Trilobatin attenuates cerebral ischemia/reperfusion-induced blood-brain-barrier dysfunction by targeting MMP9: The legend of a food additive

Linying Feng¹, Yeli Li¹, Mu Lin¹, Dianyou Xie¹, Yunmei Luo¹, Zhi-Xu He², Qihai Gong², zhu yizhun¹, and Jianmei Gao²

¹Macau University of Science and Technology ²Zunyi Medical University

February 15, 2023

Abstract

Background and Purpose: Blood-brain barrier (BBB) breakdown is one of the most crucial pathological changes of cerebral ischemia-reperfusion (I/R) injury. Trilobatin (TLB), a naturally occurring food additive, exerts neuroprotective effect against cerebral I/R injury as demonstrated in our previous study. This study was designed to investigate the effect of TLB on disruption of BBB after cerebral I/R injury. Experimental Approach: Rats with focal cerebral ischemia caused by transient middle cerebral artery occlusion (MCAO) and brain microvascular endothelial cells along with human astrocytes to mimic blood brain barrier (BBB) injury caused by oxygen and glucose deprivation (OGD) followed by reoxygenation (OGD/R). Key results: The results showed that TLB effectively maintained the integrity of BBB and inhibited neuronal loss following cerebral I/R challenge. Furthermore, TLB dramatically increased tight junction proteins including ZO-1, occludin and claudin 5, as well as decreased the levels of apolipoprotein E (APOE) 4, cyclophilin A (CypA), and phosphorylated nuclear factor kappa B (NF-xB), thereby reduced proinflammatory cytokines. In addition, TLB also decreased Bax/Bcl-2 ratio and cleaved-caspase 3 level along with reduced the number of apoptotic neurons. Intriguingly, molecular docking and transcriptomics predicted MMP9 was a prominent gene evoked by TLB treatment. Furthermore, the protective effect of TLB on OGD/R-induced the loss of BBB integrity in human brain microvascular endothelial cell and astrocyte co-cultures in vitro was markedly reinforced by knockdown of MMP9. Conclusions and implications: Our findings reveal a novel property of TLB: saving BBB disruption following cerebral I/R via targeting MMP9 and inhibiting APOE4/CypA/NF-xB axis.

	4
17	
5	
-	
Ä	
61,	
3	
,ē	
ť	
,ä	
ť	
	1
1	1
E	
1	
2	
35.	
33	
33	
25.	
2	
.64	
128	
Ť.	
4	
0	
10	
S	
	ł.
permission	-
ut permission	
out permission	
thout permission	-
without permission	
e without permission	
use without permission	
reuse without permission	
o reuse without permission	
No reuse without permission. –	
 No reuse without permission. – 	
ed. No reuse without permission	
rved. No reuse without permission	
served. No reuse without permission. –	
reserved. No reuse without permission. –	
ts reserved. No reuse without permission	
thts reserved. No reuse without permission	
rights reserved. No reuse without permission. —	
Il rights reserved. No reuse without permission. —	4
All rights reserved. No reuse without permission	4
c. All rights reserved. No reuse without permission. —	
ler. All rights reserved. No reuse without permission	4 D D D D D D D D D D D D D D D D D D D
nder. All rights reserved. No reuse without permission	
funder. All rights reserved. No reuse without permission	
r/funder. All rights reserved. No reuse without permission	
hor/funder. All rights reserved. No reuse without permission	
uthor/funder. All rights reserved. No reuse without permission. –	
author/funder. All rights reserved. No reuse without permission. –	
ie author/funder. All rights reserved. No reuse without permission. –	
the author/funder. All rights reserved. No reuse without permission. –	
is the author/funder. All rights reserved. No reuse without permission. –	
it is the author/funder. All rights reserved. No reuse without permission	
der is the author/funder. All rights reserved. No reuse without permission	
older is the author/funder. All rights reserved. No reuse without permission. –	
holder is the author/funder. All rights reserved. No reuse without permission. –	
ht holder is the author/funder. All rights reserved. No reuse without permission. –	
ight holder is the author/funder. All rights reserved. No reuse without permission	
vright holder is the author/funder. All rights reserved. No reuse without permission. –	
opvright holder is the author/funder. All rights reserved. No reuse without permission	
convright holder is the author/funder. All rights reserved. No reuse without permission. –	
ie convright holder is the author/funder. All rights reserved. No reuse without permission. –	
The convright holder is the author/funder. All rights reserved. No reuse without permission	
- The convright holder is the author/funder. All rights reserved. No reuse without permission.	
 — The convright holder is the author/funder. All rights reserved. No reuse without permission. 	
23 — The convright holder is the author/funder. All rights reserved. No reuse without permission. —	
1023 — The convright holder is the author/funder. All rights reserved. No reuse without nermission. –	
v 2023 — The convright holder is the author/funder. All rights reserved. No reuse without permission. —	
bb 2023 — The convright holder is the author/funder. All rights reserved. No reuse without permission. —	
Feb 2023 — The convright holder is the author/funder. All rights reserved. No reuse without permission. —	
(5 Feb 2023 — The convright holder is the author/funder. All rights reserved. No reuse without permission. –	
a 15 Feb 2023 — The convright holder is the author/funder. All rights reserved. No reuse without permission. –	
on 15 Feb 2023 — The convright holder is the author/funder. All rights reserved. No reuse without permission. —	
od on 15 Feb 2023 — The convright holder is the author/funder. All rights reserved. No reuse without permission. —	
ated on 15 Feb 2023 — The convright holder is the author/funder. All rights reserved. No reuse without permission. –	
² osted on 15 Feb 2023 — The convright holder is the author/funder. All rights reserved. No reuse without permission.	

reli
D
þe
ay
В
ata
ñ
ų.
We
-ie
1.G
61.
рe
en
þ
ot
8
haz
Ţ
aı
Ë.
pr
pre
ŝ
his
E.
7
33
305
39.
25,
42.
23
764
16
10
1
27
22
10
60
.0I
qo
bs
htt
à.
IOL
133
8
pe
at
p
wit
e g
en
10
ž
sd.
TVE
0S C
20 20
ghts r
rights r
All rights r
. All rights r
der. All rights r
under. All rights r
r/funder. All rights r
hor/funder. All rights r
uthor/funder. All rights r
e author/funder. All rights r
the author/funder. All rights r
r is the author/funder. All rights r
der is the author/funder. All rights r
holder is the author/funder. All rights r
ht holder is the author/funder. All rights r
ight holder is the author/funder. All rights r
pyright holder is the author/funder. All rights r
copyright holder is the author/funder. All rights r
he copyright holder is the author/funder. All rights r
The copyright holder is the author/funder. All rights r
— The copyright holder is the author/funder. All rights r
23- The copyright holder is the author/funder. All rights r
2023- The copyright holder is the author/funder. All rights r
$\pm b~2023 - The copyright holder is the author/funder. All rights r$
δ Feb 2023 — The copyright holder is the author/funder. All rights r
15 Feb 2023 — The copyright holder is the author/funder. All rights r
on 15 Feb 2023 — The copyright holder is the author/funder. All rights r
ed on 15 Feb 2023 — The copyright holder is the author/funder. All rights r
<code>ssted</code> on 15 Feb 2023 — The copyright holder is the author/funder. All rights r

- 1 Gao Jianmei (Orcid ID: 0000-0003-3683-7956)
- 2 Trilobatin attenuates cerebral ischemia/reperfusion-induced blood-brain-barrier

3 dysfunction by targeting MMP9: The legend of a food additive

- 4 Linying Feng^{1,2}, Yeli Li^{1,2}, Mu Lin^{1,2}, Dianyou Xie^{1,2}, Yunmei Luo^{1,2}, Zhixu He³,
- 5 Qihai Gong^{1,2}, Yizhun Zhu^{1*}, Jianmei Gao^{1,2*}
- 6 ¹School of Pharmacy, Faculty of Medicine,
- 7 Macau University of Science and Technology, Macau SAR, China
- 8 ²Key Laboratory of Basic Pharmacology of Ministry of Education and Joint
- 9 International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi
- 10 Medical University, Zunyi, China
- ¹¹ ³The Collaborative Innovation Center of Tissue Damage Repair and Regeneration
- 12 Medicine of Zunyi Medical University
- 13 These authors contributed equally to this work:
- 14 *Correspondence and requests for materials should be addressed to Jianmei Gao
- 15 (gaojianmei@zmu.edu.cn) and Yizhun Zhu (yzzhu@must.edu.mo)
- 16 6 Xuefu West Road, Zunyi City, Guizhou Province, 563000, P. R. China
- 17 Tel: +86-851-286-423-03
- 18 E-mail: gaojianmei@zmu.edu.cn
- 19
- 20

21

22

23 Acknowledgements

24	This work was supported by Natural Science Foundation of China (No.82160756),
25	Science and Technology Support Plan of Guizhou Province (No. [2020]1Y010), The
26	hundred level of high-level innovative talents in Guizhou Province (No. QKHRCPT
27	20165684), Collaborative Innovation Center of Chinese Ministry of Education (No.
28	2020-39), Science and technology planning project of Zunyi (No. [HZ2021]187), The
29	Natural Science Foundation of Guizhou, China (No.2019-1329).
30	Author contribution
31	LYF, YLL and ML performed the experiments. DYX and YML helped with
32	bioinformatics analysis and molecular docking analysis. All authors were involved in
33	analysis of data. LYF wrote the manuscript. JMG, QHG ,YZZ, and HZX design the
34	experiments and revised the manuscript.
35	Confict of interest
36	The authors declare no conflicts of interest.
37	Declaration of transparency and scientific rigour
38	This Declaration acknowledges that this paper adheres to the principles for
39	transparent reporting and scientific rigour of preclinical research as stated in the BJP
40	guidelines for Design & Analysis, Immunoblotting and Immunochemistry and Animal
41	Experimentation and as recommended by funding agencies, publishers and other
42	organizations engaged with supporting research.
43	Data availability statement

44 The data that support the findings of this study are available from the corresponding

45 author upon reasonable request. Some data may not be available because of privacy or46 ethical restrictions.

