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Abstract

In recent works, well-known three-dimensional localization methods studied in the aerospace field have been revisited for

applications on multirotor aerial vehicles (MAVs). However, most of these classic methods employ stochastic estimators that

are asymptotically stable, in a stochastic sense, and exhibit high sensitivity to disturbances and model uncertainties. The

goal of this paper is to propose and evaluate a novel solution to the localization problem of MAVs, employing multivariable

robust observers based on sliding-mode techniