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Abstract

Bushfire fuel hazard is determined by fuel hazard that represents the type, amount, density, and three-dimensional distribution
of plant biomass and litter. The fuel hazard represents a biological control on fire danger and may change in future with plant
growth patterns. Rising atmospheric CO2 concentration (Ca) tends to increase plant productivity (‘fertilisation effect’) but also
alters climate, leading to a ‘climatic effect’. Both effects will impact on future vegetation and thus fuel hazard. Quantifying
these effects is an important component of predicting future fire regimes and evaluating fire management options. Here, by
combining a machine learning algorithm that incorporates the power of large fine-resolution datasets with a novel optimality
model that accounts for the climatic and fertilisation effects on vegetation cover, we developed a random forest model to predict
fuel hazard at fine spatial resolution across the state of Victoria in Australia. We fitted and evaluated model performance with
long-term (i.e., 20 years), ground-based fuel observations. The model achieved strong agreement with observations across the
fuel hazard range (accuracy >65%). We found fuel hazard increased more in dry environments to future climate and Ca. The
contribution of the ‘fertilisation effect’ to future fuel hazard varied spatially by up to 12%. The predictions of future fuel hazard

are directly useful to inform fire mitigation policies and as a reference for climate model projections to account for fire impacts.

Introduction

Recent catastrophic fires around the world have drawn attention to the need for improved fire risk assessments
(Bowman et al., 2020; Duane et al., 2021). The likelihood of fire in terrestrial ecosystems is a function of: (i)
the fuel hazard (i.e., the amount, density and three-dimensional distribution of plant biomass, both dead and
alive), (ii) fuel dryness, (iii) the weather conditions, and (iv) the availability of ignition sources (Bradstock,
2010; Boer et al., 2017). Existing fire behaviour models can capture the impacts of weather on fire spread
rate and intensity but require spatially explicit information about a range of fuel attributes as input (Tolhurst
et al., 2008). Although current fuel hazard can be mapped using a combination of ground-based and remote-
sensed observations (Pierce et al., 2012), quantification of future changes in these patterns in response to
climate change requires predictive models.

Fuel hazard is closely related to variation in the composition and structure of the vegetation, which in turn
are shaped by plant responses to long-term environmental conditions and disturbance regimes (Kelley, et al.,
2019). Consequently, predictions of future fuel hazard need to incorporate the potential impacts of climate



change. There are two major ways that climate change affects fuel hazard. First, the rising atmospheric
CO4 concentration (C,) fertilises plants via an enhancement of photosynthesis (Ainsworth and Rogers, 2007),
potentially resulting in an increase in plant biomass (Ainsworth and Long, 2005; Norby et al., 2005; Zhu et
al., 2016; Walker et al., 2019). Any increase in plant biomass is likely to result in higher fuel loads, but the
magnitude of change and how it will interact with other environmental factors remains uncertain (Bradstock,
2010). Second, rising air temperatures and altered rainfall patterns have distinct effects on plant productivity
and species composition, both of which could lead to altered fuel hazard (Archibald et al., 2013). It is thus
critical to account for plant responses to climate change when projecting future fuel hazard.

Changes in plant biomass under future climate can be predicted with a range of modelling approaches, which
have been used to estimate fuel loads. For example, Clarke et al. (2016) projected future fuel loads using
the net primary productivity (NPP) predictions from a land surface model, assuming a linear relationship
between NPP and fuel load. However, existing evidence suggests that fire regimes (i.e., fire frequency,
intensity, season, type, and extent) could varied within a biome with similar NPP - a single biome could
have more than one fire regime while the same fire regime can be observed in different biomes (Archibald
et al., 2013). Consequently, predictions of the spatial variation of fuel hazard under climate change need to
be constrained by and evaluated against the fuel hazard observations under different environmental controls
(i.e., climate, soil and topography).

