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Abstract

In the process of identifying non-line-of-sight (NLOS), acoustics-based indoor positioning needs to collect audio recordings of

sound fields in multiple rooms and upload them to the central server for training. Once the transmission process and server-side

suffer malicious attacks, private data will also be leaked. To solve the training difficulty and privacy issues at the same time, we

propose a novel Personalized Federated Learning (PFL) model combined with user frequency and room data capacity, taking

into account the significant differences in positioning data with room layout. The proposed model can accurately identify the

differences between different room data when aggregating on the server-side. By collecting data in the actual indoor environment

and comparing the existing algorithms, the accuracy of the proposed method in the data verification of unfamiliar rooms is

90%.
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Personalized Federated Learning on NLOS Acoustic
Signal Classification

Hucheng Wang, Suo Qiu, Jingjing Wang, Lei Zhang, Zhi Wang, Xiaonan Luo

Abstract—In the process of identifying non-line-of-sight
(NLOS), acoustics-based indoor positioning needs to collect audio
recordings of sound fields in multiple rooms and upload them
to the central server for training. Once the transmission process
and server-side suffer malicious attacks, private data will also
be leaked. To solve the training difficulty and privacy issues
at the same time, we propose a novel Personalized Federated
Learning (PFL) model combined with user frequency and room
data capacity, taking into account the significant differences
in positioning data with room layout. The proposed model
can accurately identify the differences between different room
data when aggregating on the server-side. By collecting data
in the actual indoor environment and comparing the existing
algorithms, the accuracy of the proposed method in the data
verification of unfamiliar rooms is 90%.

Index Terms—Acoustic, NLOS, Federated Learning

I. INTRODUCTION

INdoor positioning technology based on acoustic signal
has the advantages of compatibility, stability, and high

positioning accuracy. The outliers caused by NLOS are the
most severe reason for the decline of positioning accuracy
[1]. When identifying NLOS signals, the processing method
based on the neural network first collects data in the form
of signals, then applies the algorithms of the neural network
to the collected data and finally achieves the purpose of
identifying NLOS signals(e.g., [2], [3]).

The global training model cannot accurately predict the
results of rooms with occlusion problems due to different
layout types. The information data set related to the indoor
environment is uniformly uploaded to the server. Once the ma-
licious information attacker appears on the transmission path
or server, the indoor privacy information will be completely
exposed [4].

Federated learning (FL) [5] proposes a distributed learning
architecture that allows each client to avoid uploading its
original dataset to the server but to upload model parameters,
like gradients. Meanwhile, FL conveys the idea of edge
computing, enabling beacons in the room to respond to user
data more quickly. FL not only prevents malicious attackers
from directly obtaining the original user’s privacy data but also
greatly reduces the bandwidth pressure in the upload process.

However, the general FL aggregation model has require-
ments for the independence and distribution of data. For
non-independent and identically (Non-IID) data generated by

This work was supported in part by the National Natural Science Foundation
of China under Grant Nos. 61773344, 61273079, 61772149, 61936002, and
6202780103.

different room layouts, the global model often cannot adapt to
the NLOS distribution of all rooms.

The private model based on each user node proposed by PFL
[6] solves the problem of overfitting a single global model on
Non-IID data. The federated averaging (FedAvg) [7] proposed
fluctuates wildly and reduces the validation accuracy on some
room datasets. Bui [8] updated FL training by embedding
personalized parameters. Liang [9] proposed the LG-FedAvg
algorithm that combines local representation learning and
global federated training. However, due to the large difference
in room layout, the LG-FedAvg cannot effectively solve the
problem of verification failure. Based on the above problems,
we propose our algorithm and compare and verify it with other
methods.

II. FL AIDED NLOS CLASSIFICATION DESIGN

The general indoor environment is considered to be com-
posed of multiple different independent rooms, and the sound
propagation model caused by different indoor layouts and
occlusion distributions meets the Non-IID model. Assuming
that the number of speakers in each room is S, the whole
amount room is R, the audio received by the microphone At

at time t in speaker s and room r can be expressed as

At = {A1,1
t ,A1,2

t , ...,Ar,s
t , ...,AR,S

t }. (1)

Each Ar,s
t is considered to be independent of each other, and

reverberation only occurs between the LOS signal and the self-
reflected signal.

