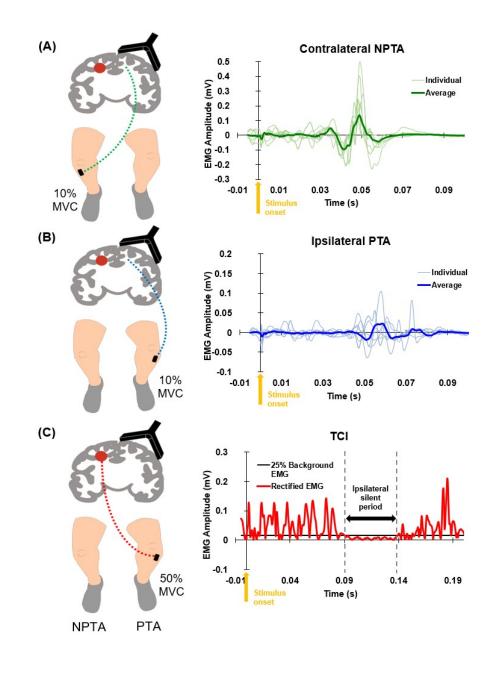
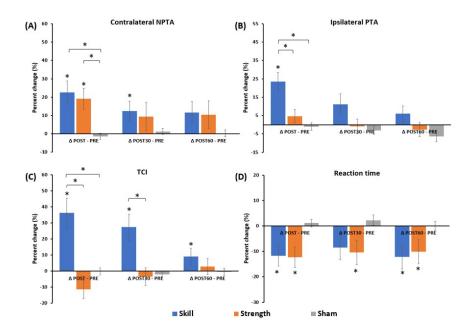
Non-paretic leg movements can facilitate cortical drive to the paretic leg in severe stroke: implications for motor priming

Hyosok Lim¹ and Sangeetha Madhavan¹

¹University of Illinois Chicago

March 3, 2023


Abstract


Background: Cross-education, a phenomenon where unilateral strength (or skill) training enhances strength (or skill) in the contralateral untrained limb, has been well studied in able-bodied individuals. However, whether non-paretic leg movements can modulate corticomotor excitability (CME) and improve motor control of the paretic leg in stroke remains unclear. Objective: To determine the effects of non-paretic leg movements on corticomotor responses and motor control of the paretic leg in persons with severe stroke. Methods: Seventeen post stroke individuals with severe leg motor impairment performed three 20-min motor trainings using their non-paretic ankle: skill (targeted dynamic movements), strength (isometric resistance), and sham (sub-threshold electrical nerve stimulation). Transcranial magnetic stimulation measured CME of the contralateral pathways from the non-lesioned motor cortex (M1) to the non-paretic tibialis anterior (TA) muscle, ipsilateral pathways to the paretic TA, and transcallosal inhibition (TCI) from the non-paretic TA increased after skill (23%) and strength (19%) training (p<0.01). Ipsilateral CME of the paretic TA (23%) and TCI (36%) increased after skill (p<0.05) but not strength training. Reaction time of the paretic ankle improved after skill and strength training ($^12\%$; p<0.05) and was sustained at 60 minutes. No changes were observed during the sham condition. Conclusion: Our findings may inform future studies for using non-paretic leg movements as a priming modality, especially for those who are contraindicated to other priming paradigms (e.g., brain stimulation) or unable to perform paretic leg movements.

Hosted file

Main document with tables.doc available at https://authorea.com/users/591762/articles/627606non-paretic-leg-movements-can-facilitate-cortical-drive-to-the-paretic-leg-in-severestroke-implications-for-motor-priming

