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Abstract

Distributed energy resources (DERs) provide flexible load restoration strategies, which can effectively enhance the resilience of

active distribution systems (ADSs). Whereas, the widespread DERs in ADSs complicate the supply-demand relationship and

make the system resilience difficult to access. Therefore, this paper proposes a simulation-based resilience assessment algorithm

of ADSs considering the microgrid formation based on grid-edge DERs. Microgrid formation is used to depict the resilience gain

of grid-edge DERs on ADSs. Specifically, a resilience assessment framework for ADSs is firstly proposed, where the uncertainty

of component state and supply-demand is modelled based on probability statistics. Then the mixed integer linear programming

is used to search for optimal load restoration strategies with microgrid formation. On this basis, a set of resilience indices

are defined to quantitatively analyse the resilience of ADSs, and a resilience assessment algorithm with uncertainty scenario

generation is proposed to obtain these indices. Furthermore, extensive numerical results based on a modified IEEE 123-bus

feeder validate the effectiveness of our proposed method.
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Abstract: Distributed energy resources (DERs) provide flexible load restoration strategies, which can effectively enhance the
resilience of active distribution systems (ADSs). Whereas, the widespread DERs in ADSs complicate the supply-demand relation-
ship and make the system resilience difficult to access. Therefore, this paper proposes a simulation-based resilience assessment
algorithm of ADSs considering the microgrid formation based on grid-edge DERs. Microgrid formation is used to depict the
resilience gain of grid-edge DERs on ADSs. Specifically, a resilience assessment framework for ADSs is firstly proposed, where
the uncertainty of component state and supply-demand is modelled based on probability statistics. Then the mixed integer linear
programming is used to search for optimal load restoration strategies with microgrid formation. On this basis, a set of resilience
indices are defined to quantitatively analyse the resilience of ADSs, and a resilience assessment algorithm with uncertainty sce-
nario generation is proposed to obtain these indices. Furthermore, extensive numerical results based on a modified IEEE 123-bus
feeder validate the effectiveness of our proposed method.

1 Introduction

Carbon neutrality asks the power distribution system to integrate
more renewable distributed energy resources (DERs) e.g. distributed
wind turbines and photovoltaic units, promoting distribution sys-
tems to active distribution systems (ADSs). The ADS has DERs
as a means of managing power grids actively that can improve the
resilience efficiently [1]. Meanwhile, it brings some new features
to distribution systems, e.g. complicate supply-demand relationship
and flexible operation. Notably, the integration of grid-edge DERs
enables the ADS to operate with a more resilient fashion [2], that
means it can use grid-edge DERs as flexible power units to restore
critical loads and reduce power losses when outages come [3].

Grid resilience refers to the capability of enduring and curtail-
ing the adverse impact of disruptions, which comprises three main
factors, i.e., absorb, adapt, and recover from extreme events [4].
Resilience assessment quantitatively calculates the capability and
further guides the resilience optimization of distribution systems [5].
In recent years, the resilience enhancement of distribution systems
considering considering microgrid formation based on grid-edge
DERs has become a research hotspot [6]. The influence of loads and
DERs on the outage management during the resilient operation of
microgrids was analysed in [7]. Mishra et al. [1] studied the vul-
nerability modelling methods and the restoration measures of power
grids under the extreme weather. At the same time, the dynamic
boundary microgrid formation provides flexible load restoration
strategies [8]. Panteli et al. [9] put forward a general research frame-
work for power system resilience assessment and enhancement.
Chen et al. [3] earlier proposed the post-disaster resilient operation
model of distribution systems considering microgrids, and modelled
the critical load restoration problem of resilient distribution systems
as a mixed integer linear programming problem. Wang et al. [10]
proposed an optimal decision-making method for multi-timestep
load restoration of power distribution systems based on multi-source
cooperation. In addition, existing studies also consider the influ-
ence of distribution system topology reconstruction [11], distribution
system linear topology constraints [12], energy storage equipment
and demand side management [13], hierarchical fault management
[8]. Bian et al. [14] proposed an restoration model considering the
coordination with damage assessment. Huang et al. [15] formulated

the microgrid formation problem as a Markov decision process and
used the deep Q-network to search for optimal microgrid formation
strategies.

The application of resilient planning and operation can be facil-
itated with the resilience assessment and associated indices. The
assessment methods are diverse. For example, Carlson et al. [16]
provided frameworks for system-level and regional-level resilience
overview using investigation, and a scoring matrix was formulated
in [17] to evaluate the system function from different perspectives.
Besides, the simulation-based methods were most widely used to
analyse the disaster consequences, combined with the disaster sce-
narios, e.g., in [18] and [19], the power flow analysis was adopted,
and in [20], the complex network model was adopted. For sys-
tems that have accumulated historical natural disaster, outage and
restoration records can be used for data-based reliability analysis
[21, 22]. Notably, the existing assessment methods are not fully
applicable to the impact of microgrid formation based on edge-
grid DERs. Moreover, traditionally, the resilience assessment of the
power system focuses on the random component faults, but the opti-
mal load restoration strategies through the microgrid formation has
been neglected to make the computational load affordable.

This paper takes into consideration the load restoration through
microgrid formation in the resilience assessment process and focuses
on the impact of grid-edge DERs on the resilience of ADSs. Firstly,
based on the analysis of the historical data of the generation side
and the demand side, the uncertainty modellings of DERs and the
power load are carried out, and the probability modelling for distri-
bution system components is established. Then the system states can
be generated, and the microgrid formation model for load restoration
is established based on mixed integer linear programming (MILP).
Moreover, a set of resilience indices of ADSs are defined. Then,
this paper proposes an uncertain supply-demand scenario generation
algorithm, and an ADS resilience assessment algorithm based on the
Monte Carlo simulation (MCS) and the zone partition and minimal
path search (ZPMPS) [23] to access these indices. Finally, the pro-
posed resilience assessment algorithm is validated with a modified
IEEE 123-bus feeder.

