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Abstract

In the current state of the art of process industries/manufacturing technologies, computer-instrumented and computer-controlled
autonomous techniques are necessary for damage diagnosis and prognosis in operating machinery. From this perspective,
the paper addresses the issue of fatigue damage that is one of the most commonly encountered sources of degradation in
polycrystalline-alloy structures of machinery components. It is possible to conduct in-situ detection & classification of damage
as well as an assessment of the remaining service life through ultrasonic measurements of material degradation and their
computer-based analysis. In this paper, tools of machine learning (e.g., convolutional neural networks (CNNs)) are applied to
synergistic combinations of ultrasonic measurements and images from a confocal microscope (Alicona) to detect and evaluate
the risk of fatigue damage. The database of the confocal microscope has been used to calibrate the ultrasonic database and
to provide the ground truth for fatigue damage assessment. The results show that both the ultrasonic data and confocal
microscope images are capable of classifying the fatigue damage into their respective classes with considerably high accuracy.

However, the ultrasonic CNN model yields better accuracy than the confocal microscope CNN model by almost 9%.
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Abstract In the current state of the art of process industries/manufacturing
technologies, computer-instrumented and computer-controlled autonomous tech-
niques are necessary for damage diagnosis and prognosis in operating ma-
chinery. From this perspective, the paper addresses the issue of fatigue dam-
age that is one of the most commonly encountered sources of degradation in
polycrystalline-alloy structures of machinery components. It is possible to con-
duct in-situ detection & classification of damage as well as an assessment of
the remaining service life through ultrasonic measurements of material degra-
dation and their computer-based analysis. In this paper, tools of machine
learning (e.g., convolutional neural networks (CNNs)) are applied to syner-
gistic combinations of ultrasonic measurements and images from a confocal
microscope (Alicona) to detect and evaluate the risk of fatigue damage. The
database of the confocal microscope has been used to calibrate the ultrasonic
database and to provide the ground truth for fatigue damage assessment. The
results show that both the ultrasonic data and confocal microscope images
are capable of classifying the fatigue damage into their respective classes with
considerably high accuracy. However, the ultrasonic CNN model yields better
accuracy than the confocal microscope CNN model by almost 9%.
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1 Introduction

Ultrasonic testing is a typical nondestructive method that is extensively used
for detection and evaluation of defects in mechanical structures. The accuracy
and duration of testing should be taken into consideration during the non-
destructive testing (NDT) procedure. In this context, it is well known that
ultrasonic testing is capable of accurate detection, classification. and charac-
terization of defects in mechanical structures in a timely fashion [1,2]. However,
these techniques depend on an inspector’s competence and experience. Usu-
ally, during the examination procedure of ultrasonic testing (UT), a human
operator often determines the status of tested components by evaluating the
signal features, such as the echo shape, amplitude level, and defect position.
Hence, defect characterization and identification of relevant and non-relevant
flaws using NDT are highly dependent on the (human) inspector’s skill [3].
Inspector’s errors and, distractions, such as those due to stress, may re-
sult in missing an existing defect or incorrectly identifying a false (i.e., non-
existing) defect. Therefore, the defects diagnosed in mechanical structures by
conventional NDT are often error-prone and may require an experienced and
highly skilled human inspector. To improve the NDT-based evaluation, many
industries have focused on building autonomous ultrasonic defect detection &
classification systems that could perform detection and classification of defects
in mechanical components without direct assistance of human inspectors [4].
The last three decades have seen the evolution of diagnostics of structural
damage by usage of artificial intelligence (AI) techniques. Specifically, the tools
of pattern recognition have been applied to improve the ability of Al for de-
tection & classification of fatigue damage in mechanical structures, where the
pattern of the measurements of a tested component may differ from those of
the available records of undamaged and damaged ones. Neural networks (NN)
have been widely used for ultrasonic flaw detection and several researches have
shown the capability of NN for classification. Thiago et al. [5] evaluated the
efficiency and accuracy of artificial intelligence techniques to classify ultrasonic
signals, and their model classification performance reaches 93%. Margrave et
al. [6] applied several types and configurations of the neural network to detect
flaws in steel pipes using ultrasonic signatures. Liu et al. [7] studied classifica-
tion of crack growth behavior by applying an NN on characteristic values ob-
tained from ultrasonic signals. Sambath et al. [8] built an automatic ultrasonic
flaw detection & classification model using NN, and the model performance
was improved by applying the wavelet transform. Song et al. [9] used an Intel-
ligent Ultrasonic Evaluation System (IUES) to detect and classify weldment
flaws in a real-time fashion. Drai et al. [10] classified volumetric and planar
defects by applying NN on extracted features of ultrasonic data in the time
domain, frequency domain, and discrete wavelet representations. Seyedtabaii
[11] experimented with new intelligent algorithms for classification of weld
defects using single fixed-angle ultrasonic probes. Several feature extraction
methods were discussed in [12] to classify different defects by the NN-based
method. Recently, the usage of large dimensional data is no longer an obstacle
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due to the incredible increase in computing power. Several types of research
used a fully connected (vanilla) neural network and a convolutional neural net-
work (CNN), to classify defects without extracting any features from the raw
data. Chen. Z. and his team applied CNN for fault diagnosis of an automotive
five-speed gearbox. Their proposed CNN model provides an excellent fault di-
agnosis performance, 99%.[13] Although the performance of CNN for damage
classification was reasonable well [14], the performance was checked for only
the ultrasonic signal without considering a real defect image. Therefore, as
an extension to the previously reported research, this paper is a step further
to synchronously compare the CNN performance on the ultrasonic echo signal
and real defects images. In the authors’ previous work [15], the CNN model was
developed for crack status classification, where the severity of the crack was
classified into three categories: healthy, low-risk, and high risk. The raw data
was real damage images that were taken by an Alicona confocal microscope.

