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Abstract

In this paper, we aim to improve the tracking performance of the manipulator joint system under the presence of the uncertain-

ties, such as modelling error, friction, and external disturbance. Firstly, the nonsingular fast terminal sliding mode control is

developed to guarantees a finite-time convergence and to solve the singular issue of the terminal sliding mode control. Secondly,

in view of the established system model, an adaptive sliding mode controller (SMC) based on radial basis function neural

network (RBFNN) and sliding mode variable structure control theory is designed for the tracking of the bi-joint manipulator

and six-degree of freedom parallel robot. Finally, the results show that our method improves the robustness of the adaptive

RBFNN controller further, weakens the chattering phenomenon, reduces error, and has an excellent control performance.
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1 Introduction 

With the strategy of "Industry 4.0 Robotics Challenge", the manufacturing industry is developing rapidly in the direction of 

intelligence. In view of the manoeuvrability of the manipulator systems, it has been widely used in the agricultural, 

manufacturing industry, medical treatment, and other hazardous fields [1]. As a multi-input multi-output system with 

complicate structure and strong coupling, the robotic arm is often affected by unmodeled uncertainties, sensory detecting 

noise, and time-varying external disturbance in practice. However, the techniques of traditional robot control have many 

limitations and are difficult to simultaneously meet the accuracy and speed requirements of the actual system [2]. The methods 

applied to robotic systems have mostly been based on state feedback control schemes such as sliding mode control (SMC), 

adaptive control, PID control, and neural network control. Among them, the principle of SMC forces the state of the control 

system to move according to the predefined sliding mode state trajectory, which improves the tracking accuracy [3], and due 

to its insensitivity to parameter changes, SMC theory has broad applications. Reference [4] proposed an adaptive robust 

control based on an integral SMC with parameter variations and disturbance observer. The RBFNN-based control scheme is 

often used to identify the uncertain items in the dynamic system of multi-degree of freedom manipulators. Sun et al. [5] 

propose an adaptive controller based on a neural network for a class of nonlinear systems with input quantization, unknown 

function, and time delays. Traditional RBFNN controllers need the availability of a high-precision model to avoid high control 

chattering, but the poor initial state of the iteration will cause a low control accuracy of the system, in which the initial values 

of parameters determine whether the system converges, the number of nodes in the hidden layer pre-setting affect the 

convergent speed, and too many hidden neurons will inevitably lead to a significant reduction in the training process time 

efficiency. 

The servos used in the manipulator typically cannot provide enough information for calculating the dynamic coupling. 

Work in [6] introduced disturbance observers to compensate the dynamic coupling. An approaching law and switching 

function were proposed in [7], but the method is time-consuming and complex for its adjusts parameters one at a time, and it 

is sometimes difficult to adjust the optimal parameters. Noteworthily, the robustness of RBF control is poor, i.e., the robotic 

arm is poorly resistant to disturbances, and SMC has good robustness. In [8], a neural network-based robust sliding-mode 

controller for a five-dof robot arm was proposed and RBFNN is used to compensate for the influence of the system 

uncertainty and the changes in the sliding-mode control parameter. Reference [9] respectively designed non-singular fast 

terminal SMC, output feedback, and adaptive SMC strategy to optimize the traditional SMC strategy, however, the chattering 

phenomenon still exists. Nojavanzadeh [10]. developed the SMC with adaptive fractional-order term based on an integrated 

adaptive robust gain law to estimate the boundary of the uncertainties. 

Inspired by the above works of literature, in order to ensure that the end effector does not fail due to jitter during the 

execution of the prescribed task, and further improve the convergence performance of the closed-loop system within finite 



  

time, this paper adopts sliding mode control as an auxiliary control to robustly compensate the radial basis neural network 

system in real-time with bounded error perturbation. Then we prove the stability and robustness of the system to parameter 

variation by using the Lyapunov method. The results show that the adaptive sliding mode control method of RBFNNs can 

weaken the jitter and has good potential for engineering applications.  

The main contributions of this paper are concluded as follows: 

• A novel SMC scheme with a nonlinear fractional order sliding mode surface is designed for the first time, which guarantees 

a fast convergence rate and overcomes the chattering problem. 

• Different from the other existing methods, the proposed adaptive law is designed to handle the parameter variation, and a 

weighted square synchronized updating law is designed for RBF-neurons to reduce the impact of improper parameter 

selection. 

