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1 Introduction

In this paper, we study the minimizers of the following L2-subcritical constraint inhomogeneous
variational problem

I(M) := inf
{u∈H,∥u∥2

2=1}
EM (u), M > 0, (1.1)

where the energy functional EM (u) contains a spatially decaying nonlinearity and is defined
by

EM (u) :=

∫
RN

(
|∇u|2 + V (x)|u|2

)
dx− 2M

p−1
2

p+ 1

∫
RN

|u|p+1

|x|b
dx, N ≥ 1, (1.2)

and the space H is defined as

H :=
{
u(x) ∈ H1(RN ) :

∫
RN

V (x)|u(x)|2 < ∞
}

with the associated norm ∥u∥H =
{∫

RN

(
|∇u(x)|2 + |u(x)|2 + V (x)|u(x)|2

)
dx

} 1
2

. Here posi-

tive constants b > 0 and p > 0 of (1.1) satisfy

0 < b < min{2, N}, 1 < p < 1 +
4− 2b

N
, where N ≥ 1. (1.3)

We always assume that the trapping potential V (x) ≥ 0 satisfies
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(V 1). V (x) ∈ L∞
loc(RN ) ∩ Cα

loc(RN ) with α ∈ (0, 1), {x ∈ RN : V (x) = 0} = {0} and
lim

|x|→∞
V (x) = ∞.

The variational problem (1.1) arises in various physical contexts such as the laser beam propa-
gation in optical fibers, Bose Einstein condensation (BEC), and nonlinear optics (cf. [1, 3, 29]),
where the constant M > 0 usually represents the attractive interaction strength and V (x) ≥ 0
represents the external potential. Due to the singularity of |x|−b, the variational problem (1.1)
and its associated elliptic equation have attracted a lot of attentions over the past few years,
see [2, 8, 9, 13, 14, 17, 31] and the references therein.

When b = 0, (1.1) is a homogeneous constraint variational problem, for which there are
many existing results of (1.1) (cf. [6, 15, 20, 21, 22, 23, 27, 28, 30, 33]). To be more precise,
when p > 1 + 4

N , one can use the energy estimates to obtain the nonexistence of minimizers
for (1.1) with b = 0 as soon as M > 0 (cf. [6, 7]), which is essentially in the L2-supercritical
case. However, if 1 < p < 1 + 4

N , (1.1) with b = 0 is in the L2-subcritical case and admits
generally minimizers for all M ∈ (0,∞). In this case, the uniqueness, symmetry breaking and
concentration behavior of minimizers were investigated recently as M → ∞, see [27, 30] and
the references therein. As for the case where p = 1 + 4

N , (1.1) with b = 0 reduces to the
L2-critical case, which was addressed widely by Guo and his collaborators, see [20, 21, 22, 23]
and the references therein.

When b ̸= 0, (1.1) contains the singular nonlinear term |u|p+1

|x|b . Note that similar inhomo-

geneous problems were analyzed recently in [10, 11, 30] and the references therein. However.
the above mentioned works focused mainly on the case where m(x) satisfies m(x) ∈ L∞(RN )
without any singular point. On the other hand, Ardila and Dinh obtained recently in [2] the
existence of minimizers and the stability of the standing waves, for which they studied the
associated constraint variational problem (1.1), in the L2-subcritical case where the harmonic
potential satisfies V (x) = γ2|x|2(γ > 0), b > 0 and p > 0 satisfy (1.3).

Inspired by the above works, in this paper we shall mainly studied the uniqueness of positive
minimizers for (1.1) in the subcritical case. We assume that uM is a minimizer of I(M) for
any M > 0. It then follows from the variational theory that uM satisfies the following Euler-
Lagrange equation

−∆uM + V (x)uM −M
p−1
2

up
M

|x|b
= µMuM in RN , (1.4)

where µM ∈ R is a suitable Lagrange multiplier and satisfies

µM = I(M)− p− 1

p+ 1
M

p−1
2

∫
RN

|uM |p+1

|x|b
dx. (1.5)

Note that EM (u) = EM (|u|) holds for any u ∈ H[26, Theorem 6.17], which implies that |uM |
is also a minimizer of I(M). By the strong maximum principle, we can further derive from
(1.4) that |uM | > 0 holds in RN . Therefore, without loss of generality, we only consider the
positive minimizers uM > 0 of I(M).