Ground-based fuel observations have been routinely collected by fire management agencies in Victoria, Aus-
tralia since 1995 (e.g., Hines et al. 2010), and have provided valuable insight on the spatial variation of fuel
hazard at landscape to regional scales (e.g., Jenkins et al., 2020; McColl-Gausden et al., 2020). At each
survey site, an ordinal score is assigned to each fuel stratum based on visual estimates of fuel hazard. The
potential of these fine-resolution data to help inform process-based model predictions of future fuel hazard
remains under-utilised. Assuming the spatial variation of fuel hazard along climatic gradients is indicative
of how fuel hazard may change with climate over time (i.e., space-for-time substitution; Picket, 1989), these
ground-based fuel surveys contain possibly the best information about the potential for changes in fuel hazard
across Victoria in response to projected climate conditions.

Random forest models have been used to synthesise field-based fire observations and environmental drivers
with demonstrated success (Pierce et al., 2012; Jenkins et al., 2017; McColl-Gausden et al., 2020). However,
previous machine learning approaches have generally ignored plant responses to climate change (e.g., McColl-
Gausden et al., 2020), due to the this ‘space-for-time’ approach needing additional process-based information
on vegetation responses to novel climate.

The past developments of empirical approaches thus exposed the limitation of pure statistical analysis and
advocate novel ways to combine strengths of process-based plant biomass predictions with data-driven ap-
proaches (e.g., Jenkins et al., 2020). Yang et al. (2018) modelled the change of leaf area index (LAI; an
indicator of plant foliage biomass) under changing climate and rising C,. Incorporating this LAI model
and random forest models could help address the lack of plant responses to future climate in current ma-
chine learning frameworks. This combined framework could unite the strength of fine-resolution empirical
observations and the process-based plant responses to climate changes, addressing the weakness of previous
regression and process-based models.

Here, we used random forest models to predict spatial variation in fuel hazard at fine spatial resolution
across the state of Victoria as a function of climate, soil and topographic attributes as well as modelled plant
responses to climate change. The goal was to assess the potential of change in fuel hazard in response to
projected future climate conditions and C,. Although the training and evaluation of the models focused on
a specific region, the methods and conclusions built a quantitative understanding of anthropogenic impacts
on future fuel hazard, which is applicable to similar regions across the world.



Material and methods

We used ground-based fuel hazard score observations and gridded information on 15 environmental predictors
related to climate (6), topography (5), soil (3) and potential vegetation cover (1). We used the ground-based
fuel data to train and evaluate random forest models. We then made projections of future fuel hazard using
climate model projections. The details of the data and models are outlined below.

Fuel hazard observations

The study area was the state of Victoria in Southeast Australia, where extensive fine resolution data were
available to test our novel machine-learning approach (Figure 1). The Victorian Department of Environment,
Land, Water and Planning (DELWP) provided field observations of fuel hazard ratings over the period 1995
to 2017 with a total of 47,245 individual records. The data contain categorical fuel hazard scores for surface,
near-surface, elevated and bark fuel strata, with five levels: low (1), moderate (2), high (3), very high (4)
and extreme (5) (Hines et al. 2010). The records were mostly one-off assessments for georeferenced plots of
ca. 20m x 20 m.

We focused the analysis on the elevated stratum because of its high consistency among different surveys
(Watson et al., 2012) and high impact on fire regimes (Hines et al. 2010). The elevated fuel hazard score is
based on the cover and horizontal connectivity of dead and live plants that is close for biomass that may not
be consumed by a flame height of 0.5 m. The near-surface fuel hazard score is based on cover and horizontal
connectivity of dead and live plants that is close (<0.5m) but not lying on the ground. The surface fuel
hazard score is based on litter depth, cover and horizontal connectivity lying on the ground. Bark fuel
hazard is specific to certain tree species and alone does not contribute to the fire regime at landscape scale.
Therefore, we do not specifically model bark fuel stratum in this study.