• The good transparency performance with both position tracking and force feedback is obtained. The experiments are carried 

out to demonstrate the theoretical analysis correctness and superiority of our proposed control law. 

The rest of this paper is organized as follows. In section 2, the proposed controller of a bi-joint manipulator is designed and 

its stability is analysed. In section 3, the kinematics model of the six-axis parallel mechanical platform is introduced and then 

the adaptive controller is discussed. Subsequently, experiments to verify the proposed scheme compared with the classical 

neural network controller are described in Section 4. At last, we conclude the whole paper. 

2 RBFNN-based adaptive sliding mode controller of bi-joint manipulator 

2.1 Dynamic model 

The simplified plane diagram structure of the two-link manipulator is shown in Figure 1. Considering a general n-link robot 

arm, its dynamics are governed by: 

                                                 
( ) ( , ) ( ) ( ) dM q q C q q q G q F q  + + + + =

                                                                        
(1)

                                                                                                                       

where nq q q R， ，
 
are the position, angular velocity, and angular acceleration vectors of each joint, respectively. 

( ) n nM q R 
 
denotes the inertia matrices, ( , ) n nC q q R   is the centripetal Coriolis matrix,  is the gravity 

term, ( ) nF q R is the friction effect, n
d R 

 
stands for the disturbance term, nR   represents torque input. 

In this work, the well-known dynamic properties of the robot arms in (1) are satisfied [1]: 

Property 1: Inertial matrix M(q) is a symmetric and positive definite matrix with a bounded norm. 

Property 2:  is a skew-symmetric matrix. i.e., 

                                                                                                                   (2)                                                                                             

let  is the joint tracking error and  expressed the desired trajectory, the error function is defined as:                                                                 
                                                                                                                                                             

 

                                                                                                                                                                      (3)                                                        

where 0T =   . then equation (1) can be rewritten as:   

                                                                                            (4)                                                                   

 
Figure 1 Structure sketch of the bi-joint manipulator 

 

2.2 Description of RBFNN 

As a kind of feed-forward network, RBFNN is capability of approximation to any single-valued continuous function with 

arbitrary precision. Figure 2 describes a typical RBFNN, which is a three-layer feed-forward network with a single hidden 



   

layer, which includes an input layer, a hidden layer, and an output layer. The first input layer consists of the signal source 

nodes; the neurons in the second implicit layer are transformed by radial basis functions, which are non-negative linear 

functions with radial symmetry and decay to the centroid; the third output layer responds to the input signal, and the implied 

layer is a linearly transformed function to the output. The signal in the layer is linearly weighted to the output value in the 

output layer. 

 
Figure 2 Structure of the RBFNN 

The training process of the RBFNN determines by parameters: the clustering center, the width of the hidden neuron, and the 

weights of the hidden layer. The k-means method is used to determine clustering centre and the width of the hidden neuron, 

and we use the gradient method to train the network parameters ,  and : 

 

 

                                                                                                                                                       (5) 

where J is the cost function given by .    

The hidden layer derives the input values with the radius basis function, we select the Gaussian function 

, j=1,2,,N as the basic function, where is the input variables, n is the input 

dimension, N is the number of neurons in the hidden layer,  is the output of the hidden layer, 
 
is the central of 

the hidden nodes, 
 
is the width of the Gaussian function, and the output of the RBFNN is the linear superposition of 

the hidden layer node. 

Lemma 1: Defining a continuous function  on a compact set , there exists a weight vector W and a positive 

constant  such that  can be approximated by a RBFNN: 

                                                                                            (6)                                                    
 
 

let , then we have: 

ˆT TW f W  + = −
                                                                                            

(7)
                                                         

 

where 
 
is the approximation error of the neural network, satisfying ,  represent the actual, 

approximate and the error value weight vectors, respectively. 

Substitute equation (7) into equation (4), we get: 

                                                          
( ) ( )T

v dMs K C s W v  = − + + + + +
                                                                   

(8)
                                                                              

 

Assuming that the neural network system has 
 
and d , the robust terms are expressed as follows: 

                                                             
( )sgn( )N dv b s= − +

                                                                                         
(9)

                                                                                            
 

where sgn is the signum function given by: 

                                                                                           (10)                                                                                 

Define the RBFNN control law as: 

                                                                                                                                           (11)                                                                                                    



  

the expected weight of RBFNNs can be acquired based on the optimization method as follows: 

                                                                                                                     (12)                                                                     

where  is the estimated weight of W. from equation (4), it can be obtained: 

                                                                                                                       (13)                                                                                       

among them, M, C, F, and G need to be measured and calculated to obtain their nominal parameter matrices. 