47 Abstract

48	Background and Purpose: Blood-brain barrier (BBB) breakdown is one of the most
49	crucial pathological changes of cerebral ischemia-reperfusion (I/R) injury. Trilobatin
50	(TLB), a naturally occurring food additive, exerts neuroprotective effect against
51	cerebral I/R injury as demonstrated in our previous study. This study was designed to
52	investigate the effect of TLB on disruption of BBB after cerebral I/R injury.
53	Experimental Approach: Rats with focal cerebral ischemia caused by transient
54	middle cerebral artery occlusion (MCAO) and brain microvascular endothelial cells
55	along with human astrocytes to mimic blood brain barrier (BBB) injury caused by
56	oxygen and glucose deprivation (OGD) followed by reoxygenation (OGD/R).
57	Key results: The results showed that TLB effectively maintained the integrity of BBB
58	and inhibited neuronal loss following cerebral I/R challenge. Furthermore, TLB
59	dramatically increased tight junction proteins including ZO-1, occludin and claudin 5,
60	as well as decreased the levels of apolipoprotein E (APOE) 4, cyclophilin A (CypA),
61	and phosphorylated nuclear factor kappa B (NF-kB), thereby reduced
62	proinflammatory cytokines. In addition, TLB also decreased Bax/Bcl-2 ratio and
63	cleaved-caspase 3 level along with reduced the number of apoptotic neurons.
64	Intriguingly, molecular docking and transcriptomics predicted MMP9 was a
65	prominent gene evoked by TLB treatment. Furthermore, the protective effect of TLB
66	on OGD/R-induced the loss of BBB integrity in human brain microvascular

67	endothelial cell and astrocyte co-cultures in vitro was markedly reinforced by
68	knockdown of MMP9.
69	Conclusions and implications: Our findings reveal a novel property of TLB: saving
70	BBB disruption following cerebral I/R via targeting MMP9 and inhibiting
71	APOE4/CypA/NF-κB axis.
72	Keywords: apolipoprotein E 4; blood brain barrier; cerebral ischemia/reperfusion;
73	matrix metalloproteinase; trilobatin; tight junction
74	Abbreviations
75	APOE, apolipoprotein E; BBB, blood-brain barrier; BMVECs, brain microvascular
76	endothelial cells; Cap, capillaries; CypA, cyclophilin A; DGEs, differential genes; EB,
77	evans blue; ECM, extracellular matrix; ELISA, enzyme linked immunosorbent assay
78	kits; ECs, endothelial cells; GO, gene ontology; HE, hematoxylin and eosin;
79	I/R, ischemia-reperfusion; IL-1 β , interleukin-1 β ; IHC, immunohistochemistry;
80	KEGG, kyoto encyclopedia of genes and genomes; LDH, lactate dehydrogenase;
81	MCA, middle cerebral artery; MCAO, middle cerebral artery occlusion; MS, myelin
82	sheath; MMP9, matrix metalloproteinase 9; NF-κB, nuclear factor kappa B; OGD/R,
83	oxygen glucose deprivation and reoxygenation; PPI, protein-protein interaction; rCBF,
84	regional cerebral blood flow; root mean square deviation, RMSD; root mean square
85	fluctuation, RMSF; SD, sprague-dawley; TTC, 2,3,5-triphenyltetrazolium chloride;
86	TEER, transepithelial electrical resistance; TEM, transmission electron microscope;
87	TJs, tight junctions; TNF-α, tumor necrosis factor-α; TLB, trilobatin; ZO-1, zonula
88	occludens-1.

89	Bullet	point	summary	1
----	--------	-------	---------	---

- 90 What is already known
- TLB, a naturally occurring food additive, possesses anti-inflammatory and anti-
- 92 oxidant effects.
- TLB exerts neuroprotective effect against cerebral I/R injury.
- 94 What this study adds
- TLB confers robust protection aginst BBB disruption after cerebral I/R injury by
- 96 targeting MMP9.
- 97 APOE4/CypA/NF-κB axis is involves in the beneficial effect of TLB on BBB
- 98 integrity after cerebral I/R injury.

99 What is the clinical significance

• TLB may be a powerful weapon in conquering ischemic stroke and expands the

101 probability of new tactics to accomplish neuroprotection.

102 **1. Introduction**

103 Ischemic stroke is a debilitating neurological disorder of morbidity, mortality and

104 ponderous socio-economic burden elicited by the break of cerebral blood flow (Ren et

al., 2022). Notwithstanding the prominence as a principal cause of disability and

106 death, efficacious treatments currently are still limited to overcome cerebral ischemic

- 107 stroke. Mechanical thrombectomy and tissue plasminogen activator are the only
- 108 therapeutic approaches in clinic due to both are efficient at removing the thrombus
- and restoring perfusion (Fischer et al., 2022). Whereas, restoration of the blood supply
- 110 conquers the cerebral ischemia injury, but the damage region increasingly enlarges
- 111 after the blood supply that is known as cerebral ischemia-reperfusion (I/R) injury (X.

112	Chen, Zhang, & Wang, 2022). Cerebral I/R following ischemia evokes a series of
113	events including inflammation and protease activation, all of which injure blood-brain
114	barrier (BBB) (Gong et al., 2021). The BBB comprises endothelial cells (ECs), tight
115	junctions (TJs), astrocytic end-feet processes, pericytes and the basilar membrane.
116	ECs are connected by cellular junctions, configurating a monolayer membrane of the
117	lumen in an integrated BBB (Mora et al., 2020). These cellular structures via integrins
118	to bind with the extracellular matrix (ECM), contributing to the physical barrier of the
119	BBB under steady state conditions (Calderon et al., 2022). Mechanically, the injured
120	BBB ultimately exacerbates hemorrhagic transformation and oedema, and represents
121	the mainspring of post-stroke mortality (H. Chen, Guan, Chen, Yang, & Shen, 2021).
122	Thus, salvation of BBB disruption is a dire need to prevent cerebral I/R injury and
123	will be a highly plausible tactic to treat ischemic stroke.
124	Brain microvascular endothelial cells (BMVECs) guarantee the tightness of BBB and
125	own multiple unique elements such as specialized TJs proteins including claudin-5,
126	occludin and zonula occludens-1(ZO-1) (Ng et al., 2022). Owing to the crucial
127	structures of BBB, BMVECs are rapidly activated after ischemia, along with TJs loss,
128	allowing the inflammatory cytokines including tumor necrosis factor (TNF)- α ,
129	interleukin (IL)-1 β , IL-6 into the brain and eventually leading to BBB integrity
130	damage (L. Liu et al., 2022). Emerging evidence demonstrates that apolipoprotein E
131	(APOE) 4, cyclophilin A (CypA), nuclear factor kappa B (NF-κB) and matrix
132	metalloproteinase (MMP) 9 have momentous and necessary roles in BBB disruption
133	after ischemic stroke (Montagne, Nation, & Zlokovic, 2020; Palomino-Antolin et al.,

134	2022). APOE4, an isoform of APOE, is substantially secreted by astrocytes and
135	promotes BBB susceptibility to damage (Nikolakopoulou et al., 2021). Suppression of
136	the proinflammatory CypA/NF-κB/MMP9 pathway is required for maintaining the
137	BBB integrity. Intriguingly, recent study reports that APOE4 accelerates loss of
138	pericyte and promotes activation of CypA/NF-KB/MMP9 pathway, which can
139	aggravate the BBB breakdown (Bell et al., 2012). However, whether
140	APOE4/CypA/NF-κB/MMP9 axis participates in the development of I/R is still blurry.
141	Trilobatin (TLB), a naturally occurring sweetener, is derived from leaves of
142	Lithocarpus polystachyus Rehd., which is used as a folk medicine, and has been
143	accepted as a new food material in China since 2017 (Shang et al., 2022). Amounting
144	evidence reports that TLB possesses pleiotropic pharmacological effects including
145	anti-inflammatory, anti-oxidative and anti-fatigue activities, etc (Fan et al., 2015; J.
146	Gao et al., 2018; Xiao et al., 2022). Interestingly, our previous studies have
147	discovered that TLB exerts excellent neuroprotective effects with an excellent safety
148	profile and BBB permeability (N. Chen et al., 2020; J. M. Gao et al., 2022). Recently,
149	we have found that TLB significantly reduces infarct size and restores neurological
150	functions after middle cerebral artery occlusion (MCAO) insult in vivo; and also
151	inhibits oxygen glucose deprivation (OGD) followed by reoxygenation (OGD/R)-
152	induced neuronal damage due to its anti-neuroinflammatory and anti-antioxidative
153	properties (J. Gao, Chen, et al., 2020). However, whether TLB can confer BBB
154	protection, and its potential mechanism associated with APOE4/CypA/NF-KB/MMP9
155	axis is still ill-defined.

156 Hence, the present study was designed to explore whether TLB evokes BBB

157 neuroprotection in MCAO-induced cerebral I/R injury in rats, and oxygen and

158 OGD/R-induced injury in co-cultured human BMVECs and astrocytes in vitro via

- 159 modulating the APOE4/CypA/NF- κ B/MMP9 axis.
- 160 **2. Materials and methods**
- 161 **2.1** Animals
- 162 The male sprague–dawley (SD) rats (250–280 g) were supported by Hunan SJA
- 163 Laboratory Animal Co., Ltd (Changsha, China; Certificate No. SCXK2019-0004). All
- 164 rats were housed in specific pathogen-free facility with controllable room temperature
- 165 of $25 \pm 1^{\circ}$ C and a relative humidity of $55\% \pm 5\%$ with 12:12 h light/dark cycle, fed on
- 166 a laboratory standard diet and received tap water freely. Animals were randomly
- 167 assigned to different experimental groups, and data was analyzed by a blinded
- 168 investigator. All animal experiments were approved by the Ethics Committee of Zunyi
- 169 Medical University (Guizhou, China, No. ZMU21-2203-583) and all the experimental
- 170 processes were performed according to the US National Institutes of Health guide for
- the care and use of Laboratory animals (National Institutes of Health Publication 85-
- 172 23, revised 1996). Animal studies are reported in compliance with the ARRIVE
- 173 guidelines(Kilkenny et al., 2010; McGrath, Drummond, McLachlan, Kilkenny, &
- 174 Wainwright, 2010).

175 2.2 Induction of focal cerebral ischemia and drug delivery

176 The male SD rats underwent right middle cerebral artery (MCA) occlusion (MCAO)

177 was used as an experimental model of cerebral I/R injury as described in our previous

178	study (J. Gao, Long, et al., 2020). In brief, rats were anesthetized with 1.5% isoflurane
179	and then isolated the external carotid artery, right common carotid artery, and internal
180	carotid artery carefully. A monofilament nylon suture with a spherical diameter of
181	0.36 mm was inserted through the external carotid artery into internal carotid artery to
182	block blood flow to the MCA (Cat#2636A4, Cinnontech Co., Ltd, Beijing, China).
183	Thereafter, then monofilament nylon suture was withdrawn after 2 h to allow
184	reperfusion for 3 days, and the rat body temperature was kept at 37 °C during surgery.
185	The perfusion and oxygenation imager (Moor Instruments, Ltd., Millwey, Axminster,
186	UK) was used to monitor the cortical blood flow as reported previously. After
187	excluding the false-positive results in the MCAO group, the survival rate of the rats
188	under anesthesia was more than 80%. Moreover, rats with convulsions, sustained
189	impaired consciousness, or no apparent dysfunction of the contralateral limb were
190	excluded from the follow-up study.
191	Following the surgical procedure, the rats were intragastric administration by TLB
192	(purity ≥98%, Cat#4192-90-9, Shanghai Renjie Biotechnology Co., Ltd, Shanghai,
193	China) at different dose of 5, 10, 20 mg·kg ⁻¹ ·d ⁻¹ . The total number of SD rats were 80,
194	and the rats were randomly allocated into four groups ($n = 20$ per group): sham group,
195	sham + TLB (20 mg·kg ⁻¹ ·d ⁻¹) group, MCAO group, MCAO + TLB (20 mg·kg ⁻¹ ·d ⁻¹)
196	group. The rats in sham group and sham + TLB (20 mg·kg ⁻¹ ·d ⁻¹) group received the
197	same surgical procedure except for inserting the monofilament. Rats in sham + TLB
198	and MCAO + TLB groups were given TLB at doses of 20 mg \cdot kg ⁻¹ , twice a day by
199	gavage after surgery for 3 days. Meanwhile, rats in the sham and MCAO groups were

200 given volume-matched saline.

201 2.3 Cerebral blood measurement (CBF)

202 The CBF was detected by the moorO² Flo imager (Moor Instruments, Ltd., Millwey,

- 203 Axminster, UK). Briefly, the rats were anesthetized till unconsciously and placed under
- 204 the moor O^2 Flo imager at a distance of 20-30 cm. The midline scalp incision was made
- to expose the skull intact and proceed at 20 frames per second for 2 minutes. Rats were
- 206 imaged pre-MCAO, post-MCAO and post-reperfusion. The region of interest (ROI)
- 207 located in the main MCA area was identified and applied for analysis. The flux values
- 208 were measured at each time point for each ROI of the ipsilateral and contralateral
- 209 hemispheres, and ipsilateral fluxes were expressed as % of contralateral fluxes. The
- analysis was carried out under blind conditions.