The reminder of this paper is organized as follows: Section 2
introduces the concept of resilience assessment. Section 3 introduces
the resilience modelling. Section 4 presents the resilience indices and
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Fig. 1: Illustration of the grid resilience concept.

the algorithm of resilience assessment. Case studies and results anal-
ysis are presented in Section 5, followed by Section 6 that draws the
conclusions and discusses the following work of this paper.

2 Resilience assessment conceptions

Resilience assessment is used to quantitatively measure the abil-
ity of power systems to reduce the outage consequence. In this
section, the concept of resilience is firstly introduced. Then, the
impact of grid-edge DERs on the resilience of ADSs is analysed.
Next, the resilience assessment framework and resilience assessment
modelling are introduced.

2.1 Concept of resilience

Resilience was firstly introduced by Holling in 1972 as a con-
cept in the ecological system, which referred to “a measure of the
persistence of systems and of their ability to absorb change and
disturbances and still maintain the same relationships between pop-
ulations or state variables” [24]. In the power system, resilience
focuses on the ability of dealing with the energy supply interruption
and restore critical loads under extreme events [25].

In recent years, resilience has been increasingly recognized as
a design and operation goal for critical infrastructures. For utility
grids, it is becoming clear that it is impossible to resist all events
at all time, and strategies beyond traditional reliability study are
needed to keep the lights on under extreme events. However, extreme
events can cause multiple instantaneous component failures and
power supply interruption, and require relatively complex restora-
tion strategies. In these cases, the component failure rate increases
sharply.

Resilience describes the process of the power system from the
extreme event occurrence to the load service restoration. Notably,
grid-edge DERs can improve the system resilience in all stages of
disaster response, as shown in Fig. 1, where the dotted blue curve
indicates the distribution system which only supplied by the source
bus, and the solid black curve indicates the resilience lifting effect of
the ADS with DERs.

This paper considers the microgrid formation based on grid-edge
DERs. As Fig. 1 shows, we focus on the grid performance between
the blue dot curve and the solid black curve, which indicates the
resilience gain of the ADS brought by grid-edge DERs. Moreover,
resilience assessment is used to quantitatively measure the ability of
systems to reduce the outage consequence by defining a series of
resilience indices. This paper focuses on the load restoration pro-
cess of the distribution system after an outage (begin with t2). The
period of response and recovery are respectively measured as the
decrement time of the interruption duration indices and the restored
energy indices.

Notably, the resilience assessment method proposed in this paper
applies to different extreme events instead of a specific extreme
event. In this paper, the components parameters (the failure rate and

repair rate) are set based on empirical data. If the research needs
to be carried out for a specific extreme event such as typhoon or
rainstorm, the components parameters can be modified according to
corresponding extreme event features.

2.2 Impact of grid-edge DERs on ADS resilience

Under the energy transformation, the structure of power systems
has changed rapidly. Because of the connection of the renewable
DERs to distribution systems at the grid-edge, the radial topology
and unidirectional flow of the traditional distribution system are
completely changed, and the uncertainty of power generation of
renewable DERs flows into the distribution system. At the same
time, as a widespread energy resource, the DER enables the ADS
to operate with a more resilient fashion and enhance the resilience of
the ADS.

The effect of grid-edge DERs on the resilience of distribution sys-
tems can be analysed based on Fig. 1. We can see that the period of
t0 to t1 is the normal operation stage of the power system. The value
F (t) at this stage represents the target operation state. When the
extreme event occurs at t1, the failure rates of power system com-
ponents increase sharply. Then the system enters the extreme event
response stage, i.e., the period of t1 to t2, during which the system
resistants extreme events to minimize the damage of extreme events
to energy infrastructures and reducing the failure loss. The period of
t2 to t3 is the response stage, during which the system is in a state of
low power supply capacity. It takes time to respond to the extreme
event and prepare to restore load service. The period of t3 to t4 is the
recover stage, during which the power supply is gradually restored
to the customers. Notably, grid-edge DERs can shorten the response
and recovery time by playing as backup generators after the power
outage. Widely distributed in the power system, grid-edge DERs can
effectively accelerate the whole restoration process by reducing the
energy not supplied and the interruption duration.

2.3 Resilience assessment framework

The general resilience assessment framework of ADSs based on the
sequential MCS is illustrated in Fig. 2 and introduced as follows. The
whole framework is mainly consisted of five parts: data preparation,
probabilistic modelling, scenario generation, scenario analysis, and
resilience indices calculation.

2.3.1 Step 1. Data preparation: Data preparation denotes the
process of collecting and organizing the data required to establish the
probabilistic models of uncertain factors that affect reliable power
supply. In this paper, uncertain factors refer to the state of system
components and supply-demand scenarios. For the uncertainty of
component state, the historical failure data, e.g., failure frequency
and duration, of distribution system components should be prepared.
For the uncertainty of supply-demand scenarios, the historial power
consumption data of load nodes and the power generation of DERs,
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Fig. 2: Resilience assessment flowchart of active distribution sys-
tems.

e.g., wind turbines and photovoltaic units, should be prepared used
to depict the probabilistic characteristics of supply-demand.

2.3.2 Step 2. Probabilistic modelling: Based on the prepared
data, the reliability parameters including failure rate and repair rate
can be calculated and used to establish the component state prob-
abilistic model. In general, the component state model is used to
depict the probability and duration of a component being in a normal
or faulty state, and the system state can be viewed as a combina-
tion of component states. In addition, the probabilistic modelling of
supply-demand uncertainty is carried out based on historical supply-
demand scenarios. At the power demand side, the actual power
consumption data of power users in a region for several years are
selected and used to establish a demand data set. At the power sup-
ply side, this paper considers the uncertainty of power supply from
wind turbines, and selects the actual wind power generation data in a
region within a year to establish a supply data set. Based on these two
data sets, the supply-demand model can be established by probability
statistics.