2.3 Design of RBFNN-based sliding mode controller 

The global slip surface [9] is chosen as equation (14) such that the controlled system achieves a fast response and finite-

time convergence without the singular problem: 

                                                                        (14)                                                             

where p and q are positive odd numbers satisfying the relation 1<p/q<2 and α>p/q,  is the global sliding mode factor 

of the sliding mode switching function, which satisfying the conditions as follows: 

                                                  ,                                                                   (15)                                                                   

Using the hyperbolic tangent function instead of symbolic functions can weaken the jitter, we use the switching 

control law as: 

                                                                                                                                                  (16) 

    The time derivative of  is: 

                                                 (17)                              

let , we get the equivalent control as: 

                                                                                                                       (18)                                                                            

in equation (18), we take: , , , respectively. 

The global sliding mode control law can be expressed as: 

                                                                                                                                                                (19)                                                                                         

when system is away the system, it moves to the sliding surface under the effect of equivalent term and switch term.  

According to equation (13), in order to enhance the adaptive learning capability of the system and improve the 

robustness, the desired trajectory information is introduced into the neural network and combined with the sliding mode 

control as follows: 

                                                                (20)                                                      

in equation (20), assuming that  is the new weight corresponding to the neural network, it is easy to know that 

 which is guaranteed to be globally bounded by equation (13). 

Let , , combining with equation (10) and equation (20), we get the control law of neural 

network adaptive sliding mode controller: 

            (21)                                  

The system control structure flow chart is shown in Figure 3.  

 



   

 
Figure 3 Block diagram of RBFNN-based adaptive scheme 

2.4 Stability analysis 

According to Lyapunov stability analysis, if the designed Lyapunov function is positive and its derivative is semi-

negative, the control system is stable.  

Theorem 1: When we consider the uncertainties in the manipulator described in equation (4), the sliding mode surface 

presented in equation (14), and the controller defined in equation (21), the trajectory tracking error will converge fast to 

zero within a finite time and singularity issue will be isolated. 

Proof:  

step 1: The first Lyapunov function  is selected as follows: 

1
0

1 1
( )

2 2

T TV s Ms tr W F W−= +
 

taking the derivative of  with respect to time, we have: 

1
0

1
( )

2

T T TV s Ms s Ms tr W F W−= + +  

combining with equation (4)-(8), it can be found that: 

 

by simplifying, we have: 

0 + ( )T T
v dV s K s s v = − + +  

due to s ( ) ( ) ( ) 0T T
d d N dv s s b    + + = + − +  , thus,  

Step 2: The second Lyapunov function can be further defined as follows: 

0

1

2

TV s Ms V= +
 

then it can be formulated that: 

0[ ( ) ( ) ]T
d d dV s M q e C q e Kq V = + + + + − − +  

let: 

, , 

,
 

, 
 

when  holds, 0V  . 

 

3 Adaptive sliding mode control for six-axis parallel platform based on RBFNN 

3.1 Six-axis parallel platform kinematics analysis 



  

In Section 2, a neural network adaptive sliding mode control method is designed for a common n-joint robotic arm, 

however, it is difficult to decouple the kinematics for a multi-branch, multi-joint, and strongly coupled nonlinear system, 

such as a parallel robot, so a kinematic analysis is needed first, and then an appropriate control law is constructed 

according to equation (21). Compared with the general tandem robots, six-axis parallel robots are characterized by 

compact complex structure, high stiffness, high load capacity, no cumulative error, high accuracy, low component wear, 

and long service life [13]. However, as most of parallel mechanisms are open loop and have many links and joints, 

calibration is crucial to ensure the motion accuracy. For instance, to improve the pose accuracy of parallel mechanisms, 

Zubizarreta et al. [14] applied neural networks to the forward solution of parallel mechanisms, the hypothesis is that the 

parameters of the mechanism are known and the calibration of the actual parameters is not concerned. Vision-based 

measurement is a new method which can simplify the measurement process. Dehghani, et al. [15] used a visual 

inspection method to calibrate a Hexa parallel robot. In previous work [16], a continuous nonsingular fast terminal 

sliding mode (CNFTSM) was developed for control of Stewart platforms in combination with perturbation estimation to 

obtain a chattering-free robust controller in the presence of time-varying external disturbances. However, many 

parameters need to be identified such as initial link lengths of Stewart and initial coordinates of hinge points, which 

increase the difficulty of calibration. 