Almost all of the above-mentioned research works require feature extrac-
tion from raw data by statistical and/or signal processing techniques. Although
feature extraction methods are applicable for dimensionality reduction, they
involve an exhaustive process, because of the need for careful selection of fea-
tures that must stay insensitive to the operating conditions. This paper pro-
vides a novel approach to quantify the risk of fatigue damage , independently
of human involvement, where a convolutional neural network (CNN) model
classifies the ultrasonic echo signal into three classes: healthy, low-risk dam-
age, and high-risk damage. The ultrasonic echo signal classification is based
on the damage size shown in the confocal microscope image. Therefore, this
study provides an accurate risk assessment of fatigue damage using an ultra-
sonic echo signal.

The major contributions of this paper are delineated as:

1. Development of a risk assessment and calibration procedure: The ultrasonic
echo signal are synchronized with an image from a confocal microscope,
which illustrates the state of health of the tested component.

2. Construction of a robust classification model: The ultrasonic signals are
classified using convolutional neural networks (CNNs) without using addi-
tional signal processing techniques.

3. Performance comparison: The CNN model of the ultrasonic signals is com-
pared with another CNN model by using a different database.

The paper is organized into five main sections including the present one.
The second section presents a description of the laboratory apparatus that
serves as the data generator for validation of the methodology of fatigue-
damage detection & classification, proposed in this paper. The third section
illustrates the methodology including a strategy of data augmentation, training
and testing datasets, and an overview of the convolutional neural networks
(CNN). The fourth section shows and discusses the results of experimental
validation of the proposed methodology. Finally, the fifth section summarizes
and concludes the paper with recommendations for future research.
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2 Description of the Experimental Apparatus

The main objective of this investigation is validation of the theoretical results
on crack detection at the initiation stage, because a large part of the service
life of ductile-alloy structures under medium to high-cycle fatigue is consumed
in the crack initiation stage [16].

This section describes the experimental apparatus, as depicted in Fig-
ure 1, which is built upon a hydraucally-operated, computer-instrumented and
computer-controlled fatigue testing machine!, equipped with ultrasonic test-
ing (UT) probes?, a confocal microscope®, and a digital microscope*. The core
concept of anomaly detection during the crack initiation stage in this investiga-
tion is built upon a synergistic combination of the heterogeneous measurement
data, generated from optical images (of the Alicona confocal microscope) and
an ensemble of time series from ultrasonic sensors, where the goal is to enhance
the performance of the damage-tolerant design, maintenance, and operation
of mechanical components of machinery.