2.3.3 Step 3. Scenario generation: The scenario generation
for ADSs includes two parts: the supply-demand scenario generation
and the system state generation. The supply-demand scenario gener-
ation is used generate the output capacity of DERs and the demand
of loads, which serve as part of the analysis scenario for load restora-
tion. According to the probability distribution characteristics of the
historical supply-demand data, the supply and demand scenarios can
be generated by random sampling techniques based on correspond-
ing probability distribution models. System state scenario generation
is based on MCS techniques. Specifically, the state and its duration
of components are simulated one by one based on corresponding

component state probabilistic models. Then, by analysing all state
transition processes of components, the state transition process of
the distribution system can be obtained and used in subsequent sce-
nario analysis. The details of scenario generation based on MCS
techniques are presented in Section 4.2.

2.3.4 Step 4. Scenario analysis: Uncertain supply-demand
and component status together constitute the analysis scenario for
resilience assessment. The aim of scenario analysis is to obtain the
power supply status of load nodes in disaster scenarios, thereby
determining the power outage loss of the system. To quantitatively
calculate the impact of microgrid formation based on grid-edge
DERs on the ADS resilience, we use a traditional distribution
systems with the same topology as the ADS but without DERs
as a comparison. Therefore, the resilience gain to ADSs brought
by DERs can be formulated as the reduced power loss of ADSs
compared to traditional distribution systems.

As shown in Fig. 2, the zone partitioning and minimal path search
(ZPMPS) [23], which is a classic connectivity-based reliability sce-
nario analysis method, is used to analyse the connectivity between
load nodes and sources. In general, if there is no fault occurring in the
connection between a load node and its source bus, the power supply
to this load node is not affected. If there is a fault on the connec-
tion or its source bus faults, this zone where the node is located will
attempt to change the power sources to DERs as a possible solution
for load restoration. Details about the scenario analysis are intro-
duced in Section 4.3. During a power outage, the distribution system
operator (DSO) can deconstruct the distribution network into island
microgrids by operating switchers and DERs to continue supplying
the critical loads. Notably, running such bottom-up restoration strate-
gies in parallel with traditional top-down restoration strategies (i.e.,
the reenergization of transmission networks using bulk generators)
can effectively accelerate the load restoration process and improve
power supply capability.

Notably, for a distribution system with gird-edge DERs, a MILP-
based formation model of dynamic boundary microgrids is used to
determine DER-based load restoration strategies. Its aim is to maxi-
mize the sum of restored critical loads while satisfying the operation
constraints of both the distribution system and microgrids. On the
basis, the power loss considering the impact of grid-edge DERs can
be obtained. For a distribution without grid-edge DERs, the ZPMPS
is sufficient for its scenario analysis.

2.3.5 Step 5. Resilience indices calculation: After extensive
scenario analysis, the resilience indices can be probabilistic statistics
of the power outage loss indicators in all scenarios. The definition of
resilience indices is given in Section 4.1. During the MCS, resilience
indices are calculated and updated iteratively. Hence the coefficient
of variation (CV) can be used to determine whether the resilience
assessment is converged or not. To be specific, for a resilience index,
when the CV of the list formed by the index during the MCS is
less than a preset value, it is considered to be converged and its
assessment is stopped.

3 Resilience assessment modelling

3.1 Component state and supply-demand modelling

The two-state (i.e., normal operation and fault state) model is used
to depict the state transition of distribution system components e.g.
transformers, overhead lines, cables, isolating switches, fuses etc.
[26], as shown in Fig. 3, where λ represents the component failure
rate and µ represents the component failure repaired rate. The com-
ponent state is represented by a binary value (0 for fault state and 1
for normal operation state).

Then, the time to failure (TTF) and the time to repair (TTR) of
components can be generated by random sampling, as formulated in
(1) and (2):

TTF = −λ−1 lnβ1 (1)

TTR = −µ−1 lnβ2 (2)

IET Research Journals, pp. 1–10
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Fig. 3: Two-state component model.

where µ = r−1, and r represents the average repair time of the
component; β1 and β2 are random numbers in [0, 1].

When the distribution system suffers from different types and
different levels of extreme events, λ and µ need to be adjusted
according to the impact of a specific extreme scenario on system
components. Notably, this paper does not focus on a specific extreme
event, but the proposed component probabilistic model is univer-
sal for the resilience assessment of ADSs under different extreme
events.

By simulating and then combining the sequential state transition
process of all components within a certain time span, the sys-
tem state transition process can be obtained. Since load restoration
strategies are related to supply-demand scenarios, it is needed to
characterized the supply-demand uncertainty for the ADS resilience
assessment. Based on the historical data of DERs’ power generation
and users’ power consumption, a probabilistic model of uncertain
supply-demand can be established. Historical supply-demand data
is firstly Min-Max standardized, as formulated in (3) and (4), and
its value is controlled between 0 and 1. Then the standardized data is
equally divided into 20 sub-intervals. The number of samples in each
sub-interval is counted to obtain the cumulative probability of each
sub-interval. Finally, random numbers are uniformly sampled from
the interval [0,1], and the random numbers are matched with the
cumulative probability to obtain the output of DERs and the users’
demand. By doing so, the supply-demand scenarios can be obtained.
The random sampling probability distribution is consistent with the
historical supply-demand data [23].

p̂ = (pmin + ppu · (pmax − pmin)) ·
p̂max

pmax
(3)

l̂ = (lmin + lpu · (lmax − lmin)) ·
l̂mean

lmean
(4)

where pmin, pmax respectively represent the minimum and maxi-
mum values of the actual wind power generation data; ppu represents
the Min-Max standardized wind active power; p̂ and p̂max respec-
tively represent the output power and rated capacity of wind turbines;
lmin, lmax, lmean respectively represent the minimum, maximum,
and mean values of the actual load data; lpu represents the Min-Max
standardized load data; l̂, l̂mean respectively represent the load data
and mean load.