Based on the analysis on the bi-joint in Section 3, an adaptive SMC-based strategy with RBFNN is employed to solve 

the six-DOF. Figure 4 presents the kinematics parameters of the system. As shown in Figure 4, the six-axis parallel 

mechanism is mainly composed of six 3d-parametric moving platform hinges, six three-dimensional parametric fixed 

platform hinges, six drive lengths and the position pose of the moving platform, where j denotes the command number. 

In the center plane of the hinge of the upper and lower platform, we take any point coordinate 2O
 
and 1O

 
as the origin, 

the axis 2Z  and 1Z  are perpendicular to the upper and lower platform respectively to establish the moving coordinate 

2 2 2 2O X Y Z
 
system and the fixed coordinate system connected with the upper and lower platform. Then we find the 

rotation transformation matrix and the translation vector from moving coordinate system 2 2 2 2O X Y Z
 
to the fixed 

coordinate system 1 1 1 1O X Y Z
 
to determine the spatial position.  

Suppose the coordinates iA in the fixed coordinate system 1 1 1 1O X Y Z  is ( , ,0)xi yia a , and the coordinates of the 

origin 2O  in the fixed coordinate system 1 1 1 1O X Y Z  denotes ( , , )P x y z , the coordinates iB  in the moving coordinate system 

denotes ( , ,0)xi yib b , the length i iA B  denotes iL , and the rotation matrix of the moving coordinate system 2 2 2 2O X Y Z  to 

the fixed coordinate system 1 1 1 1O X Y Z  denotes 

1 2 3

4 5 6

7 8 9

r r r

R r r r

r r r

 
 

=  
 
      

From the constraint of rod length, we have: 

                                                                     
2 ( ) ( )T

i ib ia ib iaL RQ p Q RQ P Q= + − + −
                                                     

(22)
                                                                     

 

1,2, ,6i =  substitute the coordinates into equation (22), we have: 

       (23)                                       

The following system of equations is obtained based on the property that the rotation transformation matrix R is a 

unitary orthogonal array: 

                                                                  

2 2 2
1 2 3

2 2 2
4 5 6

1 2 2 5 3 6

4 8 5 7 3

2 7 1 8 6

1 5 2 4 9

1 0

1 0

0

0

0

0

r r r

r r r

r r r r r r

r r r r r

r r r r r

r r r r r

 + + − =


+ + − =

 + + =


− − =
 − − =


− − =

                                                                                  (24)                                                                                         

From the above analysis, the corresponding relationship between the six servo motor angles and the six degrees of 

freedom of the moving stage are obtained, so that the input position can be derived from the given output position. 



   

 
Figure 4 Simplified model of six-axis Platform 

3.2 Design of the proposed controller for 6-dof parallel platform 

Since each of the six active arms is linked to the moving platform by a rod, all the linked rods can achieve 

independent motion, but there is a strong coupling between the motion outputs of each degree of freedom of the system, 

which needs to be decoupled to obtain good performance, and the sliding mode control has a "self-decoupling" function, 

combining RBFNN with the sliding mode controller, the upper platform attitude is decoupled by inverse solution to 

make it a second-order nonlinear system as follows [17]: 

                                                         
( , ) ( , ) ( )x f x t g x t u d t= + +

                                                                              
(25) 

where x  denotes the state variable, ,f g denote the unknown nonlinear functions of the system respectively, u denotes 

the control quantity, and ( )d t D  is the bounded disturbance. 

The desired trajectory dx  of each branch is given by solving the system of equation (24). 

