
P
os
te
d
on

22
F
eb

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
67
70
47
63
.3
55
49
07
2/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Discrete and solitons-like modes as nonlinear dynamics in

microtubules based on an improved longitudinal u -model

S. E. Mkam Tchouobiap1, R. J. Noumana Issokolo2, and F. Naha Nzoupe2

1University of Buea
2Universite de Yaounde I

February 22, 2023

Abstract

In the present work, we focus on the longitudinal model of microtubules (MTs) proposed by Satar i c et al. [Phy. Rev. E

48, 89 (1993)], that consider cell MTs to have ferroelectric properties, i.e., a displacive ferro-distortive system of dimers and

usually referred to as u-model of MTs. It has been shown that during the hydrolysis of GTP into GDP, the energy released is

transferred along the MTs trough kink-like solitons. Substantially, we propose to theoretically investigate the dynamic of MTs

by intrinsically taking into account the effect of the oriented molecules of polarized cytoplasmic water and enzymes surrounding

the MT. In this regards, we introduce a cubic nonlinear term in the electric potential characterizing the polyelectrolyte features

of MTs and show that in addition to the kink and antikink solitons, asymmetrical bright and dark solitons, and discrete modes

can also propagate along the MTs. Theses results are supported by numerical analysis. The investigation shows us that the

nonlinear dynamics of MTs is strongly impacted by the intrinsic electric field, the polyelectrolyte and the viscosity effects.

Moreover, new solitons and discrete solitary modes may help to find new phenomena occurring in the microtubulin systems.
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posed by Satarić et al. [Phy. Rev. E 48, 89 (1993)], that consider cell MTs to have

ferroelectric properties, i.e., a displacive ferro-distortive system of dimers and usually

referred to as u-model of MTs. It has been shown that during the hydrolysis of GTP

into GDP, the energy released is transferred along the MTs trough kink-like solitons.

Substantially, we propose to theoretically investigate the dynamic of MTs by intrinsi-

cally taking into account the effect of the oriented molecules of polarized cytoplasmic

water and enzymes surrounding the MT. In this regards, we introduce a cubic nonlin-

ear term in the electric potential characterizing the polyelectrolyte features of MTs

and show that in addition to the kink and antikink solitons, asymmetrical bright and

dark solitons, and discrete modes can also propagate along the MTs. Theses results

are supported by numerical analysis. The investigation shows us that the nonlinear

dynamics of MTs is strongly impacted by the intrinsic electric field, the polyelec-

trolyte and the viscosity effects. Moreover, new solitons and discrete solitary modes

may help to find new phenomena occurring in the microtubulin systems.

Keywords: Microtubules, modified longitudinal u-model, polyelectrolyte and viscos-

ity effects, ordinary differential equation, solitons, discrete modes

a)Electronic mail: remi.issokolo@univ-yaounde1.cm
b)Electronic mail: mkam.tchouobiap@ubuea.cm (Corresponding author)
c)Electronic mail: fernand.naha.nz@gmail.com

1



I. INTRODUCTION

Microtubules (MTs) that are intensively described in the literature1–30 are ubiquitous in

all eukaryotic cells; and their association with microfilaments and actin filaments form the

cell’s cytoskeleton which is a network of long protein fibers that compose the structural

framework of the cell. MTs are cylindrical-like assembly of a set of tubulin proteins trough

the formation of 13 longitudinal protofilaments (PFs) covering its cylindrical wall, that has

an outer and inner radii of 25 nm and 15 nm, respectively, and each PF is a string of proteins

composed of α-β tubulin heterodimers1–7. During the mechanism of formation of MTs, there

is a continuous binding of molecules of tubulin which is made possible by the guanosine

triphosphate (GTP) hydrolysis molecule to the guanosine diphosphate (GDP) molecule and

accompanied by a continuous high consumption of energy, making this process dissipative as

their self-organization is energy-intensive8–10. Therefore, from the structural and functional

characterization, MTs can be regarded as reaction-diffusion systems, and as such they are

very dynamic tubulin dimers’ polymers associated in a chain-like manner4,7–12.

Also, MTs appear as a good candidates for dynamic information processing as it was

demonstrated that neuronal MTs are fundamentally responsible for storage, processing, and

transduction of biological information in a brain2,13–15. More particularly, there are evidences

that the cytoskeleton polymers could store and process information through their dynamic

coupling mediated by mechanical energy, and mechanical properties of MTs involving bend-

ing or buckling MTs are largely responsible of most of their biological functions16–21. Beside

their mechanical role as a part of the cytoskeleton, MTs serve as roads for multiple motor

proteins (dynein and kinesin) moving along MTs for microtubule-based transport in the

form of cargo in-vivo molecules to specific synapses and locations2,22–26.

On the other hand, MTs are known to undergo a tread-milling phenomenon5,11–17. In

this regards, as far as their structure polarities are concerned with positive and negative

ends, they undergo various activities of rapid polymerization due to their assembly in the

positive (+) end, and depolymerization due to their disassembly in the negative (-) end5,16,17.