3.2 Microgrid formation based on grid-edge DERs

During the load restoration process, grid-edge DERs can act as
backup generators to support the power supply of critical loads
through forming island microgrids. Such a microgrid formation
problem is formulated as a MILP problem in this paper. With grid-
edge DERs, the distribution system forms independent K microgrids
by adjusting the radial topology after the failure, and the set of micro-
grids is denoted by K. Each microgrid contains one grid-edge DER
to control its voltage and frequency [3]. The distribution system node
set is denoted by N . The distribution system line set is denoted by L.
The set of nodes where DERs are located is denoted by M. In addi-
tion, before the microgrid formation, the nodes that staying islanded
without being connected to any microgrid will be removed from the
set of nodes. These nodes can be found by searching in the undi-
rected graph of the distribution system. Similar operations are used
for lines. The node and line sets after removal are denoted as N̄ and
L̄, respectively [3].

The object of microgrid formation is to maximize the total
restored load, formulated as:

max
∑

i∈N
wi·

∑
k∈K

vik · pi (5)

where wi denotes the priority weight of load i; vik is a binary vari-
able indicating whether load i belongs to microgrid k (vik = 1 if
node i belongs to microgrid k, and vik = 0 otherwise); pi denotes
the active power of load i. For the load restoration, different types of
loads have different priorities. The critical loads e.g. hospitals should
be prioritized to ensure power supply. Therefore, a larger value of wi
indicates a higher load priority.

The constraints for microgrid formation based on grid-edge DERs
can be divided into two parts: radial topology constraints (RTCs) and
system operation constraints (SOCs). The DistFlow model presented
in [27] is used as the power flow model of radial distribution systems.

The RTCs are formulated as follows:∑
k∈K

vik = 1, ∀i ∈ N̄ (6)

vik ≤ vjk,∀k ∈ K, i ∈ N̄\{k}, j = θk(i) (7)

cij =
∑
k∈K

vhk, h = ζk(i, j), (i, j) ∈ L̄ (8)

where (6) is used to ensure each node i ∈ N̄ belongs to only one
microgrid. For the nodes where DREs are located, they will surely
belongs to correspond to the DER, i.e., vik = 1, i = k, ∀i ∈ N̄ , i ∈
K. In (7), θk(i) is the parent node of node i regarding microgrid
k, and (7) indicates that in a radial distribution system, one node
can belong to microgrid k only if its parent node for this micro-
grid belongs to microgrid k. In (8), cij is a binary decision variables
indicating whether the switch associated with line (i, j) is open
(cij = 0) or closed (cij = 1), and ζk(i, j) denotes the children node
of line (i, j) regrading microgrid k. Hence (8) denotes that the
switch on this line (if it exists) should be in the closed state if line
(i, j) belongs to any microgrid in K. Note that during the scenario
analysis, some lines may be at fault, i.e., the lines are in the open
or closed state, which is formulated as: cij = 0, ∀(i, j) ∈ LO and
cij = 1,∀(i, j) ∈ LC , where LO and LC denote the set of lines
that are open and closed due to faults, respectively.

The SOCs are formulated as follows:∑
j∈Sk

i

P k
j = P k

i − vik · pi,∀k ∈ K, i ∈ N̄ (9)

∑
j∈Sk

i

Qk
j = Qk

i − vik · qi,∀k ∈ K, i ∈ N̄ (10)

0 ≤ P k
i ≤ vik · Pmax

k , ∀k ∈ K, i ∈ N̄ (11)

0 ≤ Qk
i ≤ vik ·Qmax

k , ∀k ∈ K, i ∈ N̄ (12)

V k
i = V k

j − riP
k
i + xiQ

k
i

V k
0

− δki , j = θk(i), i ∈ N̄\{k}, k ∈ K

(13)

0 ≤ V k
i ≤ vik · V k

0 , ∀k ∈ K, i ∈ N̄ (14)

0 ≤ δki ≤ (1− vik) · V k
0 ,∀k ∈ K, i ∈ N̄ (15)

VR − ϵ · VR ≤
∑
k∈K

V k
i ≤ VR + ϵ · VR, ∀i ∈ N̄ (16)

where Sk
i denotes the set of children nodes of node i for microgrid k;

P k
i and Qk

i denotes the active power and reactive power of node i in
microgrid k, respectively; Pmax

k , Qmax
k represent to the power gen-

eration capacity of the DER in microgrid k. Equations (11) and (12)
indicate that if node i does not belong to microgrid k, the real and
reactive in-flow power regarding microgrid k should be zero. The
voltage at the root node of the microgrid is set as the reference value
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Table 1 Resilience indices for active distribution systems.

System Resilience Indices Definition

EER =
∑

i∈N ḊiLa,i Expected energy restored (EER) indicates the mathematical expectation of the energy restored after system outages during a
certain period, kWh/yr.

EITD =
∑

i∈N ḊiNi Expected interruption time decrement (EITD) indicates the mathematical expectation of the reduced interruption time after system
outages during a certain period, cust.hr/yr.

ASIFD =
∑

i∈N λ̇iNi∑
i∈N Ni

Average system interruption frequency decrement (ASIFD) indicates the average reduction of the customer power interruption
frequency of the system during a certain period, f/cust./yr.