We next introduce the following associted limit equation

−∆w + w − wp

|x|b
= 0 in RN , w ∈ H1(RN ). (1.6)

Note that (1.6) admits a unique positive solution, which is radially symmetric (cf. [4, 17, 18,
25, 32]). We always denote this unique positive solution by w(x) in this paper.

Under the assumptions (V 1) and (1.3), let uk be a positive minimizer of I(Mk), where
Mk → ∞ as k → ∞. Then we have the following conclusions (cf. [16]):
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1. uk satisfies

wk(x) := ϵ
N
2

k uk(ϵkx) →
w(x)√
a∗

uniformly in L∞(RN ) as k → ∞, (1.7)

where ϵk :=
(

Mk

a∗

)− p−1
4−N(p−1)−2b

> 0, a∗ := ∥w∥22 > 0, and w > 0 is the unique positive

solution of (1.6).

2. uk decays exponentially in the sense that for sufficiently large k > 0,

wk(x) ≤ Ce−
√
θ|x| and |∇wk(x)| ≤ Ce−θ|x| as |x| → ∞, (1.8)

where 0 < θ < 1 and C > 0 are independent of k > 0.

3. The Lagrange multiplier µk satisfies

lim
k→∞

ϵ2kµk = −1. (1.9)

To state our results, we need additional assumptions of V (x), for which we define

Definition 1.1. The function h(x) > 0 in RN is homegeneous of degree d ∈ R+ (with respect
to the orign), if there exists some d > 0 such that

h(tx) = tdh(x) in RN for any t > 0. (1.10)

This definition implies that the homogeneous function h(x) ∈ C(RN ) of degree d > 0
satisfies 0 ≤ h(x) ≤ C|x|d in RN , where C = max

x∈∂B1(0)
h(x). Moreover, 0 is the unique minimum

point of h(x), if lim
|x|→∞

h(x) = ∞. Following the above definition and the assumption (V 1), we

next assume that

(V 2). V (x) ∈ C1(R2) satisfies {x ∈ RN : V (x) = 0}={0},

|V (x)) ≤ Ceα|x|, |∇V (x)| ≤ Ceα|x| for some α > 0 as |x| → ∞, (1.11)

and for m = 1, 2, · · · , N ,

V (x) = h(x) + o(|x|d), ∂V (x)

∂xm
=

∂h(x)

∂xm
+ o(|x|d−1) as |x| → 0, (1.12)

where 0 ≤ h(x) ∈ C1(RN ) is a homogeneous funtion of degree d > 0 and satisfies
lim

|x|→∞
h(x) = +∞.

Motivated by [5, 12, 20], we study the following uniqueness of positive minimizers for I(M)
as M → ∞.

Theorem 1.1. Assume that N ≥ 3, 0 < b < min{2, N
2 } and 1 < p < 1 + 4−2b

N , and suppose
V (x) satisfies (V 1) and (V 2). Then there exists a unique positive minimizer of I(M) as
M → ∞.

We note that the restriction N ≥ 3 in Theorem 1.1 can be removed if the nondegeneracy
(2.2) below still holds for any dimension N ≥ 1. Similar to [5, 12, 20], Theorem 1.1 is proved by
establishing local Pohozaev identities. However, the calculation involved in the proof is more
complicated due to the existence of inhomogeneous nonlinear terms. In addition, we remark
that the standard elliptic regularity theory should be used with caution for singular terms near
the origin. The rest of this paper is devoted to the proof of Theorem 1.1.
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2 Proof of Local Uniqueness

In this section, we shall complete the proof of Theorem 1.1. Inspired by [5, 12], we first define
the linear operator

L = −∆+ 1− pwp−1|x|−b in RN , (2.1)

where w = w(|x|) is the unique positive solution of (1.6). Note from [17] that

ker(L) = {0} if N ≥ 3. (2.2)