211 2.4 Neurological deficit scoring and infarct volume assessment

- 212 The neurological deficits after MCAO insult were monitored by the 5-point scoring
- 213 method as described previously (J. Gao, Chen, et al., 2020). After neurological
- 214 function test, rats were anesthetized with 1.5% isoflurane and sacrificed under
- anesthesia. The 2,3,5-triphenyl tetrazolium chloride (TTC, Sigma-Aldrich, St. Louis,
- 216 MO, USA) staining was used to determine infarct volume as described in our previous
- 217 study (J. Gao, Long, et al., 2020).

218 2.5 Evans blue (EB) staining

- 219 The permeability of the BBB was evaluated by the leakage of evans blue (EB,
- 220 Cat#314-13-6, Sigma-Aldrich, St. Louis, MO, USA) dye into the brain through the
- tail vein injection as descripted previously (Kim et al., 2020). In brief, the 2% EB (4

mL·kg⁻¹) was injected intravenously *via* the tail vein and allowed to circulate for 2 h.

- 223 Then animals were anesthetized and perfused with 0.1 M phosphate buffered saline
- 224 (PBS) (pH 7.4) through the left ventricle. Thereafter, the brain was immediately
- removed and homogenize in trichloroacetic acid and centrifuged at $12,000 \times g$ for 20
- 226 minutes. The supernatant was collected and quantitatively determined by enzyme-
- 227 labeled instrument (Multiskan GO, Thermo, USA).

228 2.6 Hematoxylin and eosin (HE) and Nissl staining

- HE and Nissl staining was used to determine the pathological change and neuron loss,
- 230 respectively, as reports previously (M. B. Liu et al., 2020). In brief, after perfused
- with 0.1 M PBS (pH 7.4), the rat brain tissues were rapidly fixed with 4% formalin at
- 4 °C for 48 h. Thereafter, the brain sections (thickness of 3.5 μ m) were dehydrated
- and embedded in paraffin. These sections were stained with HE and Nissl at room
- temperature, then treatment with 1% toluidine blue at 60 °C for 15 min. The changes
- of histopathology were observed with an optical microscope (Olympus BX43, Tokyo,
- Japan) and analyzed by Image Pro Plus 6.0 software.

237 2.7 Observation of transmission electron microscope (TEM)

- 238 Ultrastructural change after cerebral I/R injury were observed by TEM. Briefly, brain
- tissues were fixed in paraformaldehyde (2%) and glutaraldehyde (1%) for 8 h, and
- then the samples were washed with 0.1 M PBS (pH 7.4). Thereafter, the samples were
- 241 fixed with osmium tetraoxide (1.5%) for another 2 h, and then were dehydrated and
- embedded in analdite. Following, the brain samples were sectioned (80 nm) and
- 243 counterstained with uranyl acetate and lead citrate, then the capillaries (Cap), myelin

sheath (MS) and neurons were observed using a TEM (JEM-1400Flash, JEOL, Tokyo,Japan).

246 2.8 Immunohistochemistry (IHC)

- 247 Immunohistochemical staining was used to quantify the MMP9 and TIMP1 as
- described previously (M. B. Liu et al., 2020). Briefly, the brains were perfused with
- 249 0.1 M PBS (pH 7.4) followed by 4% paraformaldehyde (Cat#P1110, Solarbio,
- 250 Beijing, China), dehydrated and embedded in paraffin. The brains were fixed with 4%
- 251 paraformaldehyde, and then was treated with dehydration and paraffin-embedded,
- 252 Thereafter, the 3.5-µm thick slices were prepared to be soaked in xylene and ethanol
- to dehydration. Then, the slices were maintained with 3% aqueous hydrogen peroxide
- for 17 min at room temperature. Following blocked with goat serum for 30 min, the
- slices were incubated with the primary antibodies against TIMP1 (1:300,
- 256 Cat#ab61224, Abcam) and MMP9 (1:500, Cat#ab38898, Abcam) overnight at 4 °C,
- and then subjected to secondary goat anti-rabbit IgG (1:500, Cat#SA00004-2,
- 258 Proteintech) followed by incubated with HRP-labeled streptozotocin for 20 min at
- 259 37 °C. After the positive cells were visualized by DAB kit (Cat#ZLI-9018, ZSGB-BIO,
- 260 Beijing, China), images were digitally captured by a light microscopy (Olympus BX43,
- 261 Tokyo, Japan) and Image Pro Plus 6.0 software for statistical analysis.
- 262 2.9 TUNEL staining
- 263 The apoptosis was detected using In situ cell death detection kit, POD
- 264 (Cat#11684817910, Roche, Applied Science, Germany) according to the
- 265 manufacture's protocols (M. B. Liu et al., 2020). In brief, the paraffin embedded brain

tissue sections were deparaffinized with xylene and then rehydrated with graded
ethanol. Following, the sections were subjected to 3% H₂O₂ for 20 min and incubated
with proteinase K (Cat#P1120, Solarbio, Beijing, China) for 15 min at 37 °C, then
TUNEL staining was performed according to the manufacturer's protocol. Finally, the
sections were visualized with a DAB kit and the TUNEL-positive cells were observed
using a light microscopy (Olympus BX43, Tokyo, Japan) and Image Pro Plus 6.0
software for statistical analysis.

273 2.10 Transcriptome analysis

The total RNA was extracted from the cerebral tissue of rats in sham, sham + TLB 20 274 mg·kg⁻¹, MCAO, MCAO + TLB 20 mg·kg⁻¹ groups by TRIzol reagent following the 275 manufacturer's protocol, and quantified by Bioanalyzer 2100 and RNA 6000 Nano 276 LabChip Kit (Agilent, CA, USA, 5067-1511) analysis meter. The qualified RNA 277 transcriptome was performed with an Illumina Novaseq[™] 6000 (LC-Bio Technology 278 CO., Ltd., Hangzhou, China) following the vendor's recommended protocol. String 279 database (version 10.5) was adopted to protein interaction information, then protein-280 protein interaction (PPI) network was constructed by Cytoscape 3.6.0 software. The 281 differential genes (DGEs) with $|\log^2 FC| > 1$ and adjusted p < 0.05 were considered to 282 be significantly different expressed genes. In order to intuitively observe the 283 distribution of potential DEGs, the venn diagram was performed by Venny 2.1.0³. In 284 addition, the gene ontology (GO) function and Kyoto Encyclopedia of Genes and 285 Genomes (KEGG) pathway enrichment analysis were performed on the up-regulated 286 DEGs using DAVID (version 6.8) software. 287

288 2.11 Enzyme linked immunosorbent assay (ELISA)

289	The levels of inflammatory cytokines were detected by ELISA kits which purchased
290	from Shanghai Renjie Biotechnology. Briefly, the brain tissues were collected and
291	homogenized in 0.01 M ice-cold PBS (pH 7.4) and centrifuged at $3000 \times g$ for 15 min
292	at 4 °C. The levels interleukin-1 β (IL-1β, Cat#RJ16944, RenjieBio), IL-6
293	(Cat#RJ16958, RenjieBio), IL-4 (Cat#RJ16956, RenjieBio) and IL-10 (Cat#RJ16932,
294	RenjieBio) were detected by ELISA kits according to the product instruction.
295	2.12 Gelatin zymography
296	The activity of MMP9 in ischemic penumbra was detected by gelatin zymography
297	(Cat#P1700, Applygen, Beijing, China). Briefly, 30 µg protein samples were loaded on
298	10% triglycine gel with 0.1% gelatin as substrate for separation. After electrophoresis,
299	the gels were washed with distilled water and incubated at 37 °C for 24 h.
300	Subsequently, the gels were stained with coomassie brilliant blue staining solution
301	(Cat#P1305, Solarbio, Beijing, China) and the gels were scanned according to
302	manufacturer's instruction.
303	2.13 BBB model in vitro and determination of permeability
304	BBB model in vitro was used to detect permeability as described previously (T. Yang
305	et al., 2018). In brief, human BMVECs (hBMECs/D3) and human astrocytes
306	(U118MG) (secondary generation cells, ATCC, Manassas, VA, USA) were cultured in
307	Dulbecco's Modified Eagle's Medium (DMEM) supplemented with fetal bovine
308	serum, 100 U·mL ⁻¹ penicillin and 100 U·mL ⁻¹ streptomycin at 37 °C under a
309	humidified atmosphere containing 5% CO ₂ . Transwell inserts (0.4 μ m pore size) were

310	placed into 6-well plates to divide each well into luminal (top) and abluminal (bottom)
311	compartments. For the model of co-culture, human BMECs were seeded onto the
312	inserts and incubated till confluence was finished. Then inserts were reversed, and
313	astrocytes were seeded onto the reversed surface in the incubator for 20 min. After
314	BBB model achieved, hBMECs/U118MG cells were exposed to OGD/R as previously
315	described with modification. Briefly, hBMECs/U118MG co-cultures with appropriate
316	confluence washed three times with 0.01 M ice-cold PBS (pH 7.4) and the standard
317	culture medium was replaced with glucose-free earle's balanced salt solution medium.
318	Thereafter, the cells were transferred to a modular incubator chamber (MIC-101)
319	(Embrient Inc., USA) under oxygen-free N2/CO ₂ (95%/5%) gas and incubated for 4 h $$
320	at 37 °C. The hBMECs/U118MG co-cultures of control group were cultured in
321	standard medium. Thereafter, the culture medium of OGD/R group was replaced with
322	standard medium, or treated with (6.25, 12.5, 25, 50 μ M) for another 24 h.
323	Transepithelial electrical resistance (TEER) is a widely accepted quantitative
324	technique to measure the integrity of TJs in vitro BBB model. Following, TEER was
325	measured by an Millicell-ERS equipment (EMD Millipore corporation, USA), and
326	TEER values were calculated as $\Omega\cdot cm^2$ by multiplying the surface area of the
327	transwell insert as previously report.
328	2.14 Measurement of cell viability and death

- 329 The hBMECs/U118MG co-cultures were treated as mentioned above. The cell
- 330 viability was detected using Live/Dead cell viability assay (Cat#501-100, Biovision,
- 331 USA) as previously described. In brief, hBMECs/D3 and U118MG co-cultures were

332	stained with 1 mM Live-Dye (a cell-permeable green fluorescent dye) and 1 mg·mL ⁻¹
333	propidium iodide (a cell-impenetrable red fluorescent dye) incubated at 37 $^{\circ}$ C for 20
334	minutes then observed and photographed under a fluorescence microscope (Olympus
335	BX53, Tokyo, Japan). Green fluorescence represents live cells and red fluorescence
336	represents dead cells, and the percentage of dead cell (%) was calculated by the
337	percent of dead cells (red)/total cells (green and red) to represent live cells and dead
338	cells, respectively. In parallel, release of extracellular lactate dehydrogenase (LDH)
339	from injured cells was detected using LDH detection kit (Cat#RJ13762, Shanghai
340	Renjie Biotechnology Co., Ltd, Shanghai, China) according to the manufacturer's
341	protocol, and the absorbance was measured at 490 nm.
342	2.15 Transfection of siRNA
343	The hBMECs/U118MG cells were transfected with 100 nM MMP9-targeted siRNA
344	(5'-GTACCGCTATGGTTACACT-3') (Cat#stB0002323A, RIBOBIO CO., LTD.
345	Guangzhou, China) or scrambled siRNA by Lipofectamine 2000 in accordance with
346	the manufacturing instructions. The knockdown of endogenous MMP9 siRNA was
347	confirmed by western blot. The transfected hBMECs/U118MG cells were subjected to
348	OGD/R after being transfected for 48 h and treated with TLB (50 μM) or PH002 (200
349	nM) (Cat#HY-112798, Medchemexpress, China) an APOE4 inhibitor. Thereafter,
350	Live/Dead cell viability, LDH release, protein expressions of APOE4, CypA, and
351	MMP9 were determined in the following experiments.
352	2.16 Western blot