Since we are interested in predicting potential fuel hazard score, we used the observations made at least 10
years after the last fire; this length of time allows the fuel to accumulate beyond 95% of capacity (Peet et
al., 1971; Fox et al., 1979; Burrows et al, 1994; Zazali et al., 2021). This filtering resulted in a total of 27,799
observations covering Victoria. Figure 1 shows the spatial distribution of the field observations, with the
temporal distribution shown in Figure S1.

Climate predictors

We chose a set of climate, soil and topographic predictors that have been shown to drive fuel hazard in
previous studies (e.g., Jenkins et al., 2020; McColl-Gausden et al., 2020). We used gridded daily climate
data at 0.05° x 0.05° resolution from 1994-2018 obtained from the SILO project (Jeffrey et al., 2001; ac-
cessed at http://www.longpaddock.qld.gov.au/silo/). We extracted daily precipitation (PPT), maximum air
temperature (Thax) and minimum relative humidity (RH) for the grid cells corresponding to the locati-
ons of the field observations. We aggregated the climate data to monthly time steps by taking the sum of
precipitation and means for other variables. The PPT, T\ ,,x, minimum RH of the month before the fuel
hazard observations were used as predictors to represent the impacts of short-term climate conditions. We
calculated the mean annual precipitation (MAP) and Tp,ax for 1994-2018 to represent long-term climate
conditions. Finally, a rainfall seasonality index presented by Feng et al. (2013) was used to capture long-term
variation in the temporal distribution of precipitation over the twelve months of the year; the index varies
from 0 (even distribution over all months) to 2.48 (all rainfall concentrated in a single month). The details
of meteorological data are in Table S1. In addition to the climatic predictors used in the model, we obtained
potential evapotranspiration (PET) from SILO and averaged over 1994-2018. We then calculated an Aridity
index (AI) as PET/MAP. Al is not used as a predictor in the models but rather as an indicator of long-term
water balance among the pixels in the following analysis.



Soil and terrain attributes

Soil attributes, in particular proxies for water holding capacity and soil fertility, are expected to constrain
spatial variation of fuel loads and fuel properties via their effect on vegetation composition, density, and
structure (McColl-Gausden et al, 2020). We obtained gridded bulk density, clay content for topsoil (0-5
cm) and Available Volumetric Water Capacity (AWC; 0-200 cm) at 90 m resolution from the Whole Earth
product of the Soil and Landscape Grid of Australia (Malone, 2022).

We used fine scale topographic products containing wetness index (Gallant and Austin, 2012a), adjusted
monthly solar radiation in January and July (Gallant et al., 2014), and plan/profile curvature (Gallant and
Austin, 2012 b,c) at 3 arcsecond resolution (790 m). The topographic wetness index, calculated as specific
catchment area divided by slope, is commonly used as an indicator of soil water availability (Gallant and
Austin, 2012a). Mean monthly shortwave radiation is the mean shortwave radiation (MJ m=2d™!) received
by a surface accounting for latitude, day of year, average atmospheric conditions, and terrain effects (i.e.,
slope, aspect and topographic shading). We chose the shortwave radiation in January and July to account for
different energy inputs for summer and winter. Plan and profile curvature, derived from the Smoothed Digital
Elevation Model (Geoscience Australia, 2015), added further constraints on soil moisture availability and
other variation in other soil attributes (e.g., soil depth). The soil and topographic data used are summarised
in Table S1.

Future climate change projections

The climate change projections are based on the downscaled output of nine General Circulation Models (Clark
et al., 2021): ACCESS1-0, BNU-ESM, CSIRO-Mk3-6-0, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, INM-
CM4, TPSL-CM5A-LR, MRI-CGCM3. The chosen projections were from a full list of 12 models in Clark
et al. (2021), but we excluded three models because they do not cover both Representative Concentration
Pathways (RCP) 4.5 and 8.5. We used projections of PPT, T),.x and minimum RH for the intermediate
RCP 4.5 and high emission RCP 8.5 for the period 2000-2100. We obtained projected climate data for
time periods of 16 years at the beginning (2000-2015), middle (2045-2060), and end (2085-2100) of the 21st
century. We calculated the mean monthly climate for those three time periods for each of the nine climate
models. The data were then aggregated in the same way as the historical climate data while the spatial
resolution was kept at 0.036 degree (73.6 km). The MAP and mean Ty,.x were the mean of each 16-year
period. The mean of current and future climate among the projections are shown in Figure S2. The future
C, used in the study is shown in Table S2.