We take the sliding surface as follows: 

                                                      s e e= +
                                                                                                        

(26)
                                                                                           

 

If ( , ) 0g x t  ,we choose the equivalent sliding mode control theory is as [18]: 

                                                                                                                                                               (27)                                                                                           

where sgn( ),dv x e s D  = − − 
    

 

Define Lyapunov function as: 

                                                          

21

2
L s=

                                                                                                          
(28)

                                                                                          
 

then it can be formulated that: 

                                                        
( ) ( )d dL ss s x x e s f gu d x e = = − + = + + − +                                                 (29)                                                                    

by simplifying, we have: 

 
according to equation (20), the sliding mode control law of six-axis parallel platform is taken as follows: 

                                                                                                                                                                 (30)                                                                                                  

   The control algorithm satisfies Lyapunov stability. 

3. 3 RBF neural network learning 

Dataset acquisition: Assuming that the geometrical characteristics of the robot are known, the kinematic analysis of the 

robot arm is based on the kinematic analysis of its linkage coordinate system to obtain the D-H parameters, and the end-

effector position and attitude are obtained by solving the kinematic equation, and the joint angle of each linkage and 

Cartesian coordinates of the end-effector are sampled to create a data set containing about 500 randomly generated entries. 

If the inverse mapping of end-effector positions to joint angle vectors has only a unique solution, the inverse kinematic 



  

model is considered to be fit; if the mapping has multiple solutions, i.e., there are multiple sets of angle vectors for the 

desired end-effector positions, or no solutions, the inverse kinematic model is considered to be not fit [19]. In order to 

solve these problems that can lead to inefficient training of the model, the dataset was preprocessed to remove invalid data 

samples, resulting in a trainable dataset of about 200 different entries, and then the dataset was divided into a training set 

and a test set in the ratio of 70% and 30%. 

Training of the dataset: With the help of the neural network toolbox in MATLAB, the improved RBF neural network was 

trained using the mean square error (MSE) as the radial basis neural network loss function. 

3.4 Framework 

Our framework mainly contains three parts: trajectory planning, system control and trajectory optimization, which is 

shown in Figure 5. 

(1) Trajectory planning. 

Firstly, the host computer will send the pose commands for the key points of the robot operator. The kinematic model is 

established based on the D-H method, where the positive kinematics is used to find the x, y and z values of the end effector 

and the inverse kinematics is used to find the joint angle values. The ideal trajectory is obtained by using the fifth 

polynomial interpolation method [22,23]. 

(2) System control stage.  

In this stage, the dynamics model is established based on Lagrange's theorem. the torque of each joint under the ideal 

trajectory is solved by the dynamic method, and then the torque information is transmitted to the attitude controller. The 

posture controller drives the control motor rotation to realize the movement. 

(3) Trajectory optimization.  

The designed RBF neural network adaptive sliding mode controller is used to optimize the tracking trajectory, and the 

new control commands are transmitted to the attitude controller, and the trajectory that achieves the desired goal is used as 

the actual trajectory of the robot arm [24,25]. 

 
Figure 5 Trajectory planning framework 

4 Experimental Results 

4.1 two-link manipulator trajectory tracking 

In order to investigate the effect of the improved algorithm on the number of initial hidden nodes an d parameters of 

the neural network on the convergence speed of the system, the control law proposed in equation (21) is used to verify 

the effectiveness of the proposed control method by using a double-joint robot arm as the object of simulation analysis, 

the matrix of each coefficient in equation (1) is: 

1 2 3 2 2 3 2

2 3 2 2

2 cos cos
( )

cos

p p p q p p q
M q

p p q p

+ + + 
=  

+   

3 2 2 3 1 2 2

3 1 2

sin ( )sin
( , )

sin 0

p q q p q q q
C q q

p q q

− − + 
=  
   



   

4 1 5 1 2

5 1 2

cos cos( )
( )

cos( )

p g q p g q q
G q

p g q q

+ + 
=  

+   
( ) 0.2sgn( )F q q=

 

 0.1sin( ) 0.1sin( )
T

d t t =
 

The parameter c is taken strictly as a range of network input values and the parameters of the system are listed in Table 1. 

The initial weights of the RBF neural networks are 0, the desired trajectories of the manipulator are set as 

1 0.1sin( )dq t= , 2 0.1sin( )dq t= .  