ASRE =
∑

i∈N ḊiLa,i∑
i∈N Ni

Average system energy restored (ASER) indicates the average customer energy restored after system outages of the system
during a certain period, kWh/cust./yr.

ASITD =
∑

i∈N ḊiNi∑
i∈N Ni

Average system interruption time decrement (ASITD) indicates the average reduction in customer outage duration after system
outages of the system during a certain period, hr/cust./yr.

ACIFD =
∑

i∈N λ̇iNi∑
i∈NΩ

Ni
Average customer interruption frequency decrement (ACIFD) indicates the average reduction of the interrupted customer power
interruption frequency during a certain period, f/cust./yr.

ACIDD =
∑

i∈N ḊiNi∑
i∈N λiNi

Average customer interruption duration decrement (ACIDD) indicates the average reduction of the interrupted customer outage
duration after system outages during a certain period, hr/cust./yr.

V k
0 . The voltage of other nodes in microgrid k can be solved by the

DistFlow model, as formulate in (13), where ri and xi denote the
resistance and reactance of the branch (i, j); V k

i denotes the voltage
at node i regarding microgrid k, and (14) denotes that V k

i should be
less than V k

0 if node i belongs to microgrid k, vik = 1. The δki in
(13) is a slack variable to make the equality constraint when node i
does not belongs to the microgrid k, but its parent node j belongs
to microgrid k. The constraints for δki are written as (15). More-
over, equation (16) denotes that the voltage should be within a range
specified by the rated voltage VR and tolerance ϵ.

4 Resilience indices and algorithms

In this section, the resilience indices of ADSs are proposed from
three perspectives: energy not supplied, power interruption time, and
power interruption frequency. The resilience assessment algorithm
includes two parts: scenario generation algorithm and scenario
analysis algorithm.

4.1 Resilience indices

Resilience indices of ADSs are classified into load node indices and
system indices. Load node indices describe the resilience of the indi-
vidual load node, while system indices describe the resilience of the
whole distribution system. Load node indices includes: decrement
for load node average outage duration Ḋi (hr/yr); decrement for load
node average outage frequency λ̇i (f/yr); decrement for load node
average duration of a singe outage ṙi (hr).

This paper defines seven system resilience indices including
expected energy restored (EER), expected interruption time decre-
ment (EITD), average system interruption frequency decrement
(ASIFD), average system energy restored (ASER), average system
interruption time decrement (ASITD), average customer interrup-
tion frequency decrement (ACIFD), average customer interruption
duration decrement (ACIDD). As shown in Table 1, the formulation
and definition of resilience indices are expressed in detailed, where
Ḋi = Di − D̂i, λ̇i = λi − λ̂i, ṙi = ri − r̂i, and D̂i, λ̂i, r̂i, Di, λi,
ri respectively indicate the average annual outage duration, failure
probability and average outage duration of the i-th load node for per
system outage of active distribution system and passive distribution
system. Li, Ni respectively indicate the average load and customer
number of the i-th load node, NΩ indicates the set of load nodes
affected by power interruption.

4.2 Scenario generation algorithm

The resilience scenario of the ADS is a combination of uncer-
tain factors that affects the system resilience. In the traditional
resilience assessment, the uncertain factor mainly refers to the state

of vulnerable components. For ADSs, the impact of the uncertain
supply-demand should be considered in the resilience assessment.
The resilience scenario in this section is composed of three types
of uncertain factors: vulnerable component states, uncertain DER
output and uncertain load demand, formulated as follows:

S = {sc, sg, sl|c ∈ Ωc, g ∈ Ωg, l ∈ Ωl} (17)

where S represents the resilience scenario; sc, sg , and sl respec-
tively represent the state of distribution system components c, the
output power state of new energy units g, and the power demand
of loads l; Ωc, Ωg , and Ωl respectively represent the set of distri-
bution system components, the set of wind turbines and the set of
load nodes respectively. In the scenario generation process, the state
of system components are characterized by a two-state model, and
sc ∈ {0, 1} (sc = 1 if the component works normally and sc = 0
if it malfunctions). The state change moment for each component in
the given time span is:

Ti,n =
∑n

s=1
Di,s, i = 1, 2, · · · , NC , n = 1, 2, · · · , NS,i

(18)
Ti,NS,i−1

< TS < Ti,NS,i
, i = 1, 2, · · · , NC (19)

where Ti,n denotes the moment when component i changes state for
the n-th time; Di,s denotes the state duration of component i in the
s-th sample, generated based on (1) and (2); NC is the number of
components; NS,i is the number of samples for component i, which
subjects to (19) where TS denotes the total simulation time.

Then, the chronological state transition process for all compo-
nents can be obtained. On this basis, the system state consists of
the state of all components that can be determined according to the
sequence of component state changes [26]. The scenario generation
algorithm is shown in Algorithm 1. Based on the MCS framework,
the state and state duration of components are firstly generated, fol-
lowed by the determination of system states and their duration. Then,
the load demand and DER’s power generation are matched for each
simulated system state. This paper stipulates the time scale of sce-
nario analysis is the minimum time unit of the sequential change of
state quantity, and the supply-demand parameters will not change
during the duration of system state scenarios.

After the ADS scenario is obtained, the microgrid formation
based on DERs can be solved using the MILP model built in Section
3.2 to get the post-disaster load restoration strategies. Then, the
resilience indices of the ADS can be calculated according to the load
restoration results.