Moreover, MTs control the internal organization of the cells and their shapes. They also

undergo various activities such as the intracellular transport of biological materials, cellular

mobility, cytoplasmic transport and mitosis18,27. Hence, it is still crucial to have a panoramic

understanding of their mechanisms.
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Indeed, taking into account the strong intrinsic nonlinear complex interactions in MTs

such as their non-equilibrium dynamic has led to the development of mathematical models

supported by theoretical analysis to understand the intrinsic properties and behaviors of

the PFs. In this regards, following various purposes associated with the excitability and

the propagation of nonlinear ionic waves in MTs, some theoretical studies have considered

electrophysiological features of MTs, and modeled the MTs as an electric circuit with non-

linear resistance28–30. For example, an existing electrical model was upgraded to study the

ionic currents propagating in narrow layer along MTs29, while another electrical model was

proposed and applied for the investigation of the amplification, infratrasmission and supra-

transmission of electrical signal in MTs30. For the later model, the system was found to

increase significantly the amplitude of the input signal, thus confirming some known experi-

mental results. In addition, considering the capability of the PFs to behave like an excitable

structure, another electrical model was also proposed that encapsulate various excitability

features of PFs, and it conjectures that the study could be of great interest in the description

of the developmental and informative processes occurring on the subcellular scale28.

On the other hand, in various studies regarding the nonlinear dynamics of a PF associated

with nearest neighbors interactions, the generalized mathematical model used for the longi-

tudinal displacement of MTs namely the u-model, first proposed by Satarić et al11 and later

on used in various works10,22–24,31, is mainly associated with the longitudinal displacement

of a dimer at a given position n, un, the kinetic energy of the dimer, an harmonic nearest-

neighbor interaction potential, a site potential composed with a double-well potential of

φ4-type, a linear electric potential, and a viscous force10. The given equation takes into

account substantially the effect of dispersion, viscous dissipation and nonlinearity to study

the energy propagation in the interesting assembly and disassembly behavior of MTs. Using

some existing mathematical tools, various authors have proposed different solutions describ-

ing the dynamics of MTs in terms of tanh- and cotanh-functions22,23, sech-function10,19, and

exp-function25. However, Zeković et al26 showed the possibility of using Jacobi elliptic func-

tion to obtain analytical solutions for the given model, by presenting the link between Jacobi

elliptic functions and hyperbolic functions32,33.

In the present work, we consider the polyelectrolyte features of MTs to propose a modified

u-model describing the nonlinear dynamics of MTs. It as been shown that many external

factors such as gravity, temperature, magnetic field and electromagnetic field, influence the
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assembly and disassembly of PFs. In the same vein, considering the intrinsic electric field,

as well as the ferroelectric properties of the dimer that play a crucial role in the propaga-

tion direction of the energy excitation from the hydrolysis11, we propose to include a cubic

term in the electric potential that account for the nonlinear intrinsic electric interactions

in the cell. In order to proceed to the analyses of the given mathematical model, we ap-

ply a method proposed by Samsonov34 to study some features associated with the energy

propagations in MTs. Trough that method, we observe the propensity of MT’s assembly

to favor the emergence of various localized patterns including localized discrete modes, and

asymmetrical bright and dark solitons, whose generation and evolution are influenced by the

cooperative nonlinear interaction of the intrinsic electric field, the polarized solvent (water)

and the viscous force. These solutions were obtained using exp-function, Jacobi elliptic func-

tions, and Weierstrass ℘-function associated with Jacobi elliptic functions, through various

transformations that can be found in various documents and textbooks32–39.

The present paper is organized as follows. In section II, we introduce the improved longi-

tudinal u-model for MTs and present the theoretical framework or mathematical procedures

necessary to obtain the relevant equation of motion, the crucial differential equation, and

the solutions of the nonlinear dynamical model. Section III focuses on the analyses and

discussions of the obtained solutions. Finally, section IV is devoted to concluding remarks.

II. MATHEMATICAL MODEL AND THEORETICAL FRAMEWORK

Considering the dynamics of the dimers in the longitudinal direction expressed by the

u-model, the nonlinear dynamical equation to describe the oscillations of MTs is presented

in the system Hamiltonian that has the form10

H =
∑
n

m

2
u̇n +

K

2
(un+1 − un)2 + V1(un) + V2(un), (1)

where the dot represents the first derivative with respect to time, m is the mass of the dimer,

k stands for an effective intra-dimer stiffness parameter or dimer-dimer bonding interaction

parameter within the same PF, and the integer n denotes the position of the considered

dimer in the PF11,19,23. Hence, it is obvious that the first term represents the kinetic energy

of the dimer at position n, while the second one characterizes the potential energy due to

the chemical interactions between the neighbouring dimers belonging to the same PF and
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where, obviously, the nearest neighbour approximation is considered. However, as an impor-

tant part of the Hamiltonian here and a source of nonlinearity, the last two terms represent

the potential energies associated with each dipole and due to the overall effects (chemical

influences) of all surrounding dipole dimers and of the polarized cytoplasmic water molecules

and enzymes surrounding the MT, in one hand, and to the nearly uniform intrinsic electric

field at the site n generated by all other tubulin dimers including the dimers belonging to

the neighbouring PFs and polarized cytoplasmic water, on the other hand; as dimers are

electric dipoles existing in the field of all other dipoles. Indeed, the presence of the oriented

molecules of cytoplasmic water and enzymes surrounding the MT was experimentally ob-

served using electron microscopy technique40, which imply their plausible participation or

responsibility in the nonlinear dynamics and stability of MTs which are crucial for biological

systems, in numerous cellular activities such as growth and division known to be of essential

for the living state of MTs, and in a number of mechanisms such as information processing