Proof of Theorem 1.1. We prove it by contradiction. Suppose that there exist two different
positive minimizers u1,k and u2,k of I(Mk) as k → ∞. It then follows from (1.4) that ui,k

solves the following Euler-Lagrange equation

−∆ui,k + V (x)ui,k −M
p−1
2

k

|ui,k|p

|x|b
= µi,kui,k in RN , i = 1, 2, (2.3)

where µi,k ∈ R is a suitable Lagrange multiplier. Define

ūi,k(x) :=
√
a∗ϵ

N
2

k ui,k(x) and ûi,k(x) := ūi,k(ϵkx), where i = 1, 2. (2.4)

It then follows from (1.7) and (1.8) that

ûi,k(x) = ūi,k(ϵkx) → w(x) uniformly in L∞(RN ) as k → ∞, (2.5)

and

|ûi,k(x)| = |ūi,k(ϵkx)| ≤ Ce−
√
θ|x| and |∇ûi,k(x)| = |∇ūi,k(ϵkx)| ≤ Ce−θ|x| as |x| → ∞,

(2.6)
where 0 < θ < 1 and C > 0 are independent of k. For i = 1, 2, ūi,k solves the equation

−ϵ2k∆ūi,k(x) + ϵ2kV (x)ūi,k(x)− ϵbkū
p
i,k|x|

−b = µi,kϵ
2
kūi,k(x) in RN . (2.7)

Since u1,k ̸≡ u2,k, we consider

ξ̄k(x) =
u2,k − u1,k

∥u2,k − u1,k∥L∞(RN )

=
ū2,k − ū1,k

∥ū2,k − ū1,k∥L∞(RN )

. (2.8)

Stimulated by [5], we first claim that for any x0 ∈ RN , there exsits a small δ > 0 such that∫
∂Bδ(x0)

[
ϵ2k|∇ξ̄k|2 +

1

2
|ξ̄k|2 + ϵ2kV (x)|ξ̄k|2

]
dS = O(ϵNk ) as k → ∞. (2.9)

Similar to [5, 20], denote

D̄s−1
k (x) :=

ūs
2,k(x)− ūs

1,k(x)

s(ūs
2,k(x)− ū1,k)

=

∫ 1

0
d
dt [tū2,k + (1− t)ū1,k]

sdt

s(ū2,k − ū1,k)

=

∫ 1

0

[tū2,k + (1− t)ū1,k]
s−1dt

(2.10)
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We then obtain from (2.7) and (2.8) that

−ϵ2k∆ξ̄k + C̄k ξ̄k = ḡk(x) in RN , (2.11)

where the cofficient C̄k satisfies

C̄k = −ϵ2kµ1,k − pϵbk|x|−bD̄p−1
k + ϵ2kV (x), (2.12)

and the inhomogeneous term ḡk satisfies

ḡk(x) : =
ϵ2kū2,k(µ2,k − µ1,k)

∥ū2,k − ū1,k∥L∞(RN )

= − (p− 1)ū2,k

a∗ϵN−b
k

∫
RN

ξ̄k|x|−bD̄p
kdx,

(2.13)

where the following equality is used,

µ2,k − µ1,k = −p− 1

p+ 1
M

p−1
2

k

∫
RN

|x|−b(up+1
2,k − up+1

1,k )

= −p− 1

p+ 1
M

p−1
2

k (a∗)−
p+1
2 ϵ

−N(p+1)
2

k

∫
RN

|x|−b(ūp+1
2,k − ūp+1

1,k )

= −
(p− 1)∥ū2,k − ū1,k∥L∞(RN )

a∗ϵ2+N−b
k

∫
RN

ξ̄k|x|−bD̄p
kdx.