A. Capture audio model

We assume that the indoor acoustic field consists only
of direct sound waves, first-reflected and diffuse reflection
waves, ignoring the weak multiple reflections and other related
waves. The signal-to-noise ratio (SNR) of the transmit power
is limited to psnr, which causes the propagation distance of
a single speaker to be limited. Due to the propagation speed
c of sound waves, the sound cycle Tc of each speaker only
needs to satisfy Tc > S · dmax/c to conform to Ar

t , where
multiplying by the number of speakers S means that the next
round of sound can be broadcast only after all speaker signals
are accepted. The distance between adjacent speakers shall not
exceed dmax.
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Considering the complex indoor environment, the captured
audio signal Ar,s

t has three kinds of mixtures: LOS, reflection
and diffusion signal, which can be described as [10]:

Ar,s
t =

αL(Sr,s
t ) ∗ w(t), LOS,

[
NRe∑
m=1

αm
Re(S

r,s
t ) +

ND∑
n=1

αn
D(Sr,s

t )] ∗ w(t), NLOS,

(2)
where Sr,s

t denotes the raw acoustic signal. To simplify the
system, the raw signal S is the same at all R rooms and
S speakers. αL, αRe, and αD are the attenuation of LOS,
reflection and diffusion, respectively. The superscript m and
n are mth and nth path in reflection and diffusion wave. The
Blackman window w(t) is used to filter out the low SNR
signals that cannot be perceived.

B. Training model

The real-time positioning system needs to instantaneous
exchange data from the user to the server. The user to be po-
sitioned sends the collected acoustic signal Ar,s

t to the server,
and the server processes to determine the sight status and
calculate the coordinates of the user. Further, judging the state
of sight is done by the CNN and Bi-LSTM models of the deep
neural network architecture. The short-term Fourier transform
(STFT) is one of the most effective feature extraction methods
left. After STFT, the complex value of the spectrum matrix
Ar,s

t at each time t is obtained as the input layer of CNN.
CNN extracts multi-dimensional features by convolution and
pooling layers iteratively and passes them to the Bi-LSTM
network for classification training. Then, the probability of
the current state is calculated by the fully connected layer,
and the result of the NLOS state judgment is obtained. This
process can be expressed as

ϕ := Ct → {1, 0},Ct ∈ CF×T , (3)

Ct =
∑
r∈R

∑
s∈S

(STFT (Ar,s
t ) + N),Ct ∈ CF×T , (4)

where N is additional white noise. F and T are the dimension
of the spectrum matrix Ur,s

t , where F is the amount of
frequency segment, and T is the amount of time segment in
STFT, decided by window length and overlap length. In fact, ϕ
is only a binary classification problem, while 0 means NLOS
and 1 means LOS results.

C. PFL in NLOS classification

Room 1 Room 2 Room 3 Room 4

User (LOS)

Speaker

Local training model from room to server

Server
Aggregated personal model from server to room

Sync Node

User (NLOS)

Obstacle

Fig. 1. Schematic diagram of room to server

The federated learning model protects data privacy by
transmitting gradients or weights instead of training data. The
server weights and aggregates the model of each client into the
personal server model and then distributes it to each room. The
room combines the self-training state with the personal server
model, updates its training model, and completes an update
process from the server to each room. Due to the different
indoor layouts in each room and different occlusion scenar-
ios, the speaker arrangement’s Geometric Dilution Precision
(GDOP) is also different, which is a typical Non-IID and
identically distributed model. The specific steps are described
as follows and the diagram as Figure 1.

1) Room model training: The same method is used to train
each room separately, the model of rth rooms can be described
as

ϕ(r) := Rt → {1, 0},Rt ∈ CF×T , (5)

Rt =
∑
s∈S

(STFT (Ar,s
t ) + N),Rt ∈ CF×T . (6)

Then model set of each room ϕ = {ϕ(1), ϕ(2), ..., ϕ(R)} and
the gradient ∇ϕ from local SGD will be sent to server.

2) Server Aggregation: The accuracy of individual clients
may decrease when the data distribution of each participant
in federated learning is inconsistent. The cloud server side
corresponds to the private model ϕ′(r) of each room ϕ(r), and
the total server model ϕ′ = {ϕ′(1), ..., ϕ′(R)}. To enable mod-
els with similar NLOS distributions to better adapt to training,
instead of using a global model, the distance ||ϕ(r)

E−1−ϕ
(q)
E−1||2

between ϕ(i) and ϕ(j) becomes important for the global update
of the rth room in the server. The amount of data is also
an important indicator of aggregation. We allow each room r
to perform E epochs of local room model update via mini-
batch SGD with the size of nr, then