(information transfer and storage in brain microtubules) which is the fundamental issue

for understanding MTs2,13,41,42. Therefore, we also assume here that a MT together with

the polarized cytoplasmic water surrounding it, induces a nearly uniform intrinsic electric

field parallel to its axis and that the additional potential due to internal electric field and

surrounding polarized water, which is associated to each dipole is nonlinear in nature. More-

over, V1(un) is a generalized symmetrical double-well potential of φ4-type that displays the

overall effect of the surrounding dimers on a dipole at a chosen site n, and V2(un) is the

additional potential associated with each dipole dimer and due to the intrinsic electric field,

and the surrounding polarized water and motor proteins in microtubulin systems. Therefore,

in the present analysis the energy potentials V1(un) and V2(un) are expressed as

V1(un) = −1

2
Au2n +

1

4
B u4n, and V2(un) = −Cun − ε u3n, C = qE, (2)

where A, B and ε are positive model parameters that should be determined or, at least,

estimated14, although A is typically a linear function of the temperature11 that may change

sign at an instability temperature Tc; q represents the excess charge within the dipole while

E denotes the intrinsic electric field strength directed along the longitudinal axis of the MT

cylinder, with q > 0, and E > 0. It is important to precise that E is induced by all dimers

including the dimers from the neighboring PFs. Figure 1 displays the potentials V1(un)

(upper graph) and V2(un) with and without the added term (lower graphs). As the potential
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V1(un) takes into account the quantum chemistry considerations through the chemical effect

of all other dimers11,19, its shape for an isolated single-dimer is shown in figure 1 (upper

graph), where it appears that the potential actually has two degenerated minima separated

by a potential barrier. Figure 1 (lower graphs) shows that V2(un) with ε 6= 0 possesses a

local extrema and, to the best of our knowledge, the association of both potentials results

in the lifting of the degeneracy (breaking of symmetry), leading to an asymmetric double-

well potential. The nonlinear character of V2(un) suggests beyond expectations that various

excitability phenomena can be generated regarding the energy propagation within MTs,

as can be seen in figure 1 (lower graph (b)). By introducing generalized coordinates qn
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FIG. 1. Profiles of the symmetrical double-well potential of φ4-type V1(un) (upper graph) and of

the additional potential V2(un) without (a) and with (b) additional term (lower graphs), associated

with each dipole dimer as a function of the longitudinal displacement of a dimer at a given position

n, un. The model parameters are selected as follows: A = 1.0 N[un]−1, B = 0.6 N[un]−3, qE =

3×10−7 N, ε = 0 (a) and ε = 5 ×10−7 N[un]−2 (b). The unit of x-axis graduated by un is [un]

while the unit of y-axis is one N[un].

and pn, defined as qn = un, and pn = mu̇n, and assuming the validity of the continuum

approximation (long wavelength limit) un(t)→ u(x, t)10, which eventually allow the Taylor
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series expansion of terms un±1, i.e.,

un±1 → u± ∂u

∂x
l +

1

2

∂2u

∂x2
l2, (3)

the following appropriate continuum dynamical equation of motion can be obtained:

m
∂2u

∂t2
−Kl2∂

2u

∂x2
+B u3 − ε u2 − Au− qE + γ

∂u

∂t
= 0, (4)

which is a nonlinear partial differential equation, and where in order to derive a realistic equa-

tion, we have further adequately take into consideration damping (viscosity) effects, through

the introduction of a viscosity force Fν = −γ ∂u
∂t

, with γ denoting the viscosity (damping)

coefficient, into the equation of motion11,23. As well-known, Eq. (4) can be transformed

into an ordinary differential equation (ODE) by introducing a unified variable along with a

dimensionless function. Accordingly, by setting the following suitable transformations

z = kx− ω t and u =

√
A

B
ψ, (5)

where k and w are constants representing the wave number and the frequency, respectively,

with z denoting a unified variable; the function u ≡ u(x, t) = u(kx−ω t) ≡ u(z) is a traveling

wave, while ψ is a dimensionless function representing an elongation of the oscillating dimer

at position x and at time t. More interesting, Eq. (4) can be transformed into the following

ODE

αψ′′ − ρψ′ − ψ − β ψ2 + ψ3 − σ = 0, (6)

where the prime sign denotes the first derivative with respect to the unified variable z (i.e.,

ψ′ ≡ ∂ψ
∂z

), and which contains the following four dimensionless new parameters α, ρ, β and

σ underpinning the physics of the relevant model as follows:

α =
mw2 −Kl2k2

A
, ρ =

γw

A
, β =

ε

A
√

A
B

, and σ =
qE

A
√

A
B

. (7)

Indeed, it is noteworthy that as expressed in Eq. (7), the parameter α accounts for the

competitive interaction between the kinetic energy of the dimers and the relevant chemical

bounds, while the parameter β accounts for the polyelectrolyte features of MTs. Likewise,

the parameters ρ and σ are proportional to viscosity and electric field strength, respectively.