Fig. 1 The experimental apparatus

Twenty-one tests were conducted on the experimental apparatus in a lab-
oratory environment at room temperature to develop an automated monitor-
ing system to identify the fatigue damage properties of polycrystalline alloys.
These tests were performed on specimens of 7075-T6 aluminum alloy, where all
specimens were tested either for low-cycle or medium-cycle fatigue tests under
variable-amplitude and variable-frequency random loading. The dimensions of
these specimens are 3 mm thick, 50 mm wide with (1 mmx3.5 mm) slot cut at
the edge. The testing of all specimens were performed on tension-tension load

1 Manufacturer: MTS Systems Corporation, Berlin, NJ, USA

2 Manufacturer: OLYMPUS, Shinjuku, Tokyo, Japan

3 Manufacturer: Alicona Imaging GmbH, Dr.-Auner-Strasse 21a, 8074 Raaba/Graz, Aus-
tria

4 Manufacturer: QUESTAR®, New Hope, Pennsylvania, USA
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cycles at 60 Hz. The mean load set-point was 8,000 N with a load-amplitude of
3,500 N. The ensemble of information from the three sensors in the apparatus
(see Figure 1) have been fused for NDT evaluation to detect the point of crack
initiation and to assess the risk of failure in the tested specimens.

2.1 Ultrasonic testing:

An angle-beam transducer has been used in this investigation, which consists of
a transmitter and a receiver. The transmitter is used to inject high-frequency
acoustic pulses (e.g., 15 MHz ultrasonic waves) into the test specimen and,
after their propagation through the test specimen, the waves reach the receiver
which is located on the test specimen in the opposite side of the transmitter.
The received pulses are influenced by material defects (e.g., anomalous grain
boundaries, voids, and inclusions) that may exist on the path of the propagated
pulses, but their influence must be limited and stable. On the other hand, these
pulses are significantly affected (i.e., attenuated) by the defect growth, because
part of the pulses are reflected and not received by the receiver.

2.2 Optical metrology device:

The optical metrology device, which is the Infinite-Focus, Alicona, has been
used in this investigation to make 3D surface measurements. The operating
principle of the Alicona confocal microscope is that the topographical and
color information is generated from variations of the focus, where the small
depth of focus of an optical system is combined with vertical scanning; and
the range of vertical resolution of the infinite-Focus system is ~ 20nm. The
Alicona image size is typically 0.4mm x 0.4mm, as shown in Figure 2, and
each such image has ~ 4,161,600 pixels. Thus, the Alicona confocal micro-
scope is able to identify micro-cracks that occur at the crack initiation stage.
In addition, All measured surfaces were polished (mirror finish) to clarify the
path of the crack initiation.

In this investigation, Alicona measurements have been synchronized with ul-
trasonic data to provide the ground truth for attenuation of the ultrasonic
echo signal .

2.3 Digital microscope:

The risk assessment is quantified from the estimated value of crack length,
which is obtained from a magnified image. Digital microscope (DM) images
have been taken in loose synchronism with the ultrasonic echo signal and
Alicona images. The image resolution of the digital microscope is ~ 640 x 480
pixels, and the range of variable magnification of these images is 10-200X.
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Fig. 2 3D surface generated by the Infinite-Focus device

3 Methodology

While the procedure of risk assessment is explained in details in previous pub-
lications [15,17] of the authors, the criteria of risk assessment are succinctly
explained below for completeness of the current paper.

1. All measurements before the onset of the crack on the notch surface of test
specimens are considered to be in a healthy (non-risky) state.

2. All crack measurements, before the critical crack length is reached, are
considered to be in a low-risk state.

3. All crack measurements, after the critical crack length is reached, are con-
sidered to be in a high-risk state.

Each of the three plates (a), (b), and (c¢) in Figure 3 present the following
two views of a 3D surface measurement: (i) a side view image by the digital
microscope (DM), and (ii) a waveform of the corresponding ultrasonic signal.
In the case of images with a crack, the crack is computed from the DM image,
as shown in Figure 4, along with the corresponding the ultrasonic echo signal
and Alicona images. If the crack length is less than the critical crack length,
measured data are characterized to be in the low-risk state; and measured data
exceeding the critical crack length are characterized to be in the high-risk state.