Optimal leaf area index

Vegetation structural response to climate change was based on gridded LAI layers simulated by an opti-
misation model (Yang et al., 2018). Briefly, the model uses long-term mean precipitation, maximum air
temperature, vapour pressure deficit (calculated based on T),.x and RH) and photosynthetically active ra-
diation (converted from monthly solar radiation) to predict LAI based on the concept of ecohydrological
equilibrium (Woodward,1987). The long-term mean PPT is used to estimate the amount of water available
to support evapotranspiration. The optimal LAT is then calculated as the LAI that maximises canopy car-
bon export (gross photosynthesis less leaf construction and respiration costs) subject to this constraint on
evapotranspiration.

There are four advantages of the optimal LAI model (Yang et al., 2018) which makes it suitable to incorporate
into machine learning: (i) it has detailed photosynthetic and stomatal processes to capture plant responses to
climate change and rising C,; (ii) the optimisation process accounts for potential changes in plant strategies
under future conditions; (iii) it showed a good agreement to satellite-derived and ground-based observations
over Australia during 2000-2011; (iv) it is parsimonious with minimum computational requirements and high
interpretability. The optimal LAI model therefore allows us to capture essential aspects of the ‘fertilisation
effect” on future fuel hazard. Current and future LAI are shown in Figure S2.



Random forest models

We constructed three random forest models: one for each fuel stratum (elevated, near-surface and surface).
Each model predicted a fuel hazard score of a stratum using 15 predictors including climate, soil, topography,
and LAT as shown in Table S1. The field-based fuel hazard score data set was split into a training subset
(random sample of 70% of observations) and an evaluation data subset (remaining 30% of observations).
Due to the importance of elevated fuels for variation in fire intensity and rate of spread, we focused our
evaluation and prediction on this stratum (Cheney et al., 2012). All of the data process and analyses were
conducted in R (4.1, R Core Team), with the ‘randomforest’ function from the ‘randomforest’ package used
for model fitting.

Model performance and importance of inputs

We used observed accuracy and Fleiss’s Kappa coefficient (Fleiss, 1971) to assess model performance. Briefly,
observed accuracy captures the agreement between model predictions and observations. However, due to the
imbalance in each score, accuracy could be driven by a single score that has high frequency in the data. The
Kappa coefficient addresses this issue by balancing the frequency of score in the data (expected accuracy)
with the observed accuracy. A Kappa coefficient over 0.4 is generally considered as good (McHugh, 2012).
We also used ‘no-information rate’ (i.e., accuracy achievable by random sampling) as a baseline of model
performance. The more model accuracy exceeds the ‘no information accuracy rate’ the better the model
performance.

To assess the importance of each predictor, we used the Gini index (also known as “Gini importance” or
“mean decrease impurity”) defined as the total decrease in node impurity (the proportion of a sample in each
node) averaged over all trees of the ensemble (Breiman, 2001). Since the Gini index is in favour of variables
with high categorical frequency, we also reported the percent change of mean square error of each variable.