4.3 Scenario analysis algorithm

Because DERs as flexible generators make the power flow direc-
tion of distribution systems no longer unidirectional, the traditional
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Algorithm 1 scenario generation

1: All components are at the normal operation state;
2: Set t = 0 and scenario counter ns = 0;
3: The initial state duration of all elements is obtained by sampling

{Tc,ns |c ∈ Ωc};
4: while the resilience indices do not converge and t < Tmax do
5: Get the system state {sc,ns |c ∈ Ωc} and the duration Dns =

min{Tc,ns};
6: Generate the supply scenario {sg,ns |g ∈ Ωg} and demand

scenario {sl,ns
|l ∈ Ωl};

7: Get the ADS scenarios S, perform system states analysis,
determine the power supply state of each load node;

8: Calculate the resilience indices;
9: t = t+Dns ;

10: ns = ns + 1;
11: for c ∈ Ωc do
12: if Tc,ns ̸= Dns−1 then
13: Tc,ns = Tc,ns−1 −Dns−1;
14: else
15: The new state duration is sampled Tc,ns ;
16: end if
17: end for
18: end while

state analysis methods based on topology connectivity are difficult to
meet the needs of scenario analysis for ADSs. Therefore, for every
scenario of the ADS generated during the MCS, the scenario anal-
ysis considering DER-based load restoration is required to obtain
the outage results. This paper integrates the MILP-based microgrid
formation model with the ZPMPS, and propose an ADS scenario
analysis algorithm as shown in Algorithm 2.

Based on the load restoration results, each energy supply path of
microgrids are determined for each load node according to these
rules: the low-voltage side buses of substations are the preferred
choices for load power supply, followed by the DERs. According
to the load node state changes before and after an outage, the fault
type of load nodes can be obtained. As shown in Algorithm 2, there
are six fault types for load nodes. Type I: the load node is originally
in the power supplied state and not affected by the outage, meaning
that is continues to be in the power supplied state. Type II: the load
node is affected by the outage but can be restored after the fault iso-
lation, and the load node continues to be in the power supplied state.
Type III: the load node is originally in the power supplied state and
affected by the outage, and can be restored after changing the energy
supply path. Type IV: the load node is originally in the power sup-
plied state, but loses its power supply path due to the outage, then
its state transfers to the power outage state. Type V: the load node
is originally in the power outage state, but after the fault is repaired,
it can be restored and its state transfers to the power supplied state.
Type VI: the load node is originally in the power outage state and
continues to be in the power outage state.

According to the fault type of load nodes, the interruption fre-
quency and duration can be obtained. Combined with the static
parameters mentioned in Table 1 e.g. the average load and customer
number for each load node, the resilience indices of load nodes and
the distribution system can be calculated through statistics.

5 Cases studies

In this section, the IEEE 123-bus feeder [28] is adopted as the test
system to verify the effectiveness of our proposed method. A brief
description of this test system is given in Section 5.1.1. The program-
ming environment is configured as Python 3.8.12. The microgrid
formation MILP model solved with MATLAB 2021a and CPLEX
12.8.0. In addition, all the experiments were performed on a personal
computer with Intel(R) Core (TM) i7-10700F CPU at 2.90 GHz and
16.00 GB RAM.

Algorithm 2 scenario analysis

1: Check the power supply states of each load node;
2: Check the power supply sources of each load node;
3: Determine the fault result based on the ZPMPS;
4: According to the built MILP model, the topology reconstruction

of the microgrid;
5: Determine the status of the current load node and its power

supply;
6: if random faults result in the loss of power supply to the main

network in some areas, but the DER exists in the area then
7: Determine the dynamic boundary of microgrid;
8: Determine the status of the current load node and its power

supply;
9: for i = 1, ..., Nload (i.e., the number of loads) do

10: if the load was in a state of power failure originally then
11: if the load is supplied currently then
12: Result type V;
13: else
14: Result type VI;
15: end if
16: else
17: if the power supply does not change then
18: if the faulty component is not in the zone minimal

path then
19: Result type I;
20: else
21: Result type II;
22: end if
23: else
24: if power supplied by a DER then
25: Result type III;
26: else
27: Result type IV;
28: end if
29: end if
30: end if
31: end for
32: else
33: Determining the result type by ZPMPS;
34: end if
35: Output status assessment results.

5.1 Test system introduction

5.1.1 IEEE 123-bus feeder: The standard IEEE 123-bus
feeder does not include DERs, which is used as a comparison to
get the resilience gain of DERs. The topology of the modified IEEE
123-bus feeder is shown as Fig. 4, where nodes 17, 250, 39, 66,
71, 96, 114, and 151 are set to DER nodes. The power generation
capacity of the DER (distributed wind turbine generator) is 0.4MW
and 0.3MVar. The uncertainty on the power supply side comes from
the random fault of public grid and the random output of distributed
wind turbines. The random fault of the public grid only considers the
fault of distribution lines. The line failure rate is set to 0.1(f/yr/km),
and the mean repair time is set to 5 hours. In addition, the line length,
loads and power flow calculation parameters are consistent with the
standard test system. The number of customers at each load node
is set to 10. This distribution system can be divided into five zones
based on the locations of circuit breakers. Table 2 lists the number
of nodes in each zone.

5.1.2 Supply-demand data: The wind power generation data
comes from the actual data of a region in China, with a sampling
interval of 30 minutes. After the Min-Max standardization, the out-
put data of DERs in the test system can be obtained by conversion
according to the capacity. The conversion formula is shown (3). Load
data comes from the Low Carbon London (LCL) project, which col-
lected smart meter data from 5,567 London households between
November 2011 and February 2014. This dataset contains energy
consumption data with kWh, 30-minute sampling interval, unique
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Fig. 4: Modified IEEE 123-bus feeder.

Table 2 IEEE 123-bus feeder zone partitional.