3.1 Data augmentation

One of the uncertainties types of Al is the epistemic uncertainties which refers
to uncertainty caused by lack of data. Therefore, insufficient training data
may result in a poor approximation, and thus consequences of insufficient test
data are (possibly) optimistic and high-variance estimation of model perfor-
mance.Usually the causes of uncertainty arise when the training data and test
data are Incompatible, [18,19]. Therefore, the amount of data for deep neural
networks must be acceptable for both training and testing purposes. In the case
of having few data, a data augmentation technique is usually adopted to boost
the size of the database [20-22]. In this paper, the size of the original database
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A B C

(c) High-risk state measurements of a tested specimen.

Fig. 3 The illustration of damage state of a tested specimen using Alicona measurements
(A), digital microscope measurements (B), and the ultrasonic echo signal (C)

Fig. 4 Estimated Crack length from a digital microscope image

was inadequate. So, the data set has been augmented to build an efficient
neural networks (NN) model for prediction and classification. The techniques
used for data augmentation were rotation, transition, reflection, and scaling.
In the rotation method, every image produced 37 different images. The tran-
sition method shifted the original signal image forward by a distinct distance,
and it produced 21 images. The third augmentation technique is the reflection,
where every signal image generated its reflected image. The last augmentation
technique is scaling that produced 31 different scaled images. Figures 5 & 6
show the techniques of the rotation and transition, respectively.

Using the above data augmentation techniques, the number of signal im-
ages in the database was boosted from 881 to 80,171. Table 1 shows the data
size before and after the augmentation. Table 2 shows the number of signals
for each risk state in the augmented database.
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Fig. 6 An example of an augmentation method by transition

Table 1 Techniques for database augmentation.

Augmentation Original Augmented
Technique Data Size Data Size
Rotation 881 32,597
Scaling 881 27,311
Transition 881 18,501
Reflection 881 1,762
Total 80,171

Table 2 No of signals for each risk state in augmented database

Risk State No. of signals

Non-Risky 33,043
Low-Risk 29,029
Migh-Risk 17,199

Total 80,171

3.2 Training and testing datasets

Training data sets refer to the samples of data used to build the models, where
the weights and biases of the neural network (NN) models are adjusted during
the training process by using these data; thus, the models learn from these
data. However, training the models on the actual data and examining their
performance must be done on different data sets. In order to evaluate actual
performance of the models, each data set is divided into training, validation,
and testing categories, where the validation data set is used to provide an un-
biased assessment of the respective model. In contrast, the weights and biases
of a model are adjusted based on the respective training data set; once the
NN model is completely trained by the training and validation data sets, the
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testing data set is used to provide an unbiased assessment of the constructed
model’s performance.

A data set in this paper is split into a training set and a testing set.
Furthermore, a part of the training set is further divided into a training subset
and a cross-validation subset. The split ratio of the data set in this paper
follows the 75/25 rule (i.e., ~ 75% for training and ~ 25% for testing), and
then almost 10% of the training dataset is used for the validation purpose [23].

3.3 The Convolutional Neural Network (CNN)

A neural network (NN) is a computational method that is based upon Rosen-
blatt’s perceptron training algorithm that attempts to mimic the logic of a
human brain. The NN is based on a collection of nodes and a set of connec-
tions that link the neurons layerwise. The simplest feed-forward fully connected
neural network is composed of three layers: an input layer, a hidden layer, and
an output layer. In essence, an NN works by building connections between
the nodes, where every node in the current layer is connected to each node in
the previous layer and has an associated weight and a threshold. The node is
activated and passing data to the next layer of the network when the output
of the node is above the specified threshold, else the node is deactivated and
no data are passed to the next layer of the NN. When the NN architecture
has at least more than one hidden layer between input and output layers, this
NN architecture is poularly known a Deep neural network (DNN).[24].