353 The protein samples from the ischemic penumbra were dissolved in RIPA buffer

354	(Cat#R0010, Solarbio, Beijing, China) which contained proteinase inhibitor PMSF
355	(Cat#P0100, Solarbio, Beijing, China). The lysate was centrifuged at $15,000 \times g$ for 15
356	min at 4 °C. Then the protein concentration was determined by BCA protein assay kit
357	(Cat#PC0020, Solarbio, Beijing, China). Subsequently, a 30 µg aliquot of the protein
358	samples from each group were loaded onto a 6-12% sodium dodecyl sulfate-
359	polyacrylamide gel electrophoresis and electro-transferred to a nitrocellulose
360	membrane. Thereafter, the membranes were blocked in 5% (w/v) non-fat powdered
361	milk (Cat#A600669-0250, Solarbio, Beijing, China) for 2 h at room temperature, then
362	incubated with primary antibodies against MMP9 (1:1000, Cat#38898, Abcam),
363	TIMP1 (1:2000, Cat#61224, Abcam), claudin 5 (1:2000, Cat#5216, Affinity
364	Biosciences), occludin (1:5000, Cat#167161, Abcam), ZO-1 (1:1000, Cat#21773-1-
365	AP, Proteintech), APOE4 (1:1000, Cat#279714, Abcam), CypA (1:1000, Cat#41684,
366	Abcam), NF-κB p65 (1:1000, Cat#16502, Abcam), phosphorylation-NF-κB (1:1000,
367	Cat#82699, Abcam), IκB-α (1:1000, Cat#32518, Abcam), phosphorylation-IKK-α
368	(1:1000, Cat#38515, Abcam), IKK-α (1:1000, Cat#38575, Abcam), phosphorylation-
369	IKK-β (1:1000, Cat#194519, Abcam), IKK-β (1:1000, Cat#124975, Abcam), NLRP3
370	(1:1000, Abcam, Cat#263899), caspase 3 (1:1000, Cat#13847, Abcam), cleaved-
371	caspase 3 (1:2000, Cat#2302, Abcam), Bcl-2 (1:1000, Cat#59348, Abcam), Bax
372	(1:1000, Cat#32503, Abcam), GAPDH (1:2000, Cat#60004-1-lg, Proteintech), α-
373	Tublin (1:2000, Cat#11224-1-AP Proteintech), and β -actin (1:2000, Cat#66009-1-lg,
374	Proteintech) overnight at 4 °C. Subsequently, the bands were incubated with
375	secondary antibody HRP-conjugated Affinipure Goat Anti-Mouse IgG (H+L) (1:5000,

- 376 Cat#SA00001-1, Proteintech) or HRP-conjugated Affinipure Goat Anti-Rabbit IgG
- 377 (H+L) (1:5000, Cat#SA00001-2, Proteintech) for 2 h at room temperature. Then,
- representative bands were visualized with ECL detection reagents (Cat#MA0186,
- 379 Meilunbio, Shanghai, China) and quantified on a ChemiDoc MP Imaging System
- 380 (Bio-Rad Laboratories, Inc., Hercules, CA, USA).

381 2.17 Molecular docking

- 382 The affinity between TLB and APOE4, CypA, NF-κB or MMP9 were predicted using
- in silico computational molecular docking as described in our previous study(Zheng
- et al., 2020). In brief, the three-dimensional protein structures of APOE4 (PDB ID:

385 1GS9), CypA (PDB ID: 1L6J), NF-κB (PDB ID: 1MY5) and MMP9 (PDB ID: 1L6J)

- 386 were retrieved from the protein data bank (PDB). The autodock 4.2 software and
- 387 PyMOL software were used to determine the interaction of TLB and APOE4, CyA,
- 388 NF-κB or MMP9.

389 2.18 Molecular Dynamic (MD) simulation

390 Gromacs2022.3 software was used for molecular dynamics simulation. For small

391 molecule preprocessing, AmberTools22 is used to add GAFF force field to small

- 392 molecules, while Gaussian 16W is used to hydrogenate small molecules and calculate
- 393 RESP potential. Potential data will be added to the topology file of molecular
- 394 dynamics system(Abraham, Murtola, Schulz, Páll, & Lindahl, 2015; Van Der Spoel et
- al., 2005). The simulation system adopts the steepest descent method to minimize the
- 396 energy, and then carries out the isothermal isovolumic ensemble (NVT) equilibrium
- 397 and isothermal isobaric ensemble (NPT) equilibrium for 100000 steps, respectively,

398	with the coupling constant of 0.1 ps and the duration of 100ps. Finally, the free
399	molecular dynamics simulation was performed. The process consisted of 5000000
400	steps, the step length was 2fs, and the total duration was 100ns. After the simulation
401	was completed, the built-in tool of the software was used to analyze the trajectory, and
402	the root-mean-square variance (RMSD), root-mean-square fluctuation (RMSF) and
403	protein rotation radius of each amino acid trajectory were calculated, combined with
404	the free energy (MMPBSA), free energy topography and other data.
405	2.19 Statistical analysis
406	The data and statistical analysis were in line with the British Journal of
407	Pharmacology guidelines on experimental design and analysis (Curtis, Ashton, Moon,
408	& Ahluwalia, 2018). All values were expressed as mean \pm SD and analyzed using
409	GraphPad Prism 5.0 software (GraphPad Software, San Diego, CA, USA), where n
410	represents the number of independent experiments and not replicates. All experiments
411	were designed to generate groups of equal size, using randomization and blinded
412	analysis. All the statistical analysis were performed only for studies containing at least
413	5 independent values ($n \ge 5$), and no values were excluded from the data used for
414	statistical analysis. Statistical significance between two independent groups was
415	analyzed using unpaired two-tailed Student's t test or multiple comparison were
416	performed using one-way analysis of variance (ANOVA) followed by Bonferroni's
417	post hoc test. $P < 0.05$ was considered a statistically significant difference.
418	3. Results

419 3.1 TLB effectively protects against BBB disruption after cerebral I/R insult

420	The rats underwent MCAO/R to achieve cerebral I/R animal model as described in
421	our previous study. First, the regional cerebral blood flow (rCBF) decreased to less
422	than 20% and recovered to more than 80% of baseline, indicating that a successful
423	cerebral I/R model was achieved (Fig.1a, b). Subsequently, the results showed that
424	TLB significantly reduced the neurological deficits and cerebral infract volume after
425	cerebral I/R injury in rats (Fig.1c-e), in consistent with our previous findings. Based
426	on these results, BBB integrity and ultrastructural changes were observed by EB
427	leakage staining and TEM. The results showed that leakage of EB dye was
428	significantly increased in MCAO group in comparison with sham group, suggesting
429	that cerebral I/R injured BBB integrity. Whereas, TLB markedly decreased the
430	leakage of EB dye after cerebral I/R injury (Fig.1f, g). Furthermore,
431	the cap appeared stenosis, the neuron morphology became atypically disorganized and
432	MS was unclear or with demyelination in comparison with sham group. However,
433	TLB reversed these ultrastructural changes (Fig. 1h). These findings demonstrate that
434	the BBB protection is involved in the neuroprotective effect of TLB against cerebral
435	I/R injury.

436 **3.2 TLB suppresses injury to the hippocampus, cortex and striatum following**

437 *cerebral I/R injury and microarray data analysis*

438 HE staining was applied to determine the effects of TLB on histopathological changes

- 439 after cerebral I/R injury. The results showed that cell boundary and the numbers of
- 440 neurons in hippocampus (CA1, CA3, DG regions), cortex and striatum disappeared or
- 441 reduced after cerebral I/R insult. However, TLB significantly reversed these changes

442	in hippocampus (CA1, CA3, DG regions), cortex and striatum (Fig. 2a). These
443	findings indicate that TLB effectively suppresses cerebral I/R-induced neuronal
444	damage in hippocampus, cortex and striatum. To investigate the potential molecular
445	mechanisms of TLB effects in I/R rats, we detected the transcriptome of cerebral
446	tissue in rats. We discovered that up-regulation of 1567 DEGs were analyzed in
447	MCAO versus sham group, while 521 DEGs were analyzed in MCAO versus MCAO
448	+ TLB group. In addition, 179 of 700 DEGs that responded to TLB treatment were
449	related with DEGs caused by brain I/R injury, according to a Venn diagram (Fig. 2b).
450	Moreover, GO terms enrichment and KEGG pathways were described for the selected
451	1764 DEGs. As the results, GO enrichment analysis showed that DEGs involved in
452	inflammation response, hypoxia, positive regulation of I κ B- α kinase/NF- κ B signaling,
453	positive regulation of NF-κB transcription factor activity, and apoptotic process, et al.
454	(Fig. 2c). In addition, KEGG enrichment analysis showed that DEGs participated in
455	many signaling pathways, such as focal adhesion, PI3K-Akt signaling pathway, cell
456	adhesion molecules, NF-KB signaling pathway, NOD-like receptor signaling pathway,
457	and TNF signaling pathway (Fig. 2d). Furthermore, a total of 700 DEGs were
458	identified after TLB treatment that analyzed by PPI. These DEGs encode 2884 pairs
459	of interacting proteins, and the size of the circle represents the degree to which the
460	protein is associated with other proteins. Obviously, MMP9 was involved in 336
461	interactions, suggesting that MMP9 may be the main relevant signaling molecule (Fig.
462	2e).