(2.14)

Multiplying (2.11) by ξ̄k and integrating over RN , we then obtain that

ϵ2k

∫
RN

|∇ξ̄k|2 − µ1,kϵ
2
k

∫
RN

|ξ̄k|2 + ϵ2k

∫
RN

V (x)|ξ̄k|2

= pϵbk

∫
RN

|x|−bD̄p−1
k |ξ̄k|2 −

(p− 1)

a∗ϵN−b
k

∫
RN

ū2,k ξ̄k

∫
RN

ξ̄k|x|−bD̄p
k

≤ pϵbk

∫
RN

|x|−bD̄p−1
k +

(p− 1)

a∗ϵN−b
k

∫
RN

ū2,k

∫
RN

|x|−bD̄p
k

≤ CϵNk as k → ∞,

where we use the fact that |ξ̄k| and ūi,k(ϵkx) are uniformly bounded with respect to k, and
ūi,k(ϵkx) satisfies (2.6), where i = 1, 2. Recall from (1.9) that µi,kϵ

2
k → −1 as k → ∞, the

above estimate further implies that there exists a constant C1 > 0 such that

I := ϵ2k

∫
RN

|∇ξ̄k|2 +
1

2

∫
RN

|ξ̄k|2 + ϵ2k

∫
RN

V (x)|ξ̄k|2 < C1ϵ
N
k as k → ∞. (2.15)

Following [5, Lemma 4.5], we then conclude that for any x0 ∈ RN , there exist a small constant
δ > 0 and C2 > 0 such that∫

∂Bδ(x0)

[
ϵ2k|∇ξ̄k|2 +

1

2
|ξ̄k|2 + ϵ2kV (x)|ξ̄k|2

]
dS ≤ C2I ≤ C1C2ϵ

N
K as k → ∞,

and thus the claim (2.9) is proved.
Define

ξk(x) = ξ̄k(ϵkx). (2.16)

5



We shall prove Theorem 1.1 by deriving a contradiction through the following three steps.
Step 1. There exist a subsequence of k, still denoted by k, and a constant b0 ∈ R such that

ξk(x) → ξ0(x) in Cloc(RN ) as k → ∞, where

ξ0 = b0

(p− 1

2
(x · ∇w) +

2− b

2
w
)
. (2.17)

Actually, note that ûi,k(x) satisfies the following equation

−∆ûi,k(x) + ϵ2kV (ϵkx)ûi,k(x)−
ûp
i,k(x)

|x|b
= µi,kϵ

2
kûi,k(x) in RN . (2.18)

Denote

D̂s−1
k :=

∫ 1

0

[
tû2,k + 1− tû1,k

]s−1
dt, (2.19)

so that ξk satisfies
−∆ξk + Ck(x)ξk = gk(x) in RN , (2.20)

where the cofficient Ck(x) satisfies

Ck(x) = ϵ2kV (ϵkx)− p|x|−bD̂p−1
k − ϵ2kµ1,k, (2.21)

and the inhomogeneous term gk(x) satisfies

gk(x) := − (p− 1)û2,k

a∗

∫
RN

ξk|x|−bD̂p
kdx. (2.22)

Here (1.5) and (2.4) are used. Recalling from (2.5) that ûi,k is uniformly bounded in L∞(RN ),

we obtain that |x|−bD̂p−1 is uniformly bounded in Lr
loc(RN ), where r ∈ (N2 ,

N
b ). Since

∥ξk∥L∞(RN ) ≤ 1, the standard elliptic regularity then implies (cf[19]) that ∥ξk∥W 2,r
loc (RN ) ≤ C

and thus ∥ξk∥Cα
loc

≤ C for some α ∈ (0, 2− b), where the constant C > 0 is independent of k.
Therefore, there exists a subsequence of {k}, still denoted by {k}, and a function ξ0 = ξ0(x)
such that ξa(x) → ξ0(x) in Cloc(RN ) as k → ∞. Applying (1.7), (1.9) and dircet calculations
yield from (2.21) and (2.22) that

Ck(x) → 1− p|x|−bwp−1 uniformly in Cloc(RN ) as k → ∞,

and

gk(x) → − (p− 1)w

a∗

∫
RN

ξ0|x|−bwp uniformly in Cloc(RN ) as k → ∞,

which implies from (2.20) that ξ0 solves

Lξ0 = −∆ξ0 + ξ0 −
pwp−1

|x|b
= − (p− 1)w

a∗

∫
RN

ξ0|x|−bwp. (2.23)

Since −∆w + w − wp−1w|x|−b = 0, we have

−∆(∂iw) + ∂iw − pwp−1∂iw|x|−b + bwp−1|x|−(b+2)xi = 0,

and hence L(∂iw) = −bwp−1|x|−(b+2)xi. Moreover, by direct calculations, we get

L(xi∂iw) = −∆(xi∂iw) + xi∂iw − pwp−1|x|−bxi∂iw

= xiL(∂iw)− 2∂i(∂iw).