∑
r∈R nr is the whole

E training batches. The update process of the server personal
model ϕ′(r) corresponding to room r is

ϕ
′(r)
E =(1− αE

R∑
q ̸=r

||ϕ(r)
E−1 − ϕ

(q)
E−1||

2)
nr∑
r∈R nr

ϕ
(r)
E−1

+ αE

R∑
q ̸=r

||ϕ(r)
E−1 − ϕ

(q)
E−1||

2 nq∑
r∈R nr

ϕ
(q)
E−1

= ξ(r,1)ϕ
(1)
E−1 + · · ·+ ξ(r,R)ϕ

(R)
E−1,

(7)

where ξ(r,1), ..., ξ(r,R) are the linear combination weights of
the model parameter sets ϕ

(1)
E−1, ..., ϕ

(R)
E−1, respectively. ϕ′(r)

E

is actually a convex combination of model sets, where ξ(r,1)+

· · ·+ξ(r,R) = 1. ϕ(1)
E−1, ..., ϕ

(R)
E−1 are individual models of each

room. αE is normalization factor in E epoch.
The aggregation progress Equation 7 reflects the weight of

nr in the server update. If there is no user in rth room in
the E epoch, no data is generated, and the room of personal
parameter ξ(r,r) = 0. This operation does not affect the update
of other individual rooms model.

3) Room model updating: To further reduce computing in
each room, we select the closest personal model of the server
to the room model:

ϕ
(r)
E = argmin

ϕ∈ϕ′
E

(||ϕ− ϕ
(r)
E−1||

2). (8)
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Here, the process of E epoch from room model training to
room model updating is completed.

III. EXPERIMENTS AND RESULTS

We set R = 4 and speakers in each room S = 4. The four
different rooms are Lab 1, Lab 2, Office 1, and Office 2. The
speakers are distributed on the ceiling of the corners in each
room to fully cover the sound field. Each speaker sends 800
acoustic signals, 400 of which are captured by the microphone
in the LOS range, and the other 400 signals are in the NLOS
range. Each data is 16-bit sampling rate, 1-second duration,
.wav lossless format, and a total of 15Gb of audio data. The
dataset is uploaded to IEEE Dataport [11].

A. Results on general training

To evaluate the performance, we employ the centralized
training model, global model (FedAvg) [7] and the personal
model (proposed) on the existing room. To balance the total
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Fig. 2. Comparisons between different training of the existing room.

training epochs, we set the number of local training times
multiplied by the updates times E = 10 is equal to 100
epochs. Although the number of centralized training epochs
is up to 100, the accuracy constantly fluctuates, and it does
not stabilize until after 80 epochs. For Non-IID room acoustic
signals, FedAvg does not consider the difference in NLOS
distribution in each room, causing the unstable validation
accuracy. The proposed aggregation method takes into account
the difference of the room. In the early validation stage, due to
insufficient personal model training in each room, the accuracy
is not ideal. Starting from the 30 epochs, the proposed method
is significantly better than other methods, and there are no
repeated fluctuations in the validation.

B. Results on unfamiliar room sound field

To verify the adaptability of the existing model to unfamiliar
rooms, we remove the training data of a specific room. Then
the removed room data is used to verify the trained model and
calculated the NLOS classification accuracy of each model for
the unfamiliar room.

As Figure 3 shows, the x-axis is the room that was removed
in training. The PFL model showed the best performance when
testing unfamiliar rooms. The method we proposed takes into
account the room similarity distance ||ϕ(r)

E−1 − ϕ
(q)
E−1||2, and

the sound field data of unfamiliar room will first select a
similar personality model ϕ

′(r)
E . Other methods do not take

Accuracies for unfamiliar room testing
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Fig. 3. Comparisons between different training of unfamiliar room.

individual considerations into account, and large outliers may
be generated when the data in an unfamiliar room does not
conform to the global model data distribution.

IV. CONCLUSION

This paper presented a personalized federated learning
method on NLOS acoustic signal classification in indoor
positioning. We are the first research to use the federated
learning mechanism to NLOS classification practice indoors.
We first conduct slimmable training on each local client
terminal (mobile phone) to obtain a local model. Then, the
server aggregates into a PFL model according to the model
parameter distance and data volume and broadcasts it to the
user for updates. Experiments have proved that the proposed
method can make the general training accuracy not inferior
to the centralized model and without training fluctuation.
Significantly, the result in an unfamiliar room shows optimal
performance.
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