Zone Load nodes

1 149, 1-34, 350
2 135, 35-51, 151
3 152, 52-66, 610
4 160, 67-100, 450
5 197, 101-114, 300

user IDs, date, and time. All users are divided into 16 groups accord-
ing to different economic levels. Based on this, all the users are
further divided into 200 groups. The load data of the LCL project in
2013 is used in this paper, and the conversion relationship between
the actual load data and the load data in oue test system is shown in
(4). It can be seen from Table 2, some nodes are not loaded in the
IEEE 123-bus feeder. For those nodes, the average node load is con-
sidered to be zero. The modified IEEE 123-bus feeder has a total of
125 load nodes and 8 DER nodes of distributed wind turbines. After
the Min-Max standardized processing of supply and demand data, 8
groups of actual wind power generation data are selected to corre-
spond to 8 distributed wind turbines, and 125 groups of the actual
load data are selected to correspond to 125 load nodes.

5.2 Resilience of the distribution system

The coefficient of variation (CV) of the EER is used as an indicator
to determine whether the assessment is converged or not. In specific,
the assessment is viewed as converged when the CV of the EER
is less than 0.05, and not converged otherwise. In addition, a max-
imum simulation time that is 10,000 years is set to avoid overlong
simulations, which means that the evaluation will stop when the sim-
ulation time reaches the maximum simulation time even the CV of
the EER is larger than 0.05. In this situation, whether the MCS-based
resilience assessment is accurate should be manually determined.

The resilience indices calculated in this paper include EER, EITD,
ASRE, ASIFD, ASITD, and ACIDD (see Table 1). The resilience
assessment results of the ADS are shown in Table 3. The data in the
table indicate that DER effectively improves the system resilience
in the distribution system, especially in the power distribution sys-
tem to restore power supply energy and shorten the interruption time
for load nodes. The resilience improvement is obviously reflected in
EER, EITD, ASRE, ASITD, and ACIDD.

As shown in Fig. 5, the resilience improvement proportion of
EER, EITD, ASRE, ASITD, and ACIDD are 36%, 41%, 36%, 41%,
38%, respectively, which all account for about 40%. The series of
bars in Fig. 5 depict the proportion of load restoration effect played
by DERs in the ADS. Through the microgrid formation, the DER-
based load restoration effect is reflected in power supplied indices,
power interruption time indices and fault frequency indices. Rep-
resented as Fig. 5, the complete bars indicate the impact of power
outages, while the highlighted parts represent the quantified propor-
tion of load restoration through the microgrid formation based on

grid-edge DERs in ADSs. However, the resilience improvement is
not obvious in the index that describes the decrement of interrup-
tion frequency, i.e., ASIFD. The improvement proportion in terms
of the system interruption frequency is only 5%, as shown in Fig.
5. Because the DER can only flexibly adjust power supply paths by
optimizing the microgrid formation, to improve the load restoration
capacity of distribution systems and reduce the user’s power shortage
and interruption time, but rarely reduce the component failure fre-
quency since these adjustments also cause short blackouts for nodes
that need to switch power supply paths. Therefore, the DER has little
influence on the improvement of the distribution system resilience in
terms of the interruption frequency.

5.3 Resilience of zones and nodes

Based on the decrement of the average annual outage time of load
nodes, i.e., Ḋi (hr/yr), this paper measures the resilience of load
nodes in ADSs, as shown in Table 4. This paper does not consider
the resilience of distribution system nodes without load, and sets the
resilience indices of these nodes to zero. At the same time, these
load node are not mentioned in Table 4. In addition, the resilience
of distribution zones is analysed. Distribution system load nodes are
divided into five zones according to the locations of circuit breakers,
as shown in Fig. 4.

The resilience of load nodes in each zone has certain correlation.
In Table 5, the average resilience indices of load nodes of the distri-
bution system in different zones are provided. The average values of
resilience indices of load nodes in different zones are obviously dif-
ferent. This is related to the location of the zone relative to the power
supply in the distribution system. For zone 1, its nodes are close to
the source bus, and the resilience of load nodes is mainly affected
by the source bus, and the load restoration effect of DERs is not
dominant. Zone 4 and 5, located at the grid-edge of the distribution
system, are far away from the source bus. There are DERs in these
two zones. The load restoration effect of DERs is significant. Hence
these load nodes have stronger resilience capacity. Fig. 6 depicts the
resilience index of each load node (decrement for load node average
annual outage duration Ḋi (hr/yr)) in the distribution system in the
form of a bar chart. Load nodes in different zones are highlighted in
different colours in the bar chart. There is a similar resilience pattern
for load nodes in the same zone. The loads far away from the source
bus and close to the grid-edge DER node in the region has a better
resilience level. The load nodes close to the source bus have weak
load restoration capacity. As the topology position is close to the end
of the distribution network and the DER node, the load restoration
capacity is gradually enhanced.

Fig. 7 describes the resilience index of load nodes (decrement for
load node average annual outage duration Ḋi (hr/yr)) by the colour
of load nodes. In this figure, the nodes with no loads are represented
as white circles with black edge, e.g., the load node 3, 8, and 13. The
DER nodes are denoted by blue edge nodes (i.e., nodes 17, 250, 39,
66, 71, 96, 114, and 151). The darker the green color for the load
node in the figure, the larger the Ḋi, which means the stronger the
resilience of these load nodes.

As shown in Fig. 7, it is not difficult to find that the resilience of
load nodes is closely related to the position of DERs in the distri-
bution system topology. The stronger the power supply restoration
capability of the load nodes near the grid-edge DER, the higher their
resilience, e.g., the DER nodes 71, 96, and 114. This is consistent
with our conclusion in Fig. 6. The load restoration effect of load
nodes near the source bus is not obvious. The power supply restora-
tion of such nodes is mainly affected by the source bus. For the nodes
far away from the source bus, the nodes at the grid-edge of the distri-
bution system, their load restoration effect is better. The load nodes
in the same branch as DER nodes or DER nodes themselves have the
best restoration effect and higher resilience capacity. These nodes are
less affected by the fault of the source bus, because they are closer
to the grid-edge DERs, so these nodes have strong load restoration
capacity and better resilience indices.
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Table 3 Active distribution system resilience indices.