One of the common DNN types is the convolutional neural network that is
comprised of two main parts. The first part is feature learning which contains
various layers, such as the convolution layer (CL) and pooling layer (PL), while
the second part is dedicated to classification which includes a fully connected
layer (FCL) and Softmax layer (SML). Different CNN networks can be cre-
ated by several combinations of these layers. Figures 7 (a) and (b) illustrate a
CNN architecture with five layers for an ultrasonic database and an Alicona
database, respectively. The input image is of size 128 x 128, representing height
and width respectively. During the feature learning process, the input image
flows into couples of convolutional layers with pooling layers such that feature
extraction and redundancy reduction occur. The feature maps are the vital
part of classification, where the simple features gradually assemble effectively.
Then, all the features are merged partially and the resultant features are ”flat-
tened” to form a 1D column vector as an input to the fully connected layer
(FCL). The resultant score for each particular class is converted to probability
scores by the softmax layer.

3.8.1 Convolution Layer (CL):
The convolutional layer is one of the essential building blocks of the CNN

architecture, which is also the most computation-intensive. A CL consists of
several kernels that are learnable filters. Every kernel is spatially small of size
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(b) Typical CNN architecture of Alicona images.

Fig. 7 Convolution Neural Network architecture for fatigue damage classification. It con-
sists of 2 convolutional layers with corresponding ReLU activation layers, 2 max pooling
layers, 2 fully-connected layers and a softmax output layer.

hxwxn, where h and w represent the height and width of the filter and n is the
channel number of in the input image. Typical options of kernel size are 3 x3 or
5x 5. During the forward propagation, each kernel performs convolution on the
input image across the image size (along width and height) and calculate the
dot products between the kernels elements and the elements at any position
of the image, this computational process is followed by a nonlinear activation
function such as ReLU and sigmoid. Then, 2D activation maps (also known as
feature maps) are created, where the 2D convolution of two signals is defined
as:

where the operator * is the convolution product of two functions; h(m,n) is
the convolved output; g(m,n) is the input image; and f(m,n) is the kernel.
Figure 8 illustrates the convolution process; the computed activation maps
depend on three hyperparameters: depth, stride, and padding. The number
of kernels that are used in the convolution operation determines the depth of
the activation maps. Each kernel learns a special pattern of the image such
as edges, blobs, and colors. The stride is defined as the number of steps that
the kernel is moved in the input image. For example, when the kernel moves
one pixel at a time, the stride is one, but it is two when the kernel jumps two
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pixels at a time as they are moved around; hence, the size of the feature maps
is reduced.

Applying convolution to an input image may lead to loss of information,
because the output size is reduced after the convolution operation. Therefore,
the padding step is used to control the output size. For example, if the kernel
size is 3 x 3, the input image is padded with zeros around the border [25]. The
output size of the convolution layer is calculated in the following way:

(1)

— K +2P
CLsize = |:VV—~_:| +1

S

W: The input volume.
K: The Kernel size.
P: The padding.

S: The stride.

1/0 /1|90
0/1/0(1]0 4
110 S|+ mmm —

01(()’:10:>°°' ek

o[t 1|00
1[1[1]0]o0

@ d i |© 1lol1 B
ofof1]1]o|sk [o]1]0] — B
olo|1][1]o0 1]0]1 23
o1 [1]0o]o0

Fig. 8 An example of convolution (*) with the stride length being equql to 1, where the
kernel is slid over the entire image to produce a feature map. The stride length is a hyper-
parameter which can be used to tune the network.

3.3.2 Pooling layer:

The poolong layers (PLs) are often applied after convolution layers to pro-
gressively reduce the spatial size of the respective input images; and hence,
the computational cost may increase in the network. The PLs are referred
as subsampling or downsampling, and it does not have parameters to learn.
By applying a pooling operation, overfitting of the network can be controlled,
while hyperparameters of the pooling layer PL indicate the filter size and
strides.