All of these effects are very important as they are crucial for nonlinear dynamics and stability

of MTs, and for understanding mechanisms such as dynamical information processing, and
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cellular activities including cell growth and division in MTs2,11–19,43,44. Moreover, Eq. (6) is

a nonlinear dispersive (even order term) and dissipative (odd order term) wave propagation

ordinary differential equation (ODE) and in the present, we will use a mathematical approach

proposed Samsonov34 to find explicit solutions of this ODE. This method has the advantage

to use simple transformations that transform Eq. (6) to an equation solvable using Jacobi

elliptic and Weierstrass ℘-functions, without considering the Painleve properties45 of Eq.

(4). In this regards and for the sake of simplicity, we first rewrite Eq. (6) as follows:

ψ′′ − a0ψ′ − b1 ψ − b2 ψ2 + b3 ψ
3 − b0 = 0, (8)

where the coefficients a0, b1, b2 and b3 are defined as

a0 =
ρ

α
, b0 =

σ

α
, b1 =

1

α
, b2 =

β

α
, and b3 =

1

α
, (9)

assuming that α 6= 0. Also, according to the mathematical basis for our theoretical frame-

work procedures and in order to practically address Eq. (8), it is convenient to introduce

new dimensionless functions. Hence, by considering and performing the following transfor-

mations

φ(ψ) =
1

ψ′(z)
, (10)

and

η′ =
1

ξφ(η)
, (11)

into Eq. (8), and after applying appropriate derivations and computations while keeping in

mind that: ψ = ψ(z) such that ψ′ ≡ ∂ψ
∂z

, φ = φ(ψ) such that φ′ ≡ ∂φ
∂ψ

and η = η(ξ) such

that η′ ≡ ∂η
∂ξ

, we can straightforwardly obtain the following convenient equation

ξ2η′′ + γ3η
3 − γ2η2 − γ1η − γ0 = 0, (12)

where the coefficients are defined as

γ0 =
σ

ρ
, γ1 =

α

ρ2
, γ2 =

βα2

ρ3
, γ3 =

α3

ρ4
, (13)

provided that ρ 6= 0, and where the functions ψ(z) and ξ(z) have to be determined. Before

we proceed, let us mention that as important point in our treatment, one of the main

transformation used to obtain Eq. (12) is given by the relation

η =

∫
a0 dψ, (14)
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where the parameter a0 is given by Eq. (9). However, one of the major difficulties of this

mathematical method lies in the choice of the appropriated ansatz, since the ansatz varies

with the equation form. At this point, a solution of Eq.(12) for η can be constructed by

assuming it to be in the form

η(ξ) = CξpF (y) +D, y = ξq, (15)

where the parameters C, p, D and q, and the unknown functions ξ = ξ(z) and F = F (y)

should also be determined. In addition, it should be emphasized here that we should plug

the expression of the trial function η = η(ξ) given in Eq. (15) into Eq. (12), which brings

about the following equation:

q2 Cξp+2qF ′′ + γ3C
3ξ3pF 3 − γ0 − γ1D − γ2D2 + γ3D

3

+ [2pq + q(q − 1)]Cξp+qF ′ + (−γ2 + 3γ3D)C2ξ2pF 2

+
[
p(p− 1)− γ1 − 2γ2D + 3γ3D

2
]
CξpF = 0. (16)

Thence and according to the theoretical method, the ansatz for the solution η must be con-

sistent with the series expansion of the above equation in powers of the function F = F (y),

adopted in Eq.(15), and its derivatives34,35,45. Accordingly, by eliminating F ′ and excluding

the lower degrees of F up-to the second order, which is satisfied if all the corresponding

coefficients are simultaneously equal to zero. This annihilation of terms brings about the

following system of four equations:

Order F 0 : −γ0 − γ1D − γ2D2 + γ3D
3 = 0, (17)

Order F 1 : p(p− 1)− γ1 − 2γ2D + 3γ3D
2 = 0, (18)

Order F 2 : −γ2 + γ3D = 0, (19)

Order F ′ : 2pq + q(q − 1) = 0. (20)

Let us notice that the above system of equations induces only implicit relations between the

parameters. Therefore, in order to proceed further in our investigation, and for the sake of

convenience we assume that q 6= 0, and for autonomity35 we set the following condition

p =
2

n+ 3
=

1

3
, (21)

where n is the highest degree of the polynomial (n = 3). Accordingly, by using Eqs. (19) and