EER (kWh/yr) EITD (cust.hr/yr) ASRE (kWh/cust./yr) ASIFD (f/cust./yr) ASITD (hr/cust./yr) ACIDD (hr/cust./yr)

786.1 212.2 0.6289 0.003899 0.1698 1.915

Table 4 Active distribution system load nodes resilience indices.

Load nodes Ḋi (hr/yr) λ̇i (f/yr.) ṙi (hr) Load nodes Ḋi (hr/yr) λ̇i (f/yr.) ṙi (hr)

Zone 1 59 0.1851 -0.000159 2.006
1 0.0283 0.002506 1.401 60 0.2170 -0.000289 2.129
2 0.0248 0.000149 1.305 62 0.2548 -0.000517 2.357
4 0.0068 0.002914 -0.300 63 0.2580 -0.000611 2.289
5 0.0115 0.002296 0.016 64 0.3420 -0.000516 2.762
6 0.0101 -0.000759 0.330 65 0.1449 -0.030389 1.813
7 0.0186 0.001083 0.644 66 0.4980 0.094054 0.135
9 0.0003 -0.000492 0.086 Zone 4
10 0.0004 -0.001633 0.158 68 0.2798 -0.002797 2.264
11 -0.0029 -0.001633 0.099 69 0.3521 -0.003782 2.655
12 0.0238 0.002306 0.369 70 0.3112 -0.007137 2.281
16 0.0587 0.002845 0.879 71 0.4655 0.086460 0.243
17 0.1233 0.021110 0.457 73 0.2861 -0.003665 2.167
19 0.1420 0.004195 1.903 74 0.2918 -0.000296 1.976
20 0.1486 0.002931 1.751 75 0.2242 -0.002085 1.449
22 0.1552 -0.001097 1.853 76 0.3679 -0.002860 0.208
24 0.1583 -0.003220 1.827 77 0.3688 -0.004008 2.584
28 0.2469 0.001559 2.673 79 0.2269 -0.003933 1.545
29 0.2893 0.004587 2.777 80 0.2168 -0.006094 1.460
30 0.3330 0.005820 2.823 82 0.2500 -0.004382 1.469
31 0.1886 0.002879 1.739 83 0.2626 -0.004280 1.476
32 0.1915 0.002846 1.621 84 0.1730 -0.003847 0.960
33 0.2231 0.006502 1.713 85 0.2481 -0.005305 1.280
34 0.0402 0.001301 0.846 86 0.3516 -0.003916 2.362
Zone 2 87 0.4200 -0.003945 2.580
35 0.1947 0.002572 2.343 88 0.3988 -0.004778 2.402
37 0.2880 0.003602 2.551 90 0.3824 -0.002750 2.160
38 0.3236 0.005244 2.839 92 0.5030 -0.002666 2.670
39 0.4273 0.079851 0.281 94 0.4899 -0.005758 2.523
41 0.2089 0.005664 1.957 95 0.4707 -0.009264 2.448
42 0.2102 0.004815 2.091 96 0.6177 0.121356 0.135
43 0.2517 0.005224 2.191 98 0.2497 -0.002023 1.863
45 0.2525 0.005893 2.204 99 0.1824 -0.001408 1.208
46 0.2510 0.005043 2.066 100 0.3255 -0.001965 2.010
47 0.2158 0.003447 1.873 Zone 5
48 0.1129 0.005509 0.789 102 0.3061 -0.003132 2.118
49 0.2112 0.001693 1.771 103 0.4057 -0.002571 2.590
50 0.3198 -0.000168 2.608 104 0.3845 -0.003810 2.192
51 0.3459 0.002616 2.621 106 0.3548 -0.004651 2.334
Zone 3 107 0.3444 -0.003298 2.023
52 0.0948 0.001371 1.551 109 0.4197 -0.000773 2.411
53 0.1182 -0.000082 1.869 111 0.4232 -0.002884 2.179
55 0.0943 0.000344 1.234 112 0.456 -0.001785 2.479
56 0.1213 0.002322 1.317 113 0.5612 -0.001377 2.818
58 0.1501 -0.001670 1.810 114 0.6918 0.142964 -0.150

Fig. 5: The improvement proportion of microgrid formation for load
service restoration.

6 Conclusions

This paper proposes a resilience assessment method of ADSs con-
sidering the microgrid formation based on grid-edge DERs. The

Table 5 Average for distribution system load nodes resilience indices.

Zones Avg (Ḋi) Avg (λ̇i) Avg (ṙi)

1 0.1052 0.002565 1.172
2 0.2581 0.009358 0.009358
3 0.1800 -0.002745 1.922
4 0.3282 0.007738 1.723
5 0.4347 0.011868 2.099

proposed method is helpful to solve the problems brought by the
integration of grid-edge DERs on the resilience assessment of distri-
bution systems. Firstly, the uncertainty modelling of ADSs is carried
out, and the analysis scenario of ADSs is defined consisting of the
vulnerable components state and uncertain supply-demand. Then,
the scenario generation and analysis algorithms of ADSs are pro-
posed. In the scenario analysis algorithm, the microgrid formation
model is established and integrated with the ZPMPS. In addition,
a set of resilience indices are proposed and calculated based the
sequential MCS. Finally, a modified IEEE 123-bus feeder is used
to verify the effectiveness of the proposed method, which shows
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Fig. 6: Bar chart for active distribution system load nodes resilience.

Fig. 7: Active distribution system load nodes resilience.

that DERs can efficiently improve the resilience and load restoration
capacity of ADSs from multi perspectives.

In the future, the influence of extreme events on the output of
DERs and the component resilience parameters e.g. failure rate and
repair time deserve is worth studying.
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