464	BBB breakdown after stimulation of cerebral I/R injury subsequently leads to
465	neuronal loss and impairment of TJs (Fig. 3a). Hence, we determined whether TLB
466	affects the neurons and the expression of TJ proteins. The results showed that the
467	Nissl body dissolution in hippocampus (CA1, CA3, DG regions) and cortex were
468	decreased in MCAO group than those of sham group as evidenced by Nissl staining.
469	Whereas, TLB significantly increased the number of Nissl bodies (Fig. 3b-f).
470	Moreover, TJ proteins including ZO-1, claudin 5 and occludin protein expressions
471	were increased in MCAO group in comparison with sham group. However, TLB
472	significantly increased the expression of TJ proteins after cerebral I/R injury (Fig. 3g-
473	l). These findings demonstrate that TLB effectively maintain the BBB integrity
474	through protecting against loss of neuron and impairment of TJs.
475	3.4 TLB balances TIMP1/MMP9 and suppresses APOE4/CypA signaling pathway
475 476	3.4 TLB balances TIMP1/MMP9 and suppresses APOE4/CypA signaling pathway after cerebral I/R insult
475 476 477	3.4 TLB balances TIMP1/MMP9 and suppresses APOE4/CypA signaling pathway after cerebral I/R insult According to the results of transcriptomics, MMP9/TIMP1 balance, APOE4 and
475 476 477 478	3.4 TLB balances TIMP1/MMP9 and suppresses APOE4/CypA signaling pathway after cerebral I/R insult According to the results of transcriptomics, MMP9/TIMP1 balance, APOE4 and CypA protein expressions, as well as MMP9 activity were measured. The results
475 476 477 478 479	3.4 TLB balances TIMP1/MMP9 and suppresses APOE4/CypA signaling pathway after cerebral I/R insult According to the results of transcriptomics, MMP9/TIMP1 balance, APOE4 and CypA protein expressions, as well as MMP9 activity were measured. The results showed that distribution and expression of MMP9 as well as its activity were
475 476 477 478 479 480	3.4 TLB balances TIMP1/MMP9 and suppresses APOE4/CypA signaling pathway after cerebral I/R insult According to the results of transcriptomics, MMP9/TIMP1 balance, APOE4 and CypA protein expressions, as well as MMP9 activity were measured. The results showed that distribution and expression of MMP9 as well as its activity were increased in MCAO group than those in sham group (Fig. 4a-g). While, distribution
 475 476 477 478 479 480 481 	3.4 TLB balances TIMP1/MMP9 and suppresses APOE4/CypA signaling pathway after cerebral I/R insult According to the results of transcriptomics, MMP9/TIMP1 balance, APOE4 and CypA protein expressions, as well as MMP9 activity were measured. The results showed that distribution and expression of MMP9 as well as its activity were increased in MCAO group than those in sham group (Fig. 4a-g). While, distribution and expression of TIMP1 were decreased in MCAO group than those in sham group
 475 476 477 478 479 480 481 482 	3.4 TLB balances TIMP1/MMP9 and suppresses APOE4/CypA signaling pathway after cerebral I/R insult According to the results of transcriptomics, MMP9/TIMP1 balance, APOE4 and CypA protein expressions, as well as MMP9 activity were measured. The results showed that distribution and expression of MMP9 as well as its activity were increased in MCAO group than those in sham group (Fig. 4a-g). While, distribution and expression of TIMP1 were decreased in MCAO group than those in sham group (Fig. 4h-1). However, TLB obviously reversed these changes in the cortex and
 475 476 477 478 479 480 481 482 483 	3.4 TLB balances TIMPI/MMP9 and suppresses APOE4/CypA signaling pathway after cerebral I/R insult According to the results of transcriptomics, MMP9/TIMP1 balance, APOE4 and CypA protein expressions, as well as MMP9 activity were measured. The results showed that distribution and expression of MMP9 as well as its activity were increased in MCAO group than those in sham group (Fig. 4a-g). While, distribution and expression of TIMP1 were decreased in MCAO group than those in sham group (Fig. 4h-l). However, TLB obviously reversed these changes in the cortex and striatum after cerebral I/R injury. Furthermore, the results showed that the protein
 475 476 477 478 479 480 481 482 483 484 	3.4 TLB balances TIMPI/MMP9 and suppresses APOE4/CypA signaling pathway after cerebral I/R insult According to the results of transcriptomics, MMP9/TIMP1 balance, APOE4 and CypA protein expressions, as well as MMP9 activity were measured. The results showed that distribution and expression of MMP9 as well as its activity were increased in MCAO group than those in sham group (Fig. 4a-g). While, distribution and expression of TIMP1 were decreased in MCAO group than those in sham group (Fig. 4h-l). However, TLB obviously reversed these changes in the cortex and striatum after cerebral I/R injury. Furthermore, the results showed that the protein expression of APOE4 (Fig. 4m, n) and CypA (Fig. 4o, p) protein expression were

486 increases were significantly reduced by TLB. These findings suggest that

487 MMP9/TIMP1 balance and APOE4/CypA signaling are participate the protective

488 effect of TLB against BBB disruption.

489 3.5 TLB inhibits neuroinflammation via regulating NF-κB signaling pathway after
 490 cerebral I/R insult

- 491 Since neuroinflammation plays a vital role in the BBB breakdown following cerebral
- 492 I/R injury, we thereafter determined the effect of TLB on cytokines release and NF-
- 493 κ B signaling pathway. The results showed that the pro-inflammatory cytokines IL-1 β
- and IL-6 were increased, and the anti-inflammatory cytokines IL-4 and IL-10 were
- decreased in MCAO group compared to sham group; Whereas, TLB significantly
- 496 reversed these changes after cerebral I/R injury (Fig. 5a-d). Furthermore, the protein
- 497 expression of $I\kappa B-\alpha$ was decreased in MCAO group compared to sham group.
- 498 However, TLB significantly increased the protein expression of $I\kappa B-\alpha$ after cerebral
- 499 I/R injury (Fig. 5e, f). In addition, protein phosphorylation levels of NF-κB p65, IKK-
- 500 α , IKK- β and the expression of NLRP3 were increased in MCAO group compared to

sham group. Whereas, TLB markedly reversed these changes (Fig. 5g-n). These

- 502 findings indicate that TLB also effectively inhibits neuroinflammation after cerebral
- 503 I/R insult.

504 3.6 TLB suppresses neuronal death through inhibiting caspase 3-dependent

505 apoptosis pathway after cerebral I/R injury

- 506 In addition, TUNEL staining and Western blot were used to confirm the anti-apoptotic
- 507 effects of TLB on neurons in cerebral I/R-induced BBB breakdown. The results

508	showed that the TUNEL-positive cells were increased in CA1, CA3, DG regions of
509	hippocampus and cortex in MCAO group compared to sham group. However, TLB
510	significantly reduced the TUNEL-positive cells in hippocampus and cortex after
511	cerebral I/R injury (Fig. 6a-e). Furthermore, Bax/Bcl-2 ratio and the protein level of
512	cleaved-caspase 3 were up-regulated in MCAO group compared to sham group.
513	Whereas, TLB markedly reversed these changes (Fig. 6f-i). These findings indicate
514	that TLB effectively hinders the BBB disruption-elicited neuronal death, at least
515	partly, through inhibiting caspase 3-dependent apoptosis pathway.
516	3.7 TLB inhibits loss of BBB integrity through activating APOE4/CypA/MMP9
517	signaling pathway after OGD/R insult in vitro
518	To further investigate the mechanism of TLB-evoked BBB protection after cerebral
519	I/R injury, we used human BMEC (hBMECs/D3) and astrocytes (U118MG) co-
520	cultures in vitro to mimic cerebral I/R-induced BBB breakdown in vitro. TEER value
521	is deemed as a bio-indicator of BBB integrity study in vitro due to it can reflect the
522	integrity of cell. The BBB model in vitro was accepted when the TEER value of
523	200~300 Ω · cm ² . The results showed that TLB (12.5, 25, 50 μ M) not only
524	significantly increased TEER value, but also inhibited the cellular death after OGD/R
525	insult, as evidenced by Millicell-ERS equipment and LDH leakage, respectively
526	(Supplementary Fig. S1). Whereas, PH002, an APOE4 inhibitor, strengthened the
527	beneficial effects of TLB on OGD/R-induced cellular integrity injury (Fig. 7a-e),
528	which suggested that TLB conferred BBB protection was required APOE4.
529	Subsequently, in keeping with the results in in vivo, APOE4, CypA and MMP9 protein

530 expressions were increased after OGD/R insult. However, TLB significantly reversed

these changes (Fig. 7f, i). Interestingly, PH002 reinforced the inhibitory effects of

532 TLB on APOE4, CypA and MMP9 protein expressions upon OGD/R (Fig. 7f, i).

533 These results suggest that APOE4/CypA/MMP9 pathway is involved in TLB-evoked

534 BBB protection.

535 **3.8** The interaction between TLB and MMP9

536 To further clarify the potential targets of TLB as mentioned above, we used in silico

537 computational molecular docking to predict the affinity between TLB and APOE4,

538 CypA or NF-κB. The data displayed that the binding energy between TLB and

539 APOE4, CypA or MMP9 was -4.26, -4.97, or -7.2 kcal·mol⁻¹, which indicated that

- 540 TLB could bind to MMP9, but not APOE4 and CypA (Fig. 8a). These results suggest
- that TLB could directly combined with MMP9, thus activate the MMP9 signaling

542 pathway. The gibbs energy landscape helps to understand conformational change and

543 energy minimization. The dark blue is the energy minimum, means the lowest energy

- and the dispersion represents the flexibility of the conformation. The results showed
- that a large area was presented in the plot for TLB-MMP9 complex, suggest there is

546 no significant conformational changes in the complex structure (Fig. 8b). In the gibbs

547 energy profile, purple represents the energy minimum, the greater the energy

548 minimum is, the better the structural stability of the complex. The TLB-MMP9

- 549 complex depicts the stability which correlates the previous gibbs energy landscape
- 550 (Fig. 8c). Moreover, The RMSD of protein backbone indicates the structural stability
- 551 during MD simulations. As shown in Fig. 8d, The protein structure was stable during

552 100000 ps MD simulation. Different flexibility of MMP9 binding sites were observed

- by RMSF analysis, as a result, most MMP9-bound residues exhibited less flexibility
- with RMSF less than 0.5 Å, suggesting that these residues showed stronger rigidity
- due to binding with TLB (Fig. 8e). These results indicate that the TLB was stably
- 556 targeting the MMP9.

3.9 TLB exerts protective effect on OGD/R-induced BBB integrity disruption through directly bind to and hinders MMP9

- 559 Furthermore, knock down of MMP9 by siRNA in human BMEC/astrocytes co-
- 560 cultures substantially strengthened the protective effect of TLB on OGD/R-induced
- 561 impairment of BBB integrity (Fig. 9a). As evidenced by increase of TEER value and
- 562 cell viability and decrease of LDH leakage (Fig. 9b-e). These findings confirm that
- 563 MMP9 might be the potential therapeutic target of TLB against cerebral I/R-induced
- 564 BBB disruption.

565 **4. Discussion**

- 566 The present study unveils, for the first time, that (1) TLB confers BBB protection on
- 567 I/R injury due to decrease neuroinflammation and inhibit caspase-3-dependent
- 568 apoptosis; (2) TLB evokes robust BBB protection via APOE4/CypA/NF-κB signaling
- 569 pathway; (3) TLB interacts with MMP9, and the protective effects of TLB on BBB
- are strengthened by knockdown of MMP9 (Fig. 10). Collectively, our findings
- 571 uncover a novel property of TLB: rescuing BBB breakdown after cerebral I/R injury
- 572 by targeting MMP9 via mediating APOE4/CypA/NF-κB pathway, and put forward
- ⁵⁷³ "proof-of-concept" for BBB protection of TLB against cerebral ischemic stroke.

574	The BBB plays the prominent role in keeping homeostasis within the central nervous
575	system through blocking foreign substances from the blood into the brain tissue
576	(Chang et al., 2017). Cerebral I/R elicits BBB endothelial cell lesion and BBB
577	destruction, which is linked with BBB leakage, incremental permeability and
578	inflammatory cell infiltration (Lama et al., 2022; Lei et al., 2021), yet there are still
579	unapproachable to efficacious clinic interventions of BBB breakdown following
580	cerebral I/R injury. Our previous study revealed that TLB effectively protected against
581	cerebral I/R injury inasmuch as it possesses excellent anti-inflammatory property (J.
582	Gao, Chen, et al., 2020). However, whether TLB can rescue the BBB disruption after
583	cerebral I/R injury is still obscure. Encouragingly, the present study corroborates and
584	extends our previous findings that TLB at the most effective dose of 20 mg \cdot kg ⁻¹
585	reduced neurological dysfunction and cerebral infarction in MCAO/R rat model,
586	which are consistent with our previous research results. Furthermore, we found that
587	EB leakages, hippocampal and cortical neuron damage were significantly augmented
588	in the ischemic zone, indicating that cerebral I/R injury causes severe BBB
589	destruction. By comparison, TLB markedly decreased BBB permeability and
590	prevented neuronal damage, suggesting that preserving BBB integrity contributes to
591	TLB's neuroprotective effects on ischemic stroke. In addition, the breakdown of the
592	BBB after cerebral I/R produces degradation of TJs and direct or indirectly cause loss
593	or injured neurons. Encouragingly, the results showed that TLB effectively blocked
594	neuron loss in hippocampus and cerebral cortex after cerebral I/R challenge. These
595	results are also well elucidated our previous findings that TLB restores long-term

596 neurological functions upon cerebral I/R injury.