Table 1 Controller parameter 

parameter value 

  

  

  

 
 

 
 

 
0.20 

 
0.10 

 
50 

 
0.1 

 
5.0 

 

For comparison, we simulate two sets of parameters.  

set 1: the initial hidden layer width 0.5jb = , the
 
initial hidden layer center c: 

1.5 1 0.5 0 0.5 1 1.5

1.5 1 0.5 0 0.5 1 1.5

0.1 1.5 1 0.5 0 0.5 1 1.5

1.5 1 0.5 0 0.5 1 1.5

1.5 1 0.5 0 0.5 1 1.5

c

− − − 
 
− − −
 
 = − − −
 
− − − 
 − − −   

The simulation results of set 1 are shown in Figure.6-Figure.10 and Table 2. 

 
Figure 6 Position tracking trajectories       Figure 7 Position-tracking error  

 
Figure 8 Angular velocity                          Figure 9 control inputs  

 

 

 



  

Table 2 Result of node=7, b=0.5 

  Maximum errors Steady-state errors Convergence time 

Traditional RBFNN 1 0.450 1.9×10-4 5.8s 

2 0.09008 -4.225×10-4 5.8s 

adaptive RBF-SMC 1 0.060 -3.077×10-4 2.0s 

2 0.09002 -1.781×10-4 2.0s 

 

set 2: To verify the robustness of the proposed control algorithm to changes of RBF neural network, the number of  

hidden layers are increased to 15, . 

The results of set 2 are shown in Figure10-Figure 13 and Table 3. 

 
Figure 10 Position tracking                        Figure 11 Position tracking error 

 
Figure 12 Angular velocity                        Figure 13 Control inputs 

 

Table 3 Result of node=15, b=10 

  Maximum errors Steady-state errors Convergence time 

Traditional RBFNN 1 0.125 -1.194×10-4 21.6s 

2 0.09007 -2.595×10-4 21.6s 

adaptive RBF-SMC 1 0.034 -1.734×10-4 2.0s 

2 0.09002 3.1×10-4 2.0s 

 

The trajectory position tracking and its errors are shown in Figure6, Figure 7, Figure10, and Figure 11. According to 

Table 2, the tracking steady-state errors of two algorithms reach the accuracy requirement of 10-4 level, but the 

maximum error is reach up to 0.450 under the traditional RBFNN control, while the maximum error is less than 0.1 after 

adding the adaptive sliding mode controller. The system convergence is accelerated by 65.52%, which clearly indicates 

that the improved neural network adaptive sliding mode controller has better adjustment ability under the condition of 

large initial position error of the robot arm. 

As shown in Table 3, when we increase the number of nodes in the hidden layer, the system still starts to track the reference 

model at about 1s, and it tracks the reference model well at about 2s. The maximum error is 0.125 before improvement, while 

the maximum error is less than 0.1 under the proposed RBFNN-based adaptive SMC strategy, which indicates that the neural 

network adaptive control algorithm is insensitive to the system parameter changes and has good robustness. Our method can 

avoid the influence of parameter settings on the system to a certain extent, and it can realize the end-of-execution which can 

achieve high precision trajectory tracking at the end of execution. 

From Figure 9 and Figure 13, it can be seen that the improved control torque output is smoother and more de-jittering. 

 

4.2 Six-axis parallel platform trajectory tracking 



   

To further verify the effectiveness of the trajectory tracking optimization method proposed in equation (30), the 

trajectory tracking of the 6-Dof parallel platform Adept Quattro650HS was carried out using a joint simulation of v-rep 

platform and MATLAB. This experiment requires the robot moves from (14.27mm, -18.68mm, -86.65mm) to (13.46mm, 

-106.6mm, -99.05mm) within 30s. Some of the data shown in Table 4 were obtained according to the kinematic equation 

(24) in Section 3. The geometric parameters of the parallel platform are given in Table 5. Since the time variation of 

( , )f x t  and ˆ( , )g x t  in equation (25) are unknown, the output of RBFNN are used to approximate, the trajectory tracking 

performed by the conventional RBF neural network for the robotic arm end-effector is compared with the adaptive 

radial-based neural network discriminative control law proposed in Section 3. 