Two common pooling techniques are mean-pooling and max-pooling. The
mean-pooling takes the average of the matrix, while the max-pooling takes
the maximum of matrix [26], where max-pooling is used more commonly than
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Fig. 9 An example of pooling with max pooling on the right hand side and mean pooling
on the left. The pooling process downsamples the image to reduce the number of parameters
and thereby reduced computational complexity of the network.

mean-pooling. The concept of the max-pooling technique is that the large
number refers to a feature of the input image. In this example, a stride of 2 is
selected. That is, the matrix size of the max-pooling is 2 x 2. It can be seen
that the result of the max-pooling operation is downsampling; for example, a
4 x 4 matrix is downsampled to a matrix of 2 x 2. In the architecture, a max-
pooling layer has been used after each convolution. The first pooling layer has
a stride of 3 x 3 and the second pooling layer has a stride of 2 x 2.

3.3.83 Fully Connected layer:

The last few layers of the CNN architecture are typically constructed as fully
connected layers, where all feature maps achieved at the last convolutional
layer are flattened and are associated with the fully-connected layer. The ba-
sic idea of the fully connected (FC) layer is to transform the tensor at the
output of the convolution and pooling layers into a vector and then several
neural network layers are added. A fully connected layer is made up of neurons
(perceptrons). As shown in Figure 10, the neuron involves several inputs and
produces a single output; x1, x2, x3 are inputs and Y is the output of the single
neuron. Each neuron is associated with inputs through a real number called
the weight, which implies the importance of the respective inputs relative to
the output. The output of the neuron is computed by whether the weighted
sum Y w;x; is greater than the threshold value, the output is 1, or less than
the threshold value, the output is 0. The last layer of FL layers is the Softmax
layer, and it is used to turn a vector with real-values [27] into a vector with
elements in the range [0, 1], which sum to 1. The softmax function is defined
by the equation given below.

e

fi(z) = S o

(2)

3.8.4 Backpropagation:

Typically, at the first CNN, outputs tend to deviate from the desired output
because the initial values of the kernels are arbitrarily chosen; this deviation
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Fig. 10 An artificial neuron.

is computed using loss function [28]. The cross-entropy loss function of CNN
architecture is defined as

L=- Z yilog(p:) 3)

where L is the loss function, y; is the desired output and p; is the probability
of the i*" class. The main objective of the training phase is to minimize the
loss function by readjusting the weights. The weights of CNN architecture are
adjusted using a technique called backpropagation, where the loss function
back-propagates through the network, and in each layer, the gradient is com-
puted and weights in the filters are updated. The gradient descent is one of
the efficient and simplest techniques that are used for updating the weights in
the filters [29]. The gradient descent is an optimization algorithm often used
to determine gradients in each layer and pass it to the previous layer. After the
entire data set is shown to the network, the weights are updated to enhance
the performance of the CNN model. Gradient descent can vary in terms of the
number of examples used to estimate error; The main three types of gradient
descent are:

1. The stochastic gradient descent (SGD): SGD is a gradient descent algo-
rithm that is used for faster convergence of the loss function and updates
weights after every sample is shown to the network.

2. Batch gradient descent (BGD): BGD is a gradient descent algorithm that
computes the error for each sample in the training dataset, but weights
are only updated after all training samples have been tested. One cycle
through the entire training sample is known as a training epoch. Hence,
the weights are updated at the end of each training epoch for BGD.

3. Mini-batch gradient descent (MBGD); it is a gradient descent algorithm
that combines the efficiency of BGD and the robustness of SGD by split-
ting the training samples into small batches that are used to compute the
error and update the weights. For example, if we assume the dataset has
500 images, weights are re-adjusted after a batch of 50 images are shown to
the network. Appling one mini-batch through the forward pass and back-
propagation is defined as an iteration, while an epoch is defined when all
mini-batches (all images) are trained.
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In the field of the convolutional neural network, MBGD is the most common
implementation of gradient descent methods [30,7?]. This paper uses the mini-
batch mode of gradient descent algorithm. By taking the gradient of the loss
function (VL) with respect to the weights, we obtain the update equation.