Future projections

We explored the applicability of the field data to the whole region (Note S1) and found that the sample
sites covered most environmental variation of the region (Figure S3). We thus predicted future fuel hazard
scores for each of the nine models and two RCPs, a total of 18 climate projections. The soil and topography
layers were resampled to the resolution of the climate model outputs (3.6 km) to make the projection at
state scale. A LAI layer was predicted for each climate projection and period. Note that we also predicted
fuel hazard scores for 2000-2015 with climate projections to avoid potential discrepancies between SILO and
climate models. The projected fuel hazard scores varied by month because of monthly climate predictors.
Since past intense fires in this region occurred mostly around January, we only report the fuel hazard score
for January. The future fuel projections targeted potential fuel with the assumption of the land covered
by natural vegetation. The projections contained the probability of each fuel hazard score on an ordinal
categorical scale from 1 (low) to 5 (high). We predicted the probability of a hazard score of 4 or 5 (P4 5) for
the elevated fuel stratum rather than the change in categories, since high scores in this stratum have shown
to strongly affect fire behaviour (Hines et al., 2010).

Predictor impact assessment

Although the importance of each predictor was reported by the Gini index and increase of error, these
metrics do not directly translate into the magnitude of changes in the probability of a particular future fuel
hazard score. We therefore explored the impacts of two individual predictors by making projections with
the target predictor from 2000-2015 instead of the projected predictor while holding all other predictors as
projected (‘manipulated run’). For clarity, the projections with the full setup are referred to as ‘projections’.
Comparing the ‘projections’ with ‘manipulated run’ allowed us to separate the contributions of each predictor.



The two individual predictors that were assessed were the rainfall seasonality and the optimal LAI. We
assessed rainfall seasonality because it showed high variability in the future and ranked high in the importance
list. The difference between ‘projection’ and ‘manipulated run’ is referred to as the ‘rainfall seasonality effect’.

The optimal LAI was investigated because it represents the ‘fertilisation effect’ of rising C,, a key innovation
of this study. The difference between ‘projections’ and ‘manipulated run’ is referred to as the ‘fertilisation
effect’, hereafter. The fractional contribution of the ‘fertilisation effect’” was calculated as the ‘fertilisation
effect’ divided by the ‘projection’.

High resolution projections

To explore model performance at fine spatial resolution, we focused on a topographically heterogeneous
region of about 20 km?near Dargo, Victoria (-37.33588, -37.38554,147.27566,147.32566). This mountainous
region features strong heterogeneity in environmental conditions as indicated by the fine-scale patterns of
the selected terrain attributes (Figure S4). Models relying on climate only would predict no variation in
fuel hazard scores due to the resolution of climate data (3.6-5.0 km). Here, we used topographic and soil
data at 90 m resolution to demonstrate the capability of the model to predict fuel hazard scores at this fine
resolution. We used climate data from the ACCESS 1-0 climate projection only, which was deemed sufficient
for this analysis. because the goal is to highlight the capability of the model rather than predicting future
change.

Results

We first compared the predictions of the three random forest models, one for each fuel stratum, against the
evaluation dataset. The models agreed well with the field-based observations in the evaluation data sets
in terms of accuracy, no information rate and Kappa coefficient (Table S3). For all three fuel strata, the
models achieved an accuracy over 0.65, which is much higher than the ‘no information rate’ (0.3-0.4). The
models also had Kappa coefficients over 0.5, indicating good model fits for all five score values despite the
imbalanced sample size. Overall, the evaluation suggested good and consistent model performance for all
three fuel strata and all five fuel hazard scores.

The random forest models also helped identify the key predictors of fuel hazard score among the 15 layers of
gridded input. The importance of each predictor, which is measured in terms of the contribution to the overall
model accuracy, is shown in Figure 2. Climate predictors in general ranked higher than other predictors
in all models. However, solar radiation for January consistently ranked high in all strata, suggesting the
importance of slope gradient and aspect for long-term climate controls on vegetation productivity and fuel
hazard. Rainfall seasonality is among the most important predictors for the hazard score of the elevated
fuel stratum, indicating the temporal distribution of rainfall may be more important than the absolute total.
Minimum RH is a climate factor that is important for all three models, but its importance is much smaller
for predicting the hazard score of the elevated fuel stratum than for the other two fuel hazard scores. The
importance of optimal LAI was intermediate. Plan and profile curvature as well as clay fraction in the topsoil
and available volumetric water capacity are consistently ranked low in importance for predicting hazards
cores of all strata. For hazard scores of surface and near surface fuel strata, Tp,.x and PPT also ranked high
in importance, indicating importance of short-term topoclimatic drivers in these two strata. It is notable
that the importance based on prediction accuracy and Gini Index are different for all strata. For example,
for the hazard score of the elevated fuel stratum, MAP is ranked high in importance according to the Gini
Index but not when importance is measured by model accuracy.