 

Table 4 Example of partial training set data 

J1 J2 J3 J4 J5 J6 x y z 

1.653 0.561 0 1.850 0.565 0.714 0.135 -1.052 -0.981 

0.175 1.124 0.339 0.105 1.143 0.698 0.141 -0.526 -0.887 

1.858 0.509 0.798 1.558 0 0.655 0.136 -0.806 -0.905 

0.652 5.587 3.704 0.033 4.112 1.704 0.137 -0.753 -0.891 

2.281 0.486 4.143 0 1.193 0 0.139 -1.019 -0.953 

 

Table 5 The geometric parameters 

platform parameters values 

Radius of the outer circle of the moving platform 0.20m 

Moving platform short side distance 0.10m
 

Radius of external circle of static platform 0.40m
 

Static platform short side distance 0.20m
 

Upper linkage length 0.30m
 

Lower linkage length 0.50m 

Moving platform quality 30kg 

Upper linkage mass 5kg 

Lower linkage mass 10kg 

Moving platform inertia matrix /(kg·m2)  1,1,1.5diag
 

Upper linkage inertia matrix /(kg·m2)  0.5, 0.5, 0.1diag  

Lower linkage inertia matrix/(kg·m2)  0.8, 0.8, 0.2diag  

 

Since each axis of the parallel robot has the same structure, a decentralized control strategy is used for trajectory 

tracking on a single axis, and the mathematical model of the single channel can be expressed as a transfer function: 

( )
( )

tK L
G s

s Js B


=

+
 

where L denotes the lead of the screw, 1 2J J J= + is the AC servo motor torque constant, 1J
 
is the motor rotational 

inertia, 2J is the screw rotational inertia, the specific values are shown in Table 6. 

Taking 3 1
1 2( , ) 1.0 10 5.0 10f x t x x= −  −  , ( , ) 2g x t = , and the simulation experiments do not consider the effect of 

friction on the system. The number of nodes in hidden layer of the RBFNN is 5, with Gaussian basis function  

parameters: b=3.0,  

Table 6 Controller parameters 

Parameter value 

L  0.20m 

tK  0.90m 

1J  6.0×10-4kg/m2 

2J
 

9.0×10-4kg/m2 

B
 

5.0×10-3N·m·s/rad 

v
K

 
 10,10diag  


 

5.0 



  

The trajectory position tracking and its errors are shown in Figure 14 and Figure 15. 

   
(a)                                        (b)                                            (c) 

Figure 14 motion process ((a)Starting position; (b) Tracking Process; (c)arriving endpoint)   

 
(a)                                                               (b)                                                            (c) 

 
(d)                                                              (e)                                                               (f) 

Figure 15 Trajectory tracking for each joint ((a)-(f) link 1-link6) 

From the six branch trajectory tracking in figure 15, it can be seen that the two algorithms above can achieve 

infinitesimal steady-state tracking error, but the whole tracking process of the robot arm under the RBF neural network 

sliding mode adaptive control is smoother, the velocity curve is smooth without abrupt changes and inflection points, 

and the motion of the robot arm end-effector is smoother, which improves the response time of the control system and 

further solves the problems faced by the robot arm in practical applications, such as severe hand jitter during start and 

stop and the lack of accuracy of the robot arm end reaching the specified position. 

5 Conclusion 

In this paper, an adaptive control method has adopted by combining the RBF neural network and sliding mode control 

for the two-link manipulator and six-axis parallel mechanical platform with uncertainty, respectively. the RBFNN is used 

to approximate the equivalent part of the sliding mode control, which greatly reduces the influence of the initial number 

of hidden nodes and parameters of the RBFNN on the convergence speed of the system. The RBFNN is combined with 

the sliding mode control to overcome the shortcomings such as the dependency of sliding mode control on system model, 

and a lack of methods of systematically determining the system control parameters, and the model obtained by using this 

algorithm is insensitive to the initial parameter conditions, which approximates the real system well and ensures the 

stability and robustness of the system under the conditions of disturbances, quality changes, and model errors. 

Additionally, the control laws is derived by the Lyapunov approach to guarantee the globally stability. At last, based on 

the analysis on the dynamic model, the simulation is performed by MATLAB. Its results are compared with 

conventional RBFNN controller to exhibit the efficiency of the proposed approach with the uncertainties, and the 

robustness. The algorithm is also effective when applied to other nonlinear systems. There are two main areas of future 

work: 



   

(1) To study and construct S-functions for complex control laws to facilitate debugging of the system and reduce the 

simulation effort. 

(2) To combine PID control with fuzzy control and RBF neural network to realize the adjustment of RBF neural network 

by using the good convergence of fuzzy control and the advantage of operation on fuzzy quantities and the self-learning 

and self-adaptive property of neural network. 
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