597	What's more, TJs involve a sequence of proteins distributed between endothelial cells
598	and are responsible for maintaining the BBB integrity (Ben-Zvi et al., 2014). The
599	results in this study showed that TLB dramatically increased TJs including ZO-1,
600	occludin and claudin 5 upon cerebral I/R, which suggested that TLB preserved BBB
601	integrity and rescued neuron loss through maintaining TJs. However, the detailed
602	mechanisms that mediate BBB protection of TLB is blurry. Subsequently,
603	transcriptome analysis was utilized to predict the possible underlying mechanism of
604	TLB-triggered BBB protection. Transcriptomics pointed out that DEGs were
605	primarily enriched in ECM-receptor interaction, cell adhesion molecules,
606	inflammatory response, $I\kappa B/NF$ - κB and apoptosis signaling pathways. Importantly,
607	there is a potent interaction between the MMP9 signaling molecule and the DEGs
608	induced by TLB. Taking clues from the transcriptomics data we thereafter quest to
609	validate these findings in the MCAO/R rat model. Cerebral I/R injury results in
610	intricate signaling pathways inducing apoptosis, a type of programmed cell death
611	(Matei et al., 2018). In damaged brain tissue, there were multiple genes that modulate
612	neuronal apoptosis, involving Bcl-2 (a gene that hinders apoptosis) and Bax (a gene
613	that accelerates apoptosis) and caspase 3(Cai et al., 2022; Yu et al., 2022). The
614	heterodimer of Bcl-2/Bax will be formed to hinder apoptosis when the expression of
615	Bcl-2 augmented. In contrast, the homodimer of Bax/Bax will be formed to accelerate
616	apoptosis when the expression of Bax augmented (Richter et al., 2022). Thus,
617	Bax/Bcl-2 ratio can reflect the tendency of cell towards to apoptosis or survival upon

618	stimuli. While, caspase 3 is a crucial modulator of apoptosis and involves in the
619	cellular death signaling transduction (Khalifa, El Sokkary, Elblehi, Diab, & Ali, 2022).
620	Our results demonstrated that Bax/Bcl-2 ratio and cleaved-caspase 3 in ischemic
621	penumbra tissues significantly increased after cerebral I/R injury, whereas these
622	increases were reversed by TLB. Of note, recent studies report that injured neurons
623	induced by neuronal apoptosis in hippocampus and cerebral cortex occurred following
624	cerebral I/R injury (Z. Yang et al., 2022). We found that TLB effectively reduced
625	numbers of apoptotic cell in hippocampus and cerebral cortex of ischemic penumbra
626	after cerebral I/R injury. Besides, NF-kB/NLRP3 axis is involved in BBB disruption
627	and induces apoptosis after cerebral I/R injury (Iorio, Celenza, & Petricca,
628	2022).NLRP3 is a prominent modulator of neuroinflammation and induces apoptosis
629	in response to cerebral I/R injury (Ito et al., 2015). NF-κB is a vital transcription
630	factor and the initial signal for eliciting the NLRP3 inflammasome formation, whose
631	activity is mediated by IkB, an inhibitor of NF-kB (Zou et al., 2022). In unactivated
632	condition, NF- κ B dimer binds to I κ B in the cytoplasm. Upon simulation of
633	inflammatory response, IKK- α and- β , are the two catalytic subunits of the IKK, were
634	activated and then phosphorylate the IkB-bound-NF-kB protein complex, which
635	facilitates NF-kB nuclear translocation, and subsequently accelerates proinflammatory
636	factors release (Kwon et al., 2021). As expected, we found that TLB markedly
637	reduced cerebral I/R injury-induced proinflammatory factors via mediated NF-
638	κ B/NLRP3 axis. Furthermore, MMP9 is a pivotal member of MMPs and enriched in
639	astrocytes and ECs, which is activated by NF- κ B and injures TJs and basilar

640	membrane, resulting in BBB breakdown after cerebral I/R injury (B. Liu et al., 2021;
641	Medina-Flores et al., 2020). Recent studies have found that the proinflammatory
642	CypA/NF-кB/MMP9 pathway controls integrity of BBB, which requires APOE4
643	(Bell et al., 2012). APOE4 is an isoform of APOE that is enrichment in astrocytes,
644	resulting in chronic neuroinflammation (Tcw et al., 2022). Of note, APOE4
645	contributes to accelerated BBB disruption and deterioration of brain capillary
646	pericytes that sustain integrity of BBB in the pathology of Alzheimer's disease
647	(Arnaud et al., 2022). However, whether APOE4 is also an ischemic stroke
648	susceptibility gene is unclear. Intriguingly, we found that APOE4 protein expression
649	were significantly increased after cerebral I/R injury, which suggested that APOE4
650	also act as an important effector for mediation of BBB integrity in ischemic stroke.
651	whereas, TLB effectively reduced APOE4 following challenged by cerebral I/R injury.
652	Moreover, in keeping with theory that CypA at pathophysiological levels activates the
653	NF-κB/MMP9 pathway (Bell et al., 2012), we found that CypA and MMP9 protein
654	expressions were increased, and TIMP (an inhibitor of MMP9) protein expression was
655	decreased upon cerebral I/R stimuli; however, these changes were reversed by TLB,
656	which suggested that APOE4/CypA/NF-KB/MMP9 signaling pathway was involved
657	in the BBB protection of TLB on cerebral I/R injury.
658	Collectively, these findings suggested that TLB rescues BBB breakdown following
659	cerebral I/R insult, at least partly, through APOE4/CypA/NF-KB/MMP9 signaling
660	pathway, thereby inhibits inflammation and apoptosis, consisting with the results of
661	transcriptomics. Nevertheless, the detailed mechanism or potential targets are still

662 unclear and it deserves to be elucidated in-depth.

663	Subsequently, we predicted the possible underlying targets of TLB with the help of in
664	silico computational molecular docking. The results showed that TLB directly bound
665	to MMP9, but not APOE4, CypA and NF-KB. Combined with the results mentioned
666	above, we hypothesized that MMP9 might be the potential targets of TLB on cerebral
667	I/R injury-induced BBB breakdown. To test that hypothesis, we used OGD/R-induced
668	injury in co-cultured human BMVECs and astrocytes in vitro to mimic BBB
669	breakdown in vivo. Our data showed that TLB effectively inhibited OGD/R-induced
670	loss of cellular integrity and cell death in ECs, in line with the results in <i>in vivo</i> . Next,
671	to understand the contribution of MMP9 to the BBB protection of TLB, MMP9 gene
672	was silenced in OGD/R stimulated human BMVECs and astrocytes. The results
673	revealed that knockdown of MMP9 by siRNA substantially abolished the OGD/R-
674	induced injury in ECs, in consistent with the theory that MMP9 plays a vital role in
675	maintaining BBB integrity. Whereas, the protective effect of TLB on ECs after
676	OGD/R insult was markedly reinforced by knockdown of MMP9, which suggested
677	that MMP9 might be the potential target of TLB-evoked BBB protection.
678	In the present study, the findings extend our previous discovery of TLB protects
679	against cerebral I/R injury and present a novel target of TLB for salvation of BBB
680	breakdown. Intriguingly, our findings reveal that APOE4 maintains BBB integrity
681	essential for neurological function through mediating the CypA/NF- κ B/MMP9
682	signaling pathway. We also found that MMP9 is a potential target of TLB for
683	combating APOE4-modulated BBB disruption in ischemic stroke. Notwithstanding

684	promotional experimental evidences, there are still limitations in this study. First,
685	despite we offer a directly evidence that TLB could maintain the BBB integrity after
686	cerebral I/R injury, whether TLB can penetrate BBB and what is the pharmacokinetic,
687	distribution and metabolism of TLB in the brain during ischemic stroke are blurry.
688	Second, whether TLB could hinder hemorrhagic transformation following BBB
689	breakdown is unclear. Finally, whether TLB impacts other mechanisms such as
690	autophagy, ferroptosis, pyroptosis after BBB disruption in ischemic stroke is also
691	unknown. In fact, these outstanding issues will be addressed in our next study.
692	In summary, our findings uncover that TLB confers robust protection aginst BBB
693	disruption after cerebral I/R injury by targeting MMP9 through mediating
694	APOE4/CypA/NF-κB axis. These findings suggest that TLB may be a powerful
695	weapon in conquering ischemic stroke and expands the probability of new tactics to
696	accomplish neuroprotection.
697	References
698	Abraham, M. J., Murtola, T., Schulz, R., Páll, S., & Lindahl, E. J. S. (2015).
699	GROMACS: high performance molecular simulations through multi-level
700	parallelism from laptops to supercomputers. Softwarex, 1-2(C), 19-25.
701	Arnaud, L., Benech, P., Greetham, L., Stephan, D., Jimenez, A., Jullien, N., Nivet,
702	E. (2022). APOE4 drives inflammation in human astrocytes via TAGLN3
703	repression and NF-kappaB activation. Cell Rep, 40(7), 111200.
704	doi:10.1016/j.celrep.2022.111200

706	В.	V.	(2012).	Apolipoprotein	E	controls	cerebrovascular	integrity	via
707	сус	loph	nilin A. N	ature, 485(7399),	, 51	2-516. do	i:10.1038/nature1	1087	

- 708 Ben-Zvi, A., Lacoste, B., Kur, E., Andreone, B. J., Mayshar, Y., Yan, H., & Gu, C.
- (2014). Mfsd2a is critical for the formation and function of the blood-brain
 barrier. Nature, 509(7501), 507-511. doi:10.1038/nature13324
- Cai, Y., Lu, X., Cheng, X., Lv, Q., Xu, G., & Liu, X. (2022). Increased renal
 dysfunction, apoptosis, and fibrogenesis through sympathetic hyperactivity
 after focal cerebral infarction. Transl Stroke Res, 13(4), 641-651.
 doi:10.1007/s12975-021-00900-w
- 715 Calderon, M. R., Mori, M., Kauwe, G., Farnsworth, J., Ulian-Benitez, S., Maksoud,
- E., ... Haghighi, A. P. (2022). Delta/Notch signaling in glia maintains motor nerve barrier function and synaptic transmission by controlling matrix metalloproteinase expression. Proc Natl Acad Sci U S A, 119(34),

719 e2110097119. doi:10.1073/pnas.2110097119

- 720 Chang, J., Mancuso, M. R., Maier, C., Liang, X., Yuki, K., Yang, L., ... Kuo, C. J.
- (2017). Gpr124 is essential for blood-brain barrier integrity in central nervous
 system disease. Nat Med, 23(4), 450-460. doi:10.1038/nm.4309
- Chen, H., Guan, B., Chen, S., Yang, D., & Shen, J. (2021). Peroxynitrite activates
 NLRP3 inflammasome and contributes to hemorrhagic transformation and
 poor outcome in ischemic stroke with hyperglycemia. Free Radic Biol Med,
 165, 171-183. doi:10.1016/j.freeradbiomed.2021.01.030
- 727 Chen, N., Wang, J., He, Y., Xu, Y., Zhang, Y., Gong, Q., ... Gao, J. (2020).