VL=p, <y " Zyk> i (4)

k#1

where y is one-hot encoded vector for the labels, so >, yp = 1 and y; +
Zkﬂ yr = 1. Therefore,

VL =p;,—vy; (5)

The weights os the network are updates as shown below,

Wij = Wij —aVL (6)

where, W;; are the filter weights and « is the learning rate.

Table 3 Parameters of convolutional neural network

Layer Activation Shape | Activation Size | #Parameter
Input (128,128,1) 16,384 0
Convl_1 (f=5, s=2, p=2) (64,64,50) 819,200 1,300
Max Pool_1 (s=2) (64,64,50) 24,200 0
Convl_2 (f=5, s=2, p=2) (22,22,50) 1300
Max Pool 2 (s=2) (11,11,50) 6,050 0
FC1 (25,1) 25 151,250
FC2 (3,1) 3 75

4 Results and Discussion

This section presents the experimental results for validation of two convolu-
tional (NN) models, Alicona model and Ultrasonic model. The parameters of
our custom CNN model are illustrated in table 3. The model complexities de-
pend on the number of the parameters, where the computation complexity of
a CNN model increases as the number of the parameters increases, [31]

4.0.1 The learning curve evaluation

The performance of the Alicona model was computed by training the network
on the training database and using the testing database for testing the model
performance. Figure 11 shows the learning curve for 10 epochs, where the
accuracy of the Alicona model started with approximately 30%. The learning
curve reached stability at approximately the 9" epoch. Hence, the process
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Fig. 11 Learning curve of Alicona model for 10 epochs

was terminated at the 10th epoch due to the stability in the performance.
Accuracy of the Alicona model is almost 90%.

Figure 12 illustrates the learning curve of the Ultrasonic model for five
epochs, which exhibits a significant improvement in the performance and gives
more accurate prediction and classification.. The accuracy profile of the Ultra-
sonic model starts at approximately 45% and thereafter reaches the saturation
point at approximately 3" epoch and becomes stable onwards, and that is why
the process was terminated at the fifth epoch. The steady=stste accuracy of
the Ultrasonic model is approximately 98%.
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Fig. 12 Learning curve of Ultrasonic model for 5 epochs

4.0.2 Confusion matrices evaluation:

Figures 13 and 14 present the confusion matrices for both training and testing
models of Alicona and ultrasonic databases, respectively. the rows of each
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of the four matrices correspond to the output class or the predicted class
and the columns correspond to the ground truth labels. The diagonal cells
correspond to observations that are correctly classified. The off-diagonal cells
correspond to incorrectly classified observations. The right-most column of the
matrix shows the percentages of all the examples predicted to belong to each
class that is correctly and incorrectly classified. These metrics are called the
precision and false discovery rate, respectively. The last row of each matrix
represents the percentages of all examples belonging to each class, which are
correctly (top) and incorrectly bottom) classified. The cell in the bottom right
of the plot shows the overall accuracy/ inaccuracy. For example, referring to
Figure 14(a), the overall accuracy of Ultrasonic model in training is 97.2%; and
referring to Figure 14(b), the overall accuracy of Ultrasonic model in testing
is 97.6%.

4.1 Performance comparison:

Following Table 4, a comparison of the Alicona model and Ultrasonic model
shows that the Ultrasonic model predicts and classifies fatigue cracks at an
earlier stage of the model learning process, i.e., at the 3"? epoch while it is at
the 9*" epoch for the Alicona model.During the training phase, the validation
phase, and the testing phase of the Alicona model, the model classification
accuracy reaches 89.38 % 91.34% & 92.54, respectively. On the other hand,
the Ultrasonic model provides better classification accuracy, 97.20 % for the
training model, 96.91 % for the validation model, & 97.56 % for the testing
model. In addition, the performance of the Ultrasonic model is better: ~ 5%
for training, ~ 6.1% for validation, and ~ 9.1% for testing, as illustrated in
Figure 15. The rationale for the improved performance of the CNN model are
as follows.

1. Data size: It is well known that having a large dataset is crucial for good
performance. The augmented database in Alicona Model is 23,205, while
it is 80,171 in the Ultrasonic Model.