After model evaluation, we used the fitted models to predict changes in fuel hazard scores for each fuel stratum
under projected climate change and increasing C,. The mean predicted change in the P4 5, averaged across
the nine climate models, showed a distinct spatial distribution (Figure 3). For mid 21%¢century (2045-2060),
the model predicted an increased P, 5 in the north and southeast of Victoria under both the RCP4.5



scenario (Figure 3a) and the RCP8.5 scenario (Figure 3 ¢, d) with more severe climate change resulting in
larger changes. This pattern remained consistent later in the 215 century (Figure 2b). The same projection
for hazard scores of surface and near-surface strata are shown in Figures S5 and S6. The changes in the
P4 5 (-0.2, 0.2) in surface and near-surface strata were much smaller than that of elevated stratum.

We explored the model projection of P4 5 of elevated fuel stratum along a climate aridity gradient (Figure
4). For current conditions, the results show a clear decrease in the median probability of high fuel hazard
score in elevated fuel stratum as aridity increases, reflecting the pattern seen in the input data (Figure 4a)
during 2000-2015. For future conditions, the model predicts an increased P, 5 of elevated stratum in dry
region (AI >3.5) but not in more mesic regions under RCP8.5 by 2085-2100 (Figure 4b).

The strong spatial pattern in predicted change of the probability of high hazard scores for the elevated fuel
stratum encouraged a further investigation of the predictor of that spatial variation. We first assessed the
impact of changes in rainfall seasonality. Comparing the ‘manipulated run’ (i.e., projections with rainfall
seasonality from 2000-2015) to the ‘projection’ showed that the spatial variation in predictions is driven by
rainfall seasonality (Figure 5). With the manipulated run, the model predicted no change in P, sof the
elevated fuel stratum, with predictions forming a narrow distribution with a single maximum (blue_ bars in
Figure 5a). With the actual projections, the model predicted a bimodal distribution with around half of the
pixels having little change in probability while the other half with a clear increase by up to 0.4 in the P4 5
of the elevated fuel stratum (red bars in Figure 5; Figure 3d compared with Figure 3a). -

We also assessed the impact of changes in COs, via the change in optimal LAI. The ‘fertilisation effect’,
varied from -9% to 12% in the region under RCP&.5 by 2085-2100 (Figure 5b). Notably, the ‘fertilisation
effect’ is larger in regions with current low LAI (Figure S4g).

We chose a mountainous region with complex topography (Dargo, Australia) to explore the potential of the
model to describe fine scale (90 m) variation in fuel hazard (Figure 6). Dargo has large small-scale variations
in topography (Figure S4). A model driven solely by coarse resolution predictors, such as gridded climate,
would predict no variation in fuel hazard score within this region of ca. 4 km x 5 km. The random forest
model with key terrain attributes as predictors, however, predicted strong variations in the probability of
high hazard scores in the elevated fuel stratum. The P4 5 of the elevated fuel stratum in the valleys was
relatively low compared to ridges (Figure 6 a,b). Notably, the predicted response of P4 5 of the elevated
fuel stratum to climate change is not uniform throughout the landscape (Figure 6 c,d). Wet valleys (Dark
green in Figure 6d) saw higher increases in probability of high fuel hazard scores in elevated fuel stratum
during 2085-2100 under RCP8.5 (Figure 6¢) compared to the rest of the landscape.