6



We then deduce from above two facts that

L(x · ∇w) = −bwp−1w|x|−b − 2∆w

= −bwp−1w|x|−b − 2(w − wp−1w|x|−b)

= (2− b)wp−1w|x|−b − 2w.

On the other hand,

L(w) = −∆w + w − pwp−1|x|−bw

= −∆w + w − wp−1w|x|−b − (p− 1)wp−1w|x|−b

= −(p− 1)wp−1w|x|−b.

Therefore, we conclude that

L
(p− 1

2
(x · ∇w) +

2− b

2
w
)
= −(p− 1)w,

which then implies that (2.17) holds true in view of the non-degeneracy of L.
Step 2. The constant b0 = 0. Recalling from (2.5) that ûi,k is uniformly bounded in

L∞(RN ), we obtain that |x|−bûp
i,k is uniformly bounded in Lr

loc(RN ), where r ∈ (N2 ,
N
b ). By

[19, Theorem 9.11] and (2.18), one can deduce that ûi,k is uniformly bounded in W 2,r
loc (RN ).

Since 0 < b < min{2, N
2 }, ûi,k is uniformly bounded in H2

loc(RN ). Applying Cauchy-Schwarz
inequaty, one can deduce from (2.4) that

ϵ2k

∫
Bδ(0)

(
x · ∇ūi,k(x)

)
∆ūi,k(x) = ϵ2k

∫
Bδ(0)

(
x · ∇ûi,k

( x
ϵk

))
∆ûi,k

( x
ϵk

)
= ϵNk

∫
B δ

ϵk

(0)

(
x · ∇ûi,k

(
x)
)
∆ûi,k

(
x
)

≤ ϵN−1
k δ

∫
B δ

ϵk

(0)

|∇ûi,k

(
x)||∆ûi,k(x)|

≤
ϵN−1
k δ

2

(∫
B δ

ϵk

(0)

|∇ûi,k

(
x)|2 +

∫
B δ

ϵk

(0)

|∆ûi,k(x)|
)

≤
ϵN−1
k δ

2
∥ûi,k∥2H2

B δ
ϵk

(0)
< ∞.

7



Therefore, we use integration by parts to get that

− ϵ2k

∫
Bδ(0)

(x · ∇ūi,k)∆ūi,k

= −ϵ2k

∫
∂Bδ(0)

∂ūi,k

∂ν
(x · ∇ūi,k)dS + ϵ2k

∫
Bδ(0)

∇ūi,k · ∇(x · ∇ūi,k)

= −ϵ2k

∫
∂Bδ(0)

∂ūi,k

∂ν
(x · ∇ūi,k)dS + ϵ2k

N∑
j=1

∫
Bδ(0)

(
∂ūi,k

∂xj
)2 +

1

2
x · ∇(

∂ūi,k

∂xj
)2

= −ϵ2k

∫
∂Bδ(0)

∂ūi,k

∂ν
(x · ∇ūi,k)dS

+ ϵ2k

[ ∫
Bδ(0)

|∇ūi,k|2 −
N

2
|∇ūi,k|2 +

1

2

∫
∂Bδ(0)

|∇ūi,k|2(x · ν)
]
dS

= ϵ2k

∫
∂Bδ(0)

−∂ūi,k

∂ν
(x · ∇ūi,k) +

1

2
(x · ν)|∇ūi,k|2dS +

(2−N)ϵ2k
2

∫
Bδ(0)

|∇ūi,k|2

= ϵ2k

∫
∂Bδ(0)