(20) and the value of p obtained previously (21), we obtain the expressions of parameters D
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and q given by

D =
γ2
γ3
, (22)

and

q = 1− 2p =
1

3
. (23)

Therefore, Eq. (15) can finally be transformed in the following simplest form

F ′′ + 9C2γ3 F
3 = 0. (24)

In addition, by setting C2 = − 2
9 γ3

, Eq. (24) can now takes the form of a simplified ordinary

differential equation given by:

F ′′ − 2F 3 = 0. (25)

In this oder of ideas, we note here that by using Eq. (17), we can derive the crucial condition

γ1 γ2 = -γ0 γ3 that will helps us to express C2 without the minus sign. Of course, this does

not affect the final result. Moreover, by multiplying Eq. (25) by F ′ and integrating we

obtain the following relation

F ′2 = F 4 +R0, (26)

where R0 is an arbitrary constant of integration. This is a crucial equation whose solution

will explain nonlinear dynamics of MTs. As far as Eq. (26) is concerned, the divergence of

the solution F can only be prevented by finding the exact solution to Eq. (26) in z . In this

regards, we can derive corresponding expressions for the functions ξ, y and η. Alternatively,

according to Eqs. (10) and (11), we can finally obtain the equality a0 ξ(z) ∂ψ
∂ξ

= ∂ψ
∂z

, and

then by solving the resulting set of equations recursively and by using Eq. (15), it results

to the final expressions of the functions ξ(z) and y(z) given, respectively, by

ξ(z) = exp(a0z), (27)

and

y(z) = exp

(
1

3
a0 z

)
. (28)

Finally, the solution of Eq. (26) must be obtained by integrating Eqs. (27) and (28) into

the said solution, and different solutions may be obtained from different conditions on R0.

By contrast, from Eq. (15), we obtain a general solution of the function η(z) given by

η(z) =

√
2γ1γ2
9 γ0

exp

(
1

3
a0 z

)
F (z) +

γ2
γ3
, (29)

10



provided the expression of the continuous function F will be obtained, and where γ3 has

been replaced in C2 by a new expression obtained above. In the same vain, using Eq. (14),

we have after integration that η = a0 ψ. Hence, following the procedure explained above

and after some simple algebra with Eqs. (27), (28), and (29), we straightforwardly obtain

the final expression for ψ as:

ψ(z) =
α

ρ

[√
2βα3

9σρ4
exp

( ρ

3α
z
)
F (z) +

βρ

α

]
, (30)

provided an expression of α as a function of ρ and β, obtained by solving Eq. (18), is given

by

α =
2ρ2

9χ
, χ = β2 − 1 6= 0. (31)

It is relevant to stress that this expression of α that depends on ρ and β must be positive

(β > 1), as imposed by the presence of the expression of its square root in Eq.(30). Obviously,

this interesting solution Eq. (30) is derived in terms of the original parameters for more

clarity.

III. RESULTS AND DISCUSSION

As generally known, solving Eq.(26) can provide a richness of wave solutions depending

on the mathematical tools explored. A part of the difficulty stems from the fact that reso-

lution of such equation requires specific considerations or conditions which involves various

technical difficulties coming from the fact Eq.(26) is an ordinary differential equation ODE.

Then, the possible solutions of Eq.(26) can be obtained in terms of exponential functions,

Jacobi and Weierstrass elliptic functions32–39. In this regards and to overcome the techni-

cal difficulty, we shall not be so much concerned with technical details and all the tedious

derivations. Instead, two sets of solutions are considered, depending on the condition on

arbitrary constant of integration R0, i.e., the conditions R0 = 0 and R0 6= 0, respectively,

that we will concretely analyze hereafter.

Moreover, Eq. (6) has been analytically addressed using the mathematical method men-

tioned above with a couple of conditions, and completely different solutions have been de-

rived. Therefore, in what follows and in order to proceed further, we will investigate and

analyze the obtained solutions and perform numerical analysis using the Runge Kutta 4
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scheme, followed by a numerical simulation of their time evolution, taking into account the

expression of α given by Eq. (31).

Now, by setting the constant of integration R0 = 0 and after appropriated calculations,

one can write down the explicit form of one soliton solutions in terms of exponential func-

tion36, as:

ψ1(z) =
α

ρ

−
√

2βα3

9σρ4
exp

(
ρ
3α
z
)

exp
(
ρ
3α
z
)

+ z0
+
σρ

α

 . (32)

More precisely, this solution is reminiscent to a tanh-function solution24,46–49.

Figure 2 presents the evolution of the solution ψ1(z) predicted by Eq. (32) as function

of the unified variable z, in the form of a localized antikink-solitons, for a fixed value of

parameter σ (σ = 0.3), and for different values of parameters β, ρ and the initial shift z0.

Following the antikink profiles, figure 2 suggests that the initial location of the antikink-

soliton depends strongly on the initial shift z0. Otherwise, depending of the values of the

other parameters σ, β and ρ, the antikink-soliton profiles manifest amplitude and waveform

variations, and also present the important influence of the damping effect.