Discussion

With catastrophic fire events gaining global concern, realistic fire danger assessment tools are needed more
than ever. Here we present a framework to predict fuel hazard at a fine spatial resolution that is directly
useful for operational fire management. It is based on mechanism-informed random forest models that make
use of field-based observations of fuel hazard, gridded soil and topographic attributes, long-term climate
trends, as well as plant responses to changing environment. Our modelling approach provides an important
step towards a mechanism-informed fire risk assessment system. The predictions could also be used in fire
behaviour models as well as to evaluate other vegetation model projections.

Fire management decision support

The modelling framework presented here has several features that are useful at regional scale for fire man-
agers. It can incorporate long-term field-based fuel hazard surveys. It can use a comprehensive selection
of predictors including climate, terrain, soil and vegetation. It can produce output that is interpretable
and useful to fire managers and at a resolution that is relevant for operational management (Penman et
al., 2022). Despite the high resolution, it has relatively low computational demand for regional projections



(i.e., does not require high-performance computing). The comprehensiveness separated this approach from
previous empirical models that only consider a subset of predictors (e.g., Pierce et al., 2012; Jenkins et al.,
2017; McColl-Gausden et al., 2020) while the high resolution (90 m) is what current process-based modelling
cannot provide (Rabin et al., 2017).

The random forest model predicted increased P4 5 in the future for areas currently under semiarid climates
(Figure 4). This prediction is consistent with a previous analysis on historical burnt area and aridity (Kelley
et al.; 2019). Combining the finding with current knowledge on key limiting factors in different regions
(Archibald et al., 2013; Bradstock et al., 2014; Boer et al., 2016), our predictions indicate changes in
future fire regime as current semiarid regions showing increasing fuel load in elevated stratum. Specific fire
management measures should be thus based on the actual fuel hazard and its change in all fuel strata (Figure
3; Figure S4 and S5).

Predictors of fuel hazard

Based on our analysis we recommend using a combination of climate, fine scale topographic attributes and
plant response to climate change for fuel projections. We found COs fertilisation to contribute up to 12%
of P4 5 in Victoria (Figure 4). Empirical models that do not include rainfall seasonality are unlikely to
capture the actual change of fuel hazard score under future climate in Victoria where rainfall seasonality
is a key driver of plant productivity (Figure 5) despite the optimal LAI ranked only in the middle in the
importance list (Figure 2). Although this finding does not directly apply to other regions, the approach is
generalisable and could help extract knowledge from field-based observations across the world. In contrast,
land surface models running on coarse resolution (>5 km) generally cannot resolve terrain-driven variation in
plant growth (e.g., Clark et al., 2016; Wu et al. 2022; but see Fiddes et al., 2022) and are unable to capture
fine-scale variations in fuel hazard scores (Figure 6). Although spatial resolution might not be critical in
capturing global trends in fire risk, fine scale predictions are crucial for operational fire management on
regional scales (Bale et al., 1998; Nyman et al., 2015; Inbar et al., 2018).

Despite the good overall predictive performance, this machine learning approach has four major limitations:
1. It cannot provide information about the transient response of vegetation structural change due to gradual
climate change; 2. It does not mechanistically model the impacts of plant composition and range shifts on
fuel structure; 3. The ML models do not explicitly consider climate driven changes in fire regimes and the
associated feedbacks with vegetation, which potentially affects vegetation distribution and fuel accumulation
(e.g., Murphy and Bowman, 2012). 4. Human activities (e.g., land use change and fire hazard reduction
efforts) are not included in the models but could result in substantial changes in future fire characteristics
(e.g., Wu et al., 2022). Our approach aimed to quantify the potential for changes in fuel hazard as set by
environmental and biological constrains. The shortcomings of this study could be addressed by process-
based models which require significant developments in the computational capacity and the understanding
of climate-vegetation-fire interactions.