[
− ∂ūi,k

∂ν
(x · ∇ūi,k) +

1

2
(x · ν)|∇ūi,k|2 +

2−N

4
(∇ū2

i,k · ν)
]
dS

− 2−N

2

∫
Bδ(0)

[
ϵ2kV (x)ū2

i,k(x)− ϵbkū
p+1
i,k |x|−b − µi,kϵ

2
kū

2
i,k(x)

]
,

(2.24)

where the last equality follows from the following equation

(2−N)ϵ2k
2

∫
Bδ(0)

|∇ūi,k|2 =
2−N

4

∫
∂Bδ(0)

(∇ū2
i,k · ν)dS

− 2−N

2

∫
Bδ(0)

[
ϵ2kV (x)ū2

i,k(x)− ϵbkū
p+1
i,k |x|−b − µi,kϵ

2
kū

2
i,k(x)

]
.

(2.25)

On the other hand, multiplying (2.7) by (x · ∇ūi,k), where i = 1.2, and integrating it over
Bδ(0), where δ > 0 is small enough, we deduce for i = 1, 2,

− ϵ2k

∫
Bδ(0)

(x · ∇ūi,k)∆ūi,k

= ϵ2k

∫
Bδ(0)

[
µi,k − V (x)

]
ūi,k(x · ∇ūi,k) + ϵbk

∫
Bδ(0)

|x|−būp
i,kx(x · ∇ūi,k)

= −ϵ2k
2

∫
Bδ(0)

ū2
i,k

{
N
[
µi,k − V (x)

]
−

(
x · ∇V (x)

)}
+

ϵ2k
2

∫
∂Bδ(0)

ū2
i,k

[
µi,k − V (x)

]
(x · ν)dS

+
ϵbk

p+ 1

[ ∫
∂Bδ(0)

|x|−būp+1
i,k (x · ν)dS −

∫
Bδ(0)

ūp+1
i,k

N − b

|x|b
]
.

(2.26)
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Substituting (2.24) into (2.26) yields that

ϵ2k

∫
∂Bδ(0)

[
− ∂ūi,k

∂ν
(x · ∇ūi,k) +

1

2
(x · ν)|∇ūi,k|2 +

2−N

4
(∇ū2

i,k · ν)
]
dS

= ϵ2k

∫
Bδ(0)

ū2
i,k

(
V (x)− µi,k +

1

2
x · ∇V

)
− 2(p+ 1)−N(p− 1)− 2b

2(p+ 1)
ϵbk

∫
Bδ(0)

ūp+1
i,k |x|−b + Ii,

(2.27)

where the term satisfies

Ii =
ϵ2k
2

∫
∂Bδ(0)

ū2
i,k

[
µi,k − V (x)

]
(x · ν)dS +

ϵbk
p+ 1

∫
∂Bδ(0)

|x|−būp+1
i,k (x · ν)dS. (2.28)

Since it follows from (1.5) that µi,kϵ
2
k

∫
RN ū2

i,k + p−1
p+1 ϵ

b
k

∫
RN ū2

i,k = ϵ2+Na∗I(Mk), we deduce

from (2.24)–(2.28) that

− ϵ2k

∫
Bδ(0)

[
V (x) +

1

2
[x · ∇V (x)]

]
ū2
i,k + ϵ2+Na∗I(Mk)

= Ii + ϵ2k

∫
∂Bδ(0)

[∂ūi,k

∂ν
(x · ∇ūi,k)−

1

2
(x · ν)|∇ūi,k|2 −

2−N

4
(∇ū2

i,k · ν)
]
dS

+ µi,kϵk
2

∫
RN\Bδ(0)

ū2
i,k +

N(p− 1) + 2b− 4

2(p+ 1)
ϵbk

∫
RN

|x|−būp+1
i,k

+
2(p+ 1)−N(p− 1)− 2b

2(p+ 1)
ϵbk

∫
RN\Bδ(0)

ūp+1
i,k |x|−b,

which implies that

4−N(p− 1)− 2b

2
ϵbk

∫
RN

D̄p
k|x|

−bξ̄k = T1 + T2 + T3 + T4 + T5 + T6, (2.29)
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where Ti satisfies