Accordingly, as we can see in figure 2 (a) where the solution is shown for four arbitrary

values of the parameter z0, the antikink-soliton location depends on the value of z0 which is

the initial shift that defines a position of the center of the antikink. Also, it is obvious that

the intensity of the antikink-soliton increases with increasing β, as clearly seen in figure 2

(b) in comparison with figure 2 (a) where β = 1.7 and 1.5, respectively. On the other hand,

we see that the damping effect on the antikink’s amplitude and profile is highlighted with

increasing ρ as shown in figures 2 (c) and (d) for ρ = 0.5 and ρ = 1.5, respectively. Among

other things, it appears that the parameter β is an important factor in the rapid propagation

of solitonic waves and in the very interesting assembly and disassembly behaviour in MTs, as

can be seen from figure 2 (b). Therefore, all these aspects noticed and illustrated in Fig. 2,

sufficiently demonstrate that in addition to kink-like domain walls, the antikink dynamics

can be viewed as bits of information propagating along MTs11,24. This form of dynamics

governed by antikink type soliton solutions is known as anterograde mechanism for the of

movement of motor proteins12,50–52.

On the other hand, by considering the constant of integration R0 6= 0, a careful integration

12
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FIG. 2. Waveform profiles of traveling antikink-soliton solution ψ1(z) predicted by Eq. (32) as

function of the unified variable z for σ = 0.3, and different values of parameters ρ, β and z0. (a) ρ

= 0.5, β = 1.5 and the initial shift z0 = 0.1, 0.01, 0.001, 0.0001, respectively; (b) ρ = 0.5, β = 1.7

and z0= 0.1; (c) ρ = 0.5, β = 1.5, and z0 = 0.1; and (d) ρ = 1.5, β = 1.5, and z0 = 0.1.

of Eq. (26) can lead to a solution ψ in terms of the Jacobi elliptic functions32–35,37, viz,

ψ2(z) =
α

ρ

√2βα3

9σρ4
exp

(
1

3

ρ

α
z

) λ
[
1 +
√
δ tn

(
exp

[
1
3
ρ
α
z
]
, κ
)]

1−
√
δ tn

(
exp

[
1
3
ρ
α
z
]
, κ
) +

σρ

α

 , (33)

where tn() is the Jacobi elliptic function with modulus κ, and the new parameters λ, κ, and

δ can be expressed as

λ = 4
√
R0 = R

1/4
0 , κ2 =

8
√

2

(2 +
√

2)2
, δ =

2−
√

2

2 +
√

2
. (34)

Quite remarkably here, the quantities κ and δ turn out to be non arbitrary constants, i.e.,

fixed. In fact they depend on the defined physical parameters of the model26,32,33. Before

we proceed, we want to give some additional remarks regarding the above obtained solution

given by Eqs.(33) and (34). Of course, let us notice that for the sake of simplicity the free

parameter λ is assumed to be non negative, provided that the constant of integration R0 is

undeniably a positive constant, and the Jacobi elliptic function tn ≡ sn/cn, with sn and cn

representing standard Jacobian elliptic functions with modulus κ32,33.
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Figures 3 and 4 display the analytical (dots) and numerical (solid lines) localized patterns

of discrete modes as function of the unified variable z, and their evolution in the x− t plane

for four different values of the parameter β. Accordingly, the discrete modes are spatially

localized and their lifetime depends on the cooperative interactions between the parameters

β and ρ, as can be seen in Figs. 3 and 4. More precisely, the 2-D representation of these

discrete modes (left graphs) and their propagations with time (right graphs) for different

values of β indicate that the initial localized discrete patterns persist as time evolves, illus-

trating the fact that the behavior of the localized discrete modes in MTs is acceptable as

the soliton’s, as depicted in Figs. 3 (a)-(d) and 4(a)-(d). Also, the study provides strong

evidence of the influence of the parameter β on the discrete pattern behavior through the

mode profiles, although it is apparent that the amplitudes of the discrete modes seem not

altered as the waves are propagating, demonstrating the stability of the localized discrete

modes, as shown in Figs. 3(a)-(d) and 4(a)-(d). Among other things, from the results it is

evident that recurrence is observed as time passes and such discrete modes are intrinsically

generated as a response to the combined effects of spatial discreteness and nonlinearity46.

However, from solution (33), these localized discrete modes are generated in complex coop-

erative interaction incorporating ferroelectric processes, dispersion, dissipation, discreteness

and nonlinearity, and it appears that these modes are structurally and symmetrically non

uniform, as during their generation, their spatial profile and symmetry change with β in the

course of propagation trough the tubulin-heterodimers lattice.

Most interestingly, taking the initial value of β in the analysis to be β = 1.10, it is shown

that a slight variation of its value, i.e., β = 1.10, 1.11, 1.12 and 1.13, respectively, has a

direct incidence on the modes symmetries and a relative impact on their amplitudes (see

figures Figs. 3(a), 3(c), 4(a) and 4(c)).