- Trilobatin protects against abeta25-35-induced hippocampal HT22 cells
 apoptosis through mediating ROS/p38/Caspase 3-dependent pathway. Front
 Pharmacol, 11, 584. doi:10.3389/fphar.2020.00584
- Chen, X., Zhang, J., & Wang, K. (2022). Inhibition of intracellular proton-sensitive
 Ca(2+)-permeable TRPV3 channels protects against ischemic brain injury.
 Acta Pharm Sin B, 12(5), 2330-2347. doi:10.1016/j.apsb.2022.01.001
- Curtis, M. J., Ashton, J. C., Moon, L. D. F., & Ahluwalia, A. (2018). Clarification of
- 735the basis for the selection of requirements for publication in the British Journal
- 736 of Pharmacology. Br J Pharmacol, 175(18), 3633-3635.
 737 doi:10.1111/bph.14443
- Fan, X., Zhang, Y., Dong, H., Wang, B., Ji, H., & Liu, X. (2015). Trilobatin
 attenuates the LPS-mediated inflammatory response by suppressing the NFkappaB signaling pathway. Food Chem, 166, 609-615.
 doi:10.1016/j.foodchem.2014.06.022
- Fischer, U., Kaesmacher, J., Strbian, D., Eker, O., Cognard, C., Plattner, P. S., ...
 Collaborators, S. D. (2022). Thrombectomy alone versus intravenous alteplase
 plus thrombectomy in patients with stroke: an open-label, blinded-outcome,
 randomised non-inferiority trial. Lancet, 400(10346), 104-115.
 doi:10.1016/S0140-6736(22)00537-2
- Gao, J., Chen, N., Li, N., Xu, F., Wang, W., Lei, Y., ... Gong, Q. (2020).
 Neuroprotective effects of trilobatin, a novel naturally occurring Sirt3 agonist
 from lithocarpus polystachyus rehd., mitigate cerebral ischemia/reperfusion

750	injury: involvement of TLR4/NF-kappaB and Nrf2/Keap-1 signaling. Antioxid
751	Redox Signal, 33(2), 117-143. doi:10.1089/ars.2019.7825
752	Gao, J., Liu, S., Xu, F., Liu, Y., Lv, C., Deng, Y., Gong, Q. (2018). Trilobatin
753	protects against oxidative injury in neuronal PC12 cells through regulating
754	mitochondrial ROS homeostasis mediated by AMPK/Nrf2/Sirt3 signaling
755	pathway. Front Mol Neurosci, 11, 267. doi:10.3389/fnmol.2018.00267
756	Gao, J., Long, L., Xu, F., Feng, L., Liu, Y., Shi, J., & Gong, Q. (2020). Icariside II, a
757	phosphodiesterase 5 inhibitor, attenuates cerebral ischaemia/reperfusion injury
758	by inhibiting glycogen synthase kinase-3beta-mediated activation of
759	autophagy. Br J Pharmacol, 177(6), 1434-1452. doi:10.1111/bph.14912
760	Gao, J. M., Zhang, X., Shu, G. T., Chen, N. N., Zhang, J. Y., Xu, F., Gong, Q. H.
761	(2022). Trilobatin rescues cognitive impairment of Alzheimer's disease by
762	targeting HMGB1 through mediating SIRT3/SOD2 signaling pathway. Acta
763	Pharmacol Sindoi:10.1038/s41401-022-00888-5
764	Gong, S., Cao, G., Li, F., Chen, Z., Pan, X., Ma, H., Kou, J. (2021). Endothelial
765	conditional knockdown of NMMHC IIA (nonmuscle myosin heavy chain IIA)
766	attenuates blood-brain barrier damage during Ischemia-reperfusion injury.
767	Stroke, 52(3), 1053-1064. doi:10.1161/STROKEAHA.120.031410
768	Iorio, R., Celenza, G., & Petricca, S. (2022). Multi-target effects of ß-caryophyllene
769	and carnosic acid at the crossroads of mitochondrial dysfunction and
770	neurodegeneration: from oxidative stress to microglia-mediated
771	neuroinflammation. Antioxidants (Basel), 11(6)doi:10.3390/antiox11061199

772	Ito, M., Shichita, T., Okada, M., Komine, R., Noguchi, Y., Yoshimura, A., & Morita,
773	R. (2015). Bruton's tyrosine kinase is essential for NLRP3 inflammasome
774	activation and contributes to ischaemic brain injury. Nat Commun, 6, 7360.
775	doi:10.1038/ncomms8360
776	Khalifa, A. A., El Sokkary, N. H., Elblehi, S. S., Diab, M. A., & Ali, M. A. (2022).
777	Potential cardioprotective effect of octreotide via NOXs mitigation,
778	mitochondrial biogenesis and MAPK/Erk1/2/STAT3/NF-kbeta pathway
779	attenuation in isoproterenol-induced myocardial infarction in rats. Eur J
780	Pharmacol, 925, 174978. doi:10.1016/j.ejphar.2022.174978
781	Kilkenny, C., Browne, W., Cuthill, I. C., Emerson, M., Altman, D. G., & Group, N. C.
782	R. R. G. W. (2010). Animal research: reporting in vivo experiments: the
783	ARRIVE guidelines. Br J Pharmacol, 160(7), 1577-1579. doi:10.1111/j.1476-
784	5381.2010.00872.x
785	Kim, Y. Y., Hur, G., Lee, S. W., Lee, S. J., Lee, S., Kim, S. H., & Rho, M. C. (2020).
786	AGK2 ameliorates mast cell-mediated allergic airway inflammation and
787	fibrosis by inhibiting FcepsilonRI/TGF-beta signaling pathway. Pharmacol
788	Res, 159, 105027. doi:10.1016/j.phrs.2020.105027
789	Kwon, O. C., Song, J. J., Yang, Y., Kim, S. H., Kim, J. Y., Seok, M. J., Lee, S. H.
790	(2021). SGK1 inhibition in glia ameliorates pathologies and symptoms in
791	Parkinson disease animal models. EMBO Mol Med, 13(4), e13076.
792	doi:10.15252/emmm.202013076

793 Lama, A., Pirozzi, C., Severi, I., Morgese, M. G., Senzacqua, M., Annunziata, C., ...

- Meli, R. (2022). Palmitoylethanolamide dampens neuroinflammation and
 anxiety-like behavior in obese mice. Brain Behav Immun, 102, 110-123.
 doi:10.1016/j.bbi.2022.02.008
- Lei, T., Yang, Z., Xia, X., Chen, Y., Yang, X., Xie, R., ... Gao, H. (2021). A
 nanocleaner specifically penetrates the bloodbrain barrier at lesions to clean
 toxic proteins and regulate inflammation in Alzheimer's disease. Acta Pharm
 Sin B, 11(12), 4032-4044. doi:10.1016/j.apsb.2021.04.022
- 801 Liu, B., Li, Y., Han, Y., Wang, S., Yang, H., Zhao, Y., ... Wang, Y. (2021).
 802 Notoginsenoside R1 intervenes degradation and redistribution of tight
- junctions to ameliorate blood-brain barrier permeability by Caveolin1/MMP2/9 pathway after acute ischemic stroke. Phytomedicine, 90, 153660.
 doi:10.1016/j.phymed.2021.153660
- Liu, L., Yang, C., Lavayen, B. P., Tishko, R. J., Larochelle, J., & Candelario-Jalil, E.
 (2022). Targeted BRD4 protein degradation by dBET1 ameliorates acute
 ischemic brain injury and improves functional outcomes associated with
 reduced neuroinflammation and oxidative stress and preservation of bloodbrain barrier integrity. J Neuroinflammation, 19(1), 168. doi:10.1186/s12974022-02533-8
- Liu, M. B., Wang, W., Gao, J. M., Li, F., Shi, J. S., & Gong, Q. H. (2020). Icariside II
 attenuates cerebral ischemia/reperfusion-induced blood-brain barrier
 dysfunction in rats via regulating the balance of MMP9/TIMP1. Acta
 Pharmacol Sin, 41(12), 1547-1556. doi:10.1038/s41401-020-0409-3

- Matei, N., Camara, J., McBride, D., Camara, R., Xu, N., Tang, J., & Zhang, J. H.
 (2018). Intranasal wnt3a attenuates neuronal apoptosis through
 Frz1/PIWIL1a/FOXM1 pathway in MCAO rats. J Neurosci, 38(30), 67876801. doi:10.1523/JNEUROSCI.2352-17.2018
- 820 McGrath, J. C., Drummond, G. B., McLachlan, E. M., Kilkenny, C., & Wainwright, C.
- L. (2010). Guidelines for reporting experiments involving animals: the ARRIVE guidelines. British Journal of Pharmacology, 160(7), 1573-1576. doi:10.1111/j.1476-5381.2010.00873.x
- Medina-Flores, F., Hurtado-Alvarado, G., Contis-Montes de Oca, A., LopezCervantes, S. P., Konigsberg, M., Deli, M. A., & Gomez-Gonzalez, B. (2020).
 Sleep loss disrupts pericyte-brain endothelial cell interactions impairing blood-
- 827 brain barrier function. Brain Behav Immun, 89, 118-132.
 828 doi:10.1016/j.bbi.2020.05.077
- Montagne, A., Nation, D. A., & Zlokovic, B. V. (2020). APOE4 accelerates
 development of dementia after stroke: is there a role for cerebrovascular
 dysfunction? Stroke, 51(3), 699-700. doi:10.1161/STROKEAHA.119.028814
- Mora, P., Hollier, P. L., Guimbal, S., Abelanet, A., Diop, A., Cornuault, L., ...
 Chapouly, C. (2020). Blood-brain barrier genetic disruption leads to protective
 barrier formation at the glia limitans. PLoS Biol, 18(11), e3000946.
 doi:10.1371/journal.pbio.3000946
- Ng, F. C., Churilov, L., Yassi, N., Kleinig, T. J., Thijs, V., Wu, T. Y., ... Investigators.
 (2022). Microvascular dysfunction in blood-brain barrier disruption and

838	hypoperfusion within the infarct posttreatment are associated with cerebral
839	edema. Stroke, 53(5), 1597-1605. doi:10.1161/STROKEAHA.121.036104
840 N	likolakopoulou, A. M., Wang, Y., Ma, Q., Sagare, A. P., Montagne, A., Huuskonen,
841	M. T., Zlokovic, B. V. (2021). Endothelial LRP1 protects against
842	neurodegeneration by blocking cyclophilin A. J Exp Med,
843	218(4)doi:10.1084/jem.20202207
844 P	alomino-Antolin, A., Narros-Fernandez, P., Farre-Alins, V., Sevilla-Montero, J.,
845	Decouty-Perez, C., Lopez-Rodriguez, A. B., Egea, J. (2022). Time-
846	dependent dual effect of NLRP3 inflammasome in brain ischaemia. Br J
847	Pharmacol, 179(7), 1395-1410. doi:10.1111/bph.15732
848 R	en, N., Ogata, S., Kiyoshige, E., Nishimura, K., Nishimura, A., Matsuo, R., The
849	Gap-Stroke, J. S. C. (2022). Associations between adherence to evidence-
850	based, stroke quality indicators and outcomes of acute reperfusion therapy.
851	Stroke, 53, 00-00. doi:10.1161/STROKEAHA.121.038483
852 R	ichter, A., Lange, S., Holz, C., Brock, L., Freitag, T., Sekora, A., Junghanss, C.
853	(2022). Effective tumor cell abrogation via Venetoclax-mediated BCL-2
854	inhibition in KMT2A-rearranged acute B-lymphoblastic leukemia. Cell Death
855	Discov, 8(1), 302. doi:10.1038/s41420-022-01093-3
856 S	hang, A., Liu, H. Y., Luo, M., Xia, Y., Yang, X., Li, H. Y., Gan, R. Y. (2022).
857	Sweet tea (Lithocarpus polystachyus rehd.) as a new natural source of