T1 :=
I2 − I1

∥ū2,k − ū1,k∥L∞

= ϵbk

∫
∂Bδ(0)

|x|−bD̄p
k ξ̄k(x · ν)dS − ϵ2k

2

∫
∂Bδ(0)

(ū2,k + ū1,k)ξ̄kV (x)(x · ν)dS

+
ϵ2kµ2,k

2

∫
∂Bδ(0)

(ū2,k + ū1,k)ξ̄k(x · ν)dS +
(µ2,k − µ1,k)ϵ

2
k

2∥ū2,k − ū1,k∥L∞

∫
∂Bδ(0)

ū2
1,k(x · ν)dS,

T2 = −2−N

4
ϵ2k

∫
∂Bδ(0)

∇[(ū2,k + ū1,k)ξ̄k] · ν,

T3 = −ϵ2k
2

∫
∂Bδ(0)

(x · ν)(∇ū2,k +∇u1,k) · ∇ξ̄k

+ ϵ2k

∫
∂Bδ(0)

[
(x · ∇ū2,k)(ν · ∇ξ̄k) + (ν · ∇ū1,k)(x · ∇ξk)

]
,

T4 = µ2,kϵ
2
k

∫
RN\Bδ(0)

(ū2,k + ū1,k)ξ̄k +
(µ2,k − µ1,k)ϵ

2
k

∥ū2,k − ū1,k∥L∞

∫
RN\Bδ(0)

ū2
1,k,

T5 =
2(p+ 1)−N(p− 1)− 2b

2
ϵbk

∫
RN\Bδ(0)

D̄p
k ξ̄k|x|

−b,

T6 = ϵ2k

∫
Bδ(0)

[
V (x) +

1

2
[x · ∇V (x)]

]
(ū1,k + ū2,k)ξ̄k.

Here D̄s−1
k =

∫ 1

0
[tū2,k + (1− t)ū1,k]

s−1dt.
We now estimate the right hand side of (2.29). We first consider the term T1. Using Hölder

inequatility, we derive from (2.5) and (2.6) that

ϵbk

∫
∂Bδ(0)

|x|−bD̄p
k ξ̄k(x · ν)dS − ϵ2k

2

∫
∂Bδ(0)

(ū2,k + ū1,k)ξ̄kV (x)(x · ν)dS

+
ϵ2kµ2,k

2

∫
∂Bδ(0)

(ū2,k + ū1,k)ξ̄k(x · ν)dS = o(e
−Cδ

ϵk ) as k → ∞.

(2.30)

Moreover, we deduce from (2.14) that

|µ2,k − µ1,k|ϵ2k
∥ū2,k − ū1,k∥L∞

≤ p− 1

a∗ϵN−b
k

∫
RN

ξ̄k|x|−bD̄p
k ≤ C as k → ∞ (2.31)

which and (2.30) yield that

T1 =
I2 − I1

∥ū2,k − ū1,k∥L∞
= o(e

−Cδ
ϵk ) as k → ∞, . (2.32)
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Moreover, if δ > 0 is small, then it follows from (2.5), (2.6) and (2.15) that

|T2| =
∣∣∣− 2−N

4
ϵ2k

∫
∂Bδ(0)

∇[(ū2,k + ū1,k)ξ̄k] · ν
∣∣∣

≤ Cϵ2k

[( ∫
∂Bδ(0)

|∇(ū2,k + ū1,k)|2
) 1

2
(∫

∂Bδ(0)

|ξ̄k|2
) 1

2

+
(∫

∂Bδ(0)

|∇ξ̄k|2
) 1

2
(∫

∂Bδ(0)

|ū2,k + ū1,k|2
) 1

2
]

≤ Cϵ2k(e
−Cδ

ϵk ϵ
N
2

k + ϵ
N−2

2

k e
−Cδ

ϵk )