On the other hand, and from another perspective, by considering Weierstrass ℘-function and

taking R0 6= 0, an integration of Eq. (26) can yield to another general solution ψ expressed

as follows:38,39,45

ψ3(z) =
α

ρ

[√
2βα3

9σρ4
y
℘′(y, g2, 0)

℘(y, g2, 0)
+
σρ

α

]
, (35)

where g2 is a free parameter, y is a function defined by Eq. (28) and ℘′ denotes the first

derivative with respect to y. The Weierstrass ℘−function can be associated to Jacobi elliptic

function considering different values of g2
45, which will lead to soliton-like solutions. In order

14



-10 -5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
(a)

Numerical
Analytical

-10 -5 0 5 10
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4
(c) Numerical

Analytical

FIG. 3. The analytical (dots) and numerical (solid lines) generation of localized discrete modes

in the MTs, solutions of Eq. (6), as function of the unified variable z (left graphs) and their

propagation (right graphs) for β = 1.10 (a) and (b), respectively, and β = 1.11 (c) and (d),

respectively. The analytical solution is predicted by ψ2(z) (Eqs. (33) and (34)). The other

parameters are σ = 0.3, λ = 0.1, ρ = 0.5 and κ = 0.98.

to proceed further with our investigation, we can distinguish the following two cases: g2 < 0

and g2 > 0. Accordingly, when g2 < 0, the Weierstrass elliptic function ℘(y, g2, 0) can be

expressed as follows38,39

℘(y, g2, 0) = ℘(y) = a+ 2 asn−2
(√

2 a y, κ
)
, (36)

where κ is the modulus of the Jacobi elliptic function sn, with 0 ≤ κ ≤ 1, and a is an

appropriate fundamental function of g2
32.

In Fig. 5, we display in this case the profile of the associated soliton-like solution obtained

numerically and analytically using ψ3(z) and the solution (36) as as function of the unified

variable z, and achieve its evolution (propagation) in the x − t plane for chosen values of

model parameters defined above, i.e., ρ = 0.5, σ = 0.3, β = 1.15, κ =1 and a = 0.5. Here,

we observe that the solution is a space-localized pattern of soliton-like profile emerging as

an asymmetric bright solitary wave, as depicted in Fig. 5(a). Also, its evolution in the x− t

15



-10 -5 0 5 10
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4
(a) Numerical

Analytical

-10 -5 0 5 10
0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34
(c) Numerical

Analytical

FIG. 4. The analytical (dots) and numerical (solid lines) generation of localized discrete modes in

the MTs, solutions of Eq. (6), as function of the unified variable z (left graphs) and their evolution

in the x− t plane (right graphs) for β = 1.12 (a) and (b), respectively, and β = 1.13 (c) and (d),

respectively. The analytical solution is given by ψ2(z) (Eqs. (33) and (34)). The other parameters

are σ = 0.3, λ = 0.1, ρ = 0.5 and κ = 0.98.

plane illustrates the persistence of the initial bright solitonic pattern as time evolves, which

demonstrate the stability of the solution, as can be seen in Fig. 5(b).

In the same order, when g2 > 0, the Weierstrass elliptic function ℘ can now be expressed

as38,39

℘(y, g2, 0) = ℘(y) =
1 + cn(y, κ)

1− cn(y, κ)
, (37)

where cn is a well-known Jacobi elliptic function with modulus κ (0 ≤ κ ≤ 1) and y is still

defined by Eq. (28).

Fig. (6) presents the profile of the associated soliton-like solution obtained numerically

and analytically using the solution (37) as function of the unified variable z, and its propa-

gation in the the x− t plane for the same chosen values of model parameters defined above,

i.e., ρ = 0.5, σ = 0.3, β = 1.15, κ =1 and a = 0.5. Accordingly, for the same chosen values

of model parameters, it appears that the solution is a space-localized pattern of soliton-like
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FIG. 5. The analytical (dots) and numerical (solid lines) generation of a localized asymmetrical

bright soliton in the MTs, solutions of Eq. (6), as function of the unified variable z (left graph)

and its evolution in the x− t plane (right graph) for ρ = 0.5, σ = 0.3, β = 1.15, κ =1 and a = 0.5.

The analytical solution is given by ψ3(z) [Eq. (35)] and Eq. (36).
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FIG. 6. The analytical (dots) and numerical (solid lines) generation of a localized asymmetrical

dark soliton in the MTs, solutions of Eq. (6), as function of the unified variable z (left graph) and

its evolution in the x − t plane (right graph) for ρ = 0.5, σ = 0.3, β = 1.15, and a = 0.5. The

analytical solution is given by ψ3(z) [Eq. (35)] and Eq. (37).

profile emerging as an asymmetric dark solitary wave, as seen in Fig. 6(a). Here again, the

propagation in the x− t plane lead to a stable solution, as can be clearly seen in Fig. 6(b).