2. Complexity of the image: As shown in Figures 2, Alicon image is more
complex than the the ultrasonic echo signal . Each pixel of the image is
referred to a color depth (0-255), and the color depth of Alicona image
is significantly high as compared to ultrasonic signal which is of only two
colors.

Therefore, features learning in Ultrasonic Model is expected to be more
effective than that in the Alicona Model.

5 Summary, Conclusions, and Future Work

This paper has proposed an experimentally validated autonomous technique
for detection and classification of fatigue damage in machinery components
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(b) Testing of Alicona model for a cracked specimen.

Fig. 13 Confusion matrices for classification on Alicona model in training and testing
phases of CNN architecture, which consists of 2 convolutional layers with corresponding
ReLU activation layers, 2 max pooling layers, 2 fully-connected layers and a Softmax output
layer.

that are made of ductile materials (e.g., polycrystalline alloys). The main goal
here is to create a robust network-based nondestructive testing (NDT) system
that provides enhanced performance for damage detection and classification
without using feature extraction techniques. Two models for fatigue damage
detection and classification are built upon the concept of convolutional neural
networks (CNNs). The first model is called the Alicona (confocal microscope)
model and the second model is called the Ultrasonic model. It is noted that
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Training Confusion Matrix of the Ultrasonic Model
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(a) Training of Ultrasonic model for a crack-free specimen.

Testing Confusion Matrix of the Ultrasonic Model
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(b)Testing of Ultrasonic model for a cracked specimen.

Fig. 14 Confusion matrices for classification on Ultrasoic data in training and testing phases
of CNN architecture, which consists of 2 convolutional layers with corresponding ReLU
activation layers, 2 max pooling layers, 2 fully-connected layers and a Softmax output layer.

confocal microscopes are usually available in the laboratory environment only,
while ultrasonic probes are available in both field environments (e.g., manufac-
turing sites) and laboratory sites. However, the Alicona model in the labora-
tory environment provides a proof of concept of the damage evolution process,
while the Ultrasonic model indirectly derives the results from experimental

data.
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Table 4 The performance accuracy of training database, validation database, and testing
database

Network Parameter Alicona Ultrasonic
No. of epochs 10 5
Training Accuracy 92.54 % 97.20 %
Validation Accuracy 91.34 % 96.91 %
Testing Accuracy 89.38 % 97.56 %

Performance Comparison

9 97.2 96.91 97.56

92.54
91.34

89.38

Training Accuracy Validation Accuracy Testing Accuracy

Alicona Model Ultrasonic Model

Fig. 15 Performance Comparison of two models in training, validation, and testing

Both Alicona and Ultrasonic data bases have been classified based on the
damage status in the side-notch surface of test specimens. The following three
damage states are defined to describe the damage state.

— Free-crack state that belongs to the non-risky class;
— Small-crack state that belongs to the low-risk class;
— Large-crack state that belongs to the high-risk class.

In this paper, the Ultrasonic database was synchronized with the Alicona
database. Both databases were augmented by rotation, transition, scaling, and
reflection. The performance of CNN models, the Alicona model Ultrasonic
model, was then evaluated on the augmented database of each model. Results
show that the Ultrasonic model performed better than the Alicona model in
classification, where the Ultrasonic model gave 97.6 % for the testing database,
while the Alicona model gave 89.38 %. The learning curves show that the
Ultrasonic model starts to perform well at the 3"¢ epoch, while the Alicona
model was delayed to reach the best performance by six epochs. This delay
indicates that the image features of UT are much simpler than the image
features of Alicona. Hence, variation in image patterns for each class in the
Ultrasonic database can be detected clearly. In general, these findings suggest
that image features have a significant effect on detection and classification.

While there are many areas of both theoretical and experimental research
that should be undertaken before its commercial application, the following
topics are suggested for future research:

1. Developing the risk assessment classification using CNN, such that the risk
assessment has multi classes that represent the severity of the damage.
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2. Modify the CNN model by selecting the best kernels for features selection
and having the optimal CNN structure that predicts and classifies the
fatigue damage with high accuracy and in a short time.

3. Building a more realistic CNN model that involves other factors (e.g., en-
vironmental effect, structure vibration).
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