≤ C∥u∥L3/2(R3) and the embedding BV ⊂
L3/2, we also have

∥gt∥L3/2
w (µ)

≤ 2C0(ζδ)
−1∥Et∥L3/2(BR×BR) ≤ CR(ζδ)

−1∥Et∥BV(R3).

By integrating with respect to in time [0, t0], the claim is proven for C constant depending only
on R, and the norms of b1, E, B. Now, by (2.5), (2.6) and (2.8), we have that

Φδ,ζ(t0) ≤ C

(
t0
ζ
+ 1 + ζ + ζ log

(
C

ζ

))
+ Cζ

(
log

(
1

δ

))
Choosing first ζ > 0 small enough in order to have Cζ < a/(2T ) and then taking δ small enough,

we find a contradiction with (2.3), concluding the proof. □
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We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Notice that the vector field b satisfies properties (H1)-(H3). Therefore by
[3, Theorem 5.1], we deduce that: if (i) holds, then f is a Lagrangian solution; if (ii) holds and it is
not bounded, then β(ft) is a Lagrangian solution, where we choose β(s) := arctan(s). In particular,
by [3, Theorem 4.10] we have that ft is a renormalized solution. □

We have a direct corollary that provides conditions to obtain a globally defined flow, that is, to
avoid a finite-time blow up.

Proof of Theorem 1.2. By Theorem 1.1, the solution is transported by the maximal regular flow
associated to bt(x, v) = (v̂, Et(x) + v̂ × Ht(x)). Moreover, since ft is a renormalized solution,
gt :=

2
π arctan ft : (0, T )× R3 −→ [0, 1] is a solution of the continuity equation with vector field b.

Assuming v̂ = v, we have |bt(x, v)| ≤ |v|+ |Et(x)|+ |v||Ht(x)|, so that

I :=

∫ T

0

∫
R6

|bt(x, v)|gt(x, v)
(1 + (|x|2 + |v|2)1/2) log(2 + (|x|2 + |v|2)1/2)

dx dv dt

≤ 1

log 2

∫ T

0

∫
R6

ft dx dv dt+

∫ T

0

∫
R6

(|Et|+ |v||Ht|)gt
(1 + |v|) log(2 + |v|)

dx dv dt.

Notice that the electric field term is simpler to compute, since g3t ≤ g2t ≤ ft and by the embedding
BV(R3) ⊂ L3/2(R3), so it can be estimated by(∫

R3

1

(1 + |v|)5/2 log3/2(2 + |v|)
dv

)(∫ T

0

∫
R3

|Et|3/2 dx dt
)
+

∫ T

0

∫
R6

(1 + |v|)2ft dx dv dt.

We remark that so far we did not use hypothesis (1.10). For the magnetic field term, we have(∫
R3

1

(1 + |v|)3 log2(2 + |v|)
dv

)(∫ T

0

∫
R3

|Ht|2 dx dt
)
+ C

∫ T

0

∫
R6

(1 + |v|)3ft dx dv dt.

By (1.10), we conclude I is bounded.
Now, by the no blow-up criterion in [3, Proposition 4.11] we obtain that the maximal regular

flow X of b is globally defined on [0, T ], whence (i) follows. Moreover, the trajectories X(·, x, v)
belong to AC([0, T ];R6) for g0-a.e. (x, v) ∈ R6, and gt = X(t, ·)#g0 = g0 ◦ X−1(t, ·). Since
ft = tan

(
π
2 gt
)
and the map [0, 1) ∋ s −→ tan

(
π
2 s
)
∈ [0,∞) is a diffeomorphism, we obtain

that ft = X(t, ·)#f0 = f0 ◦ X−1(t, ·), whence (ii) follows. In particular, for all Borel functions
ψ : [0,∞) −→ [0,∞) we have∫

R6

ψ(ft) dx dv =

∫
R6

ψ(f0) ◦X−1(t, ·) dx dv =

∫
R6

ψ(f0) dx dv,

where the second equality follows by the incompressibility of the flow, which gives (iii). □

Remark 2.2. As in [3, Remark 2.4], given 0 ≤ s ≤ t ≤ T , with our previouus results it is possible
to reconstruct ft from fs by using the flow, that is, ft = X(t, s, ·)#(fs).
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