From Figs. 5(b) and 6(b), it can be seen from the propagation of the soliton-like solutions

that the amplitude and the width of the dark and bright soliton profiles do not vary as

time evolves, which is characteristic of the stability of soliton-like solutions. According to

the parameters of MT dimers and based on the initial condition, it is apparent that local-

ized discrete and soliton-like modes are accessible as nonlinear dynamical behaviors in MTs

provided that the model parameters are fine tuned. It is worth mentioning that Figs. 5
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and 6 show the behavior of bright and dark soliton-like modes according to the sign of the

free parameter g2. Among other things, these stable soliton pulses are obtained without ne-

glecting the viscosity term, but β � ρ. Therefore, following analytical-numerical approach

interpreting this behavior, the stability of the soliton-like solutions is achieved due to the

balance between the nonlinearities. From the inital expression of α in Eq.(7), it appears

that α can be expressed as a sum of the solitonic and linear sound velocities, v1 and v2,

respectively, namely

α =
mk2

A
(v21 − v22); v1 =

w2

k2
, v2 =

Kl2

m
. (38)

Using the expressions of α in Eq.(38) and Eq.(31), we derive a relation between the solitonic

and the linear sound velocities as

v1 =
v2√

1− 2γ2

9Am2χ

. (39)

In Eq. (39), we deduce that the velocity of propagation will be supersonic if v1 > v2, i.e.,

the condition 9Am2χ > 2γ2 must hold. In both Figs. (5) and (6), an observation of their

solutions suggests that the width of the pulse is affected by the value of β, i.e, increasing the

value of β will increase the speed of propagation of the soliton as given by the expression of

v1 in Eq. (39).

Moreover, we have performed analytical of Eq. (6) using the obtained solutions and

numerical analysis using the Runge Kutta 4 scheme, followed by a numerical simulation of

their time evolution, taking into account the expression of α given by Eq. (31), and we

observe a good agreement between the analytical and numerical analysis of the localized

stationary solutions.

More interestingly, all these various features underlying the nonlinear dynamics of MTs

can be relevant to many biological processes such as cell growth and division for which

MTs disassemble and re-assemble7,11,53,54, chemical energy transition in the process of hy-

drolysis of GTP nucleotides and microtubule motor proteins transport such as kinesins and

dyneins12,50–52, excitations and inhibition of biomembranes and neurons7,13,55, intracellular

transport of biological materials including cytoplasmic transport and transport of both pro-

teins and organelles18,27,56, cellular movements including and separating chromosomes during

mitosis and meiosis57–59, respiratory infection60, dynamic information processing including

processing, propagation, storage and transduction, of biological information in MTs2,7,13–16.
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IV. CONCLUSION

In the present paper, we proposed a modified u-model that takes into account the polyec-

trolyte features of the tubulin molecules, to study the nonlinear dynamics of MTs. In this

regards, we have introduced a cubic nonlinear term in the electric field potential of the

u-model, that account for the nonlinear electric interactions in the MT resulting from the

combined effects of the intrinsic electric field and the polarized cytoplasmic water and en-

zymes surrounding the MT. The results have shown the waves responsible for energy transfer

within tubulin dimers that are responsible for the mechanisms of assembly and disassembly

in MTs, can evolve as kink-like solitons, discrete modes and asymmetrical bright and dark

solitons. These solutions arise from the requirements that α must be positive, α 6= 0, and

β > 1 from Eq. (30). The condition on α means that the kinetic energy of the dimers is

predominant in its competitive interactions with the chemical bounds. An explanation pro-

posed by Zdravković et al22 justify this result by the fact that Mts are polymerized without

strong covalent bond. Moreover, taking β > 1 implies from Eq. (7) that ε > A
√

A
B

, Thus

the value of ε should be estimated around the values of A and B.

In spite of nonlinearities in microtubulin systems, the nonlinear dynamics MTs is found to

be governed by stable localized discrete and soliton like modes, demonstrating the complex

nonlinear dynamics of the microtubules. Also, it is interesting that the description of the

dynamics of the microtubulin system depend on applied mathematical procedures. We

guesswork that the existence of such nonlinear dynamics or quanta of energy transfer in the

form of discrete patterns and solitonic waves would offer a new view of the motor proteins

transport mechanism on the stability of MTs in numerous cellular activities such as growth

and division in microtubulin systems, and which are essential for living state.
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27J. A. Tuszyński, E. J. Carpenter, J. T. Huzil, W. Malinski, T. Luchko and R. F. Ludeña,

Int. J. Dev. Biol. 50, 341 (2006).

28P. Guemkam Ghomsi, J. T. Tameh Berinyoh and F. M. Moukam Kakmeni, Chaos 28,

023106 (2018).
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52B. Trpisova and J. A. Tuszyński, Phys. Rev. E 55, 3288 (1997).

53S. Huang and D. E. Ingber, Nat. Cell Biol. 1, E131 (1999).

54L. Margulis, L. To and D. Chase, Science 200, 1118 (1978).

55K. Kullander, Trends Neurosci. 28, 239 (2005).
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