≤ Cϵ
N+2

2

k e
−Cδ

ϵk as k → ∞,

(2.33)

where C > 0 is independent of k. Similar to the estimates (2.30)–(2.33), one can deduce that

|T3|, |T4|, |T5| = o(e
−Cδ

ϵk ) as k → ∞. (2.34)

As for T6, one has

ϵ2k

∫
Bδ(0)

V (x)(ū1,k + ū2,k)ξ̄k

= ϵ2+N
k

∫
B δ

ϵk

(0)

V (ϵkx)(û1,k + û2,k)ξk

= ϵ2+N+d
k

∫
B δ

ϵk

(0)

(
1 + o(1)

)
h(x)(û1,k + û2,k)ξk

=
(
2 + o(1)

)
ϵ2+N+d
k

∫
RN

h(x)wξ0 as k → ∞.

Moreover, since ∇h(x) · x = dh(x), one can derive that

ϵ2k
2

∫
Bδ(0)

[
x · ∇V (x)

]
(ū1,k + ū2,k)ξ̄k

=
(
1 + o(1)

)ϵ2k
2

∫
Bδ(0)

[∇h(x) · x](ū1,k + ū2,k)ξ̄k

=
(
1 + o(1)

)
d
ϵ2k
2

∫
Bδ(0)

h(x)(ū1,k + ū2,k)ξ̄k

=
(
1 + o(1)

)
d
ϵ2+N+d
k

2

∫
B δ

ϵk

(0)

h(x)(û1,k + û2,k)ξk

=
(
1 + o(1)

)
dϵ2+N+d

k

∫
RN

h(x)wξ0 as k → ∞.

It then follows from the above estimates that

T6 = O(ϵ2+N+d
k ) as k → ∞. (2.35)
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As for the left hand side of (2.29), one can deduce from (2.34) and (2.35) that

O(ϵ2+N+d
k ) =

4−N(p− 1)− 2b

2
ϵbk

∫
RN

D̄p
k|x|

−bξ̄k

=
4−N(p− 1)− 2b

2
ϵbk

∫
RN

D̄p
k(ϵkx)|ϵkx|

−bξ̄k(ϵkx)

=
4−N(p− 1)− 2b

2
ϵNk

∫
RN

D̂p
k|x|

−bξk

=
4−N(p− 1)− 2b

2

(
1 + o(1)

)
ϵNk

∫
RN

wp|x|−bξ0 as k → ∞,

(2.36)

where D̄p
k and D̂p

k are defined as in (2.10) and (2.19), respectively, and the last identity holds

due to the fact that D̂p
k → wp uniformly in RN as k → ∞. Using (2.17), it then follows from

(2.36) that

0 =

∫
RN

wp|x|−bξ0

=

∫
RN

wp|x|−bb0

(p− 1

2
(x · ∇w) +

2− b

2
w
)

=
2− b

2
b0

∫
RN

wp+1|x|−b +
p− 1

2(p+ 1)
b0

∫
RN

|x|−b(x · ∇wp+1)

=
2− b

2
b0

∫
RN

wp+1|x|−b +
p− 1

2(p+ 1)
b0(b−N)

∫
RN

wp+1|x|−b

=
[2− b

2
+

p− 1

2(p+ 1)
(b−N)

]
b0

∫
RN

wp+1|x|−b.

Since (2− b)(p+ 1) + (p− 1)(b−N) > 4− 2b− (4− 2b) = 0, under the assumption (1.3), we
have b0 = 0, i.e., ξ0 = 0 in RN .

Step 3. ξ0 ≡ 0 cannot occur. Let yk be the point satisfying |ξk(yk)| = ∥ξk∥L∞(RN ) = 1.
Since ûi,k decays exponentially uniformly for k → ∞, applying the maximum principle to
(2.20) yields that |yk| ≤ C uniformly in k. Therefore, taking a subsequence if necessary, we
assume yk → y0 as k → ∞ and thus |ξ0(y0)| = limk→∞ |ξk(yk)| = 1, which contradicts to the
fact that ξ0 ̸≡ 0. The proof of Theorem 1.1 is therefore complete.

Acknowledgements: The authors thank Prof. Yujin Guo for his fruitful discussions of
this paper.
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