Providing a benchmark for process-based models

Although many process-based models have a fire component, the evaluation of those models focused on
the carbon and water components (Luo et al., 2012; Hantson et al., 2020). Existing evaluations of the fire
modules relied on satellite derived burned area (e.g., Arora and Boer 2005; Hantson et al., 2020). Our
predicted fuel hazard represented the potential to use machine learning approaches to upscale field-based
observations to the resolution of land surface models and thus could be used as a reference for benchmarking
process-based models alternative to satellite-derived burned areas.

Current process-based models run on coarse horizontal grids (Eyring et al., 2016; Friedlingstein et al., 2022)
which cannot capture the fine scale variation of fuel shown in field observations. Although fine spatial
resolution simulations accounting for fuel variation are possible at regional scales (Fiddes et al., 2022),
the computational demand prevents such implementation at the regional and global scales. Our machine
learning approach could be used in hybrid modelling framework to improve the model behaviour at fine
spatial resolution (Reichstein et al., 2019).



Conclusion

Our random forest models predicted that the responses of future fuel hazard to climate change depend on
climate aridity as well as local topographic attributes. We reported possible fuel hazard shifts because of
changing climate and C,. These findings highlight the fact that fuel hazard patterns are the product of the
interaction among climate, vegetation, and topography. Predictions based on a subset of these factors are
thus unlikely to be reliable. Our framework provides a useful decision support tool for fire risk management
as well as a reference for evaluating process-based model predictions.
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Figure 1. Locations of the field fuel observations in southeast Australia. Inset showing the sampling region
relative to Australia. Darker colour means more samples in the pixel.
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Figure 2. The importance ranking of predictors. The importance of each predictor in each model was
evaluated based on the random forest model fits to training datasets. (a) and (b) show the importance based
on decrease in accuracy and Gini Index for elevated fuel stratum, respectively. (c¢) and (d) show the same
but for near-surface fuel stratum, while (e) and (f) for surface fuel stratum. Colour marks different predictor
types: climate- cyan; topography-brown; soil- grey; plant-red.
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Figure 3. The projected change in P4 5 of elevated fuel stratum in the future in January. (a) shows the
change by 2045-2060 compared to 2000-2015 under RCP4.5. (b) shows the change by 2085-2100 compared
to 2000-2015 under RCP 4.5. (c) and (d) show the same as (a) and (b) but under RCP 8.5. Note that the
projections ignored land use type (Figure 2).
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Figure 4. Predicted change in P4 5 for the elevated fuel stratum during 2000-2015 (a) and under RCP8.5
by 2085-2100 (b). X axis is the Aridity Index (AI) calculated as PET/MAP with long-term average SILO
climate data. The changes are binned by 0.1 AI. The boxes are the predicted range of changes in probability
considering both climate and LAI. The horizontal bars from top to bottom of each box show the maximum,
75% quantile, median, 25% quantile and minimum respectively. The black dots are outliers.Figure 5. The
impacts of rainfall seasonality and CO- fertilisation on P45 of elevated stratum. (a) The change in the Pys
of the elevated stratum using either constant or predicted rainfall seasonality under RCP8.5 by 2085-2100.
The constant rainfall seasonality is the mean of all nine climate models during 2000-2015. The predicted
rainfall seasonality is the mean of all nine climate models during 2085-2100 (Figure S1). The change of Py is
calculated as the difference of the probabilities between 2085-2100 and 2000-2015 with positive values mean
increase in probability. (b) shows the fractional contribution of ‘fertilisation effect’ to the predicted P45 of
the elevated fuel stratum under RCP8.5 by 2085-2100. Negative values mean the ‘fertilisation effect’ is in
opposite direction and of smaller magnitude than the ‘climatic effect’.
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Figure 6. The projected change of probability of summer (January) high score of elevated fuel stratum
in the future in Dargo region Victoria, Australia. (a) shows the probability of a high score of elevated
fuel stratum during 2000-2015. (b) shows the probability during 2085-2100 under RCP 8.5. (c) shows the
difference between (b) and (a).
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