bioactive dihydrochalcones with multiple health benefits. Crit Rev Food Sci

859 Nutr, 62(4), 917-934. doi:10.1080/10408398.2020.1830363

858

860	Tcw, J., Qian, L., Pipalia, N. H., Chao, M. J., Liang, S. A., Shi, Y., Goate, A. M.
861	(2022). Cholesterol and matrisome pathways dysregulated in astrocytes and
862	microglia. Cell, 185(13), 2213-2233 e2225. doi:10.1016/j.cell.2022.05.017
863	Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H.
864	J. C. (2005). GROMACS: fast, flexible, and free. Journal of Computational
865	Chemistry, 26(16), 1701-1718. doi:10.1002/jcc.20291
866	Xiao, R., Wei, Y., Zhang, Y., Xu, F., Ma, C., Gong, Q., Xu, Y. (2022). Trilobatin,
867	a naturally occurring food additive, ameliorates exhaustive exercise-induced
868	fatigue in mice: involvement of Nrf2/ARE/Ferroptosis signaling pathway.
869	Front Pharmacol, 13, 913367. doi:10.3389/fphar.2022.913367
870	Yang, T., Sun, Y., Mao, L., Zhang, M., Li, Q., Zhang, L., Zhang, F. (2018). Brain
871	ischemic preconditioning protects against ischemic injury and preserves the
872	blood-brain barrier via oxidative signaling and Nrf2 activation. Redox Biol, 17,
873	323-337. doi:10.1016/j.redox.2018.05.001
874	Yang, Z., Gao, Z., Yang, Z., Zhang, Y., Chen, H., Yang, X., Chu, L. (2022).
875	Lactobacillus plantarum-derived extracellular vesicles protect against ischemic
876	brain injury via the microRNA-101a-3p/c-Fos/TGF-beta axis. Pharmacol Res,
877	182, 106332. doi:10.1016/j.phrs.2022.106332
878	Yu, L., Liu, S., Zhou, R., Sun, H., Su, X., Liu, Q., Qu, Y. (2022). Atorvastatin
879	inhibits neuronal apoptosis via activating cAMP/PKA/p-CREB/BDNF
880	pathway in hypoxic-ischemic neonatal rats. FASEB J, 36(4), e22263.
881	doi:10.1096/fj.202101654RR

Zheng, Y., Deng, Y., Gao, J. M., Lv, C., Lang, L. H., Shi, J. S., ... Gong, Q. H.
(2020). Icariside II inhibits lipopolysaccharide-induced inflammation and
amyloid production in rat astrocytes by regulating IKK/IkappaB/NFkappaB/BACE1 signaling pathway. Acta Pharmacol Sin, 41(2), 154-162.
doi:10.1038/s41401-019-0300-2

- Zou, Y., Zhang, M., Wu, Q., Zhao, N., Chen, M., Yang, C., ... Han, B. (2022).
 Activation of transient receptor potential vanilloid 4 is involved in pressure
 overload-induced cardiac hypertrophy. Elife, 11doi:10.7554/eLife.74519
- 890 Figure legends

Fig. 1 TLB protected against BBB disruption after cerebral I/R injury in rats. a.

- 892 Perfusion and oxygenation imager showed that regional cerebral blood flow (rCBF) in
- MCAO model decreased to 20% and recovered to 80% of baseline. b. Quantitation of
- rCBF (n = 6). c. Neurological deficits scores (n = 6). d. Representative images of
- 895 TTC-stained brain sections at Day 3. e. Quantification of infarct volume at Day 3 (n
- 896 = 6). f. Representative images of EB leakage dye. g. Quantification of extravasated
- EB leakage dye (n = 6). h. Ultrastructural changes were observed by TEM. Cap
- 898 (\times 40,000, scale bar = 500 nm), neurons (yellow arrow) and MS (red arrow) (\times 15,000,
- scale bar = 2 µm). Data are presented as mean ± SD. *P < 0.05 versus sham group; #P
- 900 < 0.05 *versus* MCAO group.
- 901 Fig. 2 TLB suppressed injury to the hippocampus, striatum and cortex after

902 cerebral I/R injury in rats and molecular docking analysis. a. Representative

- images of HE staining in the hippocampus, striatum, and cortex ($\times 400$, scale bar = 50
- μ m, n = 6). b. The DEGs between MCAO versus sham group and MCAO versus

905	MCAO + TLB group. c. Enrichment analyses were performed using David showing
906	biological processes (GO) to predict changes. d. The top 10 KEGG pathways enriched
907	in DEGs and their corresponding P-values. e. PPI network of DEGs resulting from
908	TLB treatment of I/R injury in rats. The size of the node is related to the importance
909	of the node, with larger nodes MMP9 sharing more connections to other nodes.
910	Fig. 3 TLB protected against cerebral I/R injury-induced loss of neurons and TJ
911	proteins in rats. a. The major cellular components of BBB were displayed in the
912	scheme. b. Representative images of Nissl staining in hippocampus and cortex. c.
913	Nissl-positive neurons in CA1 region ($n = 6$). d. Nissl-positive neurons in CA3 region
914	(n = 6). e. Nissl-positive neurons in DG region $(n = 6)$. f. Nissl-positive neurons in the
915	cortex (n = 6). g. Representative Western blot of ZO-1 protein expressions. h.
916	Quantitation of ZO-1 protein ($n = 6$). i. Representative Western blot of claudin 5
917	protein expressions. j. Quantitation of claudin 5 protein ($n = 6$). k. Representative
918	Western blot of occludin protein expressions. l. Quantitation of occludin protein (n =
919	6). Data are presented as mean \pm SD. * $P < 0.05$ versus sham group; $^{\#}P < 0.05$ versus
920	MCAO group.
921	Fig. 4 TLB modulated TIMP1/MMP9 balance and suppressed APOE4/CypA
922	signaling pathway after cerebral I/R injury. a. Representative image of MMP9
923	expression in the cortex and striatum by IHC. b. Quantitation of MMP9 in the
924	striatum (n = 6). c. Quantitation of MMP9 in the cortex (n = 6). d. Representative
925	Western blot of MMP9. e. Quantification of MMP9 protein expression ($n = 6$). f.
926	Representative image by gelatin zymography. g. Quantification of activity of MMP9
927	(n = 6). h. Representative images of TIMP1 in the cortex and striatum by IHC. i.

- 928 Quantitation of TIMP1 in the striatum (n = 6). j. Quantitation of TIMP1 in the cortex
- 929 (n = 6). k. Representative Western blot of TIMP1 protein expression. l. Quantification
- of TIMP1 protein expression (n = 6). m. Representative Western blot of APOE4
- protein expression. n. Quantification of APOE4 protein expression (n = 6). o.
- 932 Representative Western blot of CypA protein expression. p. Quantitation of CypA
- protein expression (n = 6). Data are presented as mean \pm SD. **P* < 0.05 *versus* sham
- 934 group; ${}^{\#}P < 0.05$ versus MCAO group.
- **Fig. 5 TLB suppressed neuroinflammation through inhibiting NF-κB signaling**
- 936 pathway after cerebral I/R insult in rats. a. IL-1 β (n = 6). b. IL-6 (n = 6). c. IL-4 (n
- 937 = 6). d. IL-10 (n = 6). e. Representative Western blots of I κ B- α protein expression. f.
- 938 Quantitation of I κ B- α protein expression (n = 6). g. Representative Western blots of
- 939 p-IKK- α protein expression. h. Quantitation of p-IKK- α protein level (n = 6). i.
- 940 Representative Western blots of p-IKK-β. j. Quantitation of p-IKK-β protein level (n
- 941 = 6). k. Representative Western blots of p-NF- κ Bp65 protein level. l. Quantitation of
- 942 p-NF- κ Bp65 protein level (n = 6). m. Representative Western blots of NLRP3 protein.
- n. Quantitation of NLRP3 protein expression (n = 6). Data are presented as mean \pm
- 944 SD. *P < 0.05 versus sham group; ${}^{\#}P < 0.05$ versus MCAO group.

945 Fig. 6 TLB suppresses neuronal death through inhibiting caspase 3-dependent

946 **apoptosis pathway after cerebral I/R injury in rats.** a. Representative images of

- 947 TUNEL staining in the hippocampus and cortex. b. Quantitation of TUNEL-positive
- 948 cells in CA1 region of hippocampus (n = 6). c. Quantitation of TUNEL-positive cells
- 949 in CA3 region of hippocampus (n = 6). d. Quantitation of TUNEL-positive cells in
- 950 DG region of hippocampus (n = 6). e. Quantitation of TUNEL-positive cells in cortex
- 951 (n = 6). f. Representative Western blots of Bax and Bcl-2 protein expressions. g. The
- ratio of Bax/Bcl-2 (n = 6). h. Representative Western blots of cleaved-caspase 3 level

and caspase 3 protein expression. i. Quantitation of cleaved-caspase 3/caspase 3 (n =

6). Data are presented as mean ± SD. *P < 0.05 versus sham group; #P < 0.05 versus
MCAO group.

956 Fig. 7 TLB inhibited loss of BBB integrity through activating

957 APOE4/CypA/MMP9 signaling pathway after OGD/R insult in human

- 958 **BMEC/astrocytes co-cultures.** Human BMEC/astrocytes co-cultures were treated
- with TLB or PH002 for 24 h upon OGD/R. a. Scheme. b. TEER value (n = 6). c.
- 960 Representative images of Live/Dead staining. d. Quantitation of Live/Dead staining
- 961 (n = 6). Live cells were presented as green and dead cells were presented as red (\times 40,
- scale bar = 500 μ m). e. LDH leakage (n = 6). f. Representative Western blot of
- APOE4, CypA and MMP9 protein expressions. g. Quantitation of APOE4 protein
- 964 expression (n = 6). h. Quantitation of CypA protein expression (n = 6). i. Quantitation
- of MMP9 protein expression (n = 6). Data are presented as mean \pm SD. *P < 0.05
- 966 *versus* Control group; ${}^{\#}P < 0.05$ *versus* OGD/R group; ${}^{\blacktriangle}P < 0.05$ *versus* OGD/R +
- 967 TLB 50 group.

968 Fig. 8 TLB directly bound to MMP9. a. Model structures presented the complex

- 969 formed by the MMP9 ligand-binding pocket and TLB by in silico computational
- 970 molecular docking. MD process using the GROMACS 4.6.6 simulation protocol. b.
- 971 Gibbs energy lanscape of the TLB-MMP9 compound complex. The color scale
- 972 diagram shows the gibbs energy profile (kcal/mol) and the dark blue profile is the
- 973 minimum depth. c. Gibbs energy landscape profile of TLB-MMP9 complex. d. The
- 974 RMSD of the TLB-MMP9 complex with respect to its initial structure as a function of
- time. e. RMSF of residues of the whole protein in the TLB-MMP9 complex and free
- 976 MMP9 during the 100000 ps.

977 Fig. 9 TLB protect against OGD/ R-induced damage of blood-brain barrier

- 978 integrity by blocking MMP9. a. Scheme. b. TEER value (n = 6). c. Representative
- 979 images of Live/Dead staining. d. Quantitation of Live/Dead staining (n = 6). Live
- 980 cells were presented as green and dead cells were presented as red (×40, scale bar =
- 981 500 μ m). e. LDH leakage (n = 6). Data are presented as mean \pm SD. *P < 0.05 versus
- 982 Control group; ${}^{\#}P < 0.05$ versus OGD/R group; ${}^{\blacktriangle}P < 0.05$ versus OGD/R + TLB 50
- group; P < 0.05 versus OGD/R + siMMP9 group.
- 984 Fig. 10 Schematic diagram illustrating a potential mechanism for the protective
- 985 role of TLB on BBB disruption after cerebral I/R injury. TLB effectively rescues
- 986 BBB breakdown, reduces inflammation and apoptosis. TLB interacts with MMP9 and
- 987 through mediating APOE4/CypA/NF-κB axis to confer BBB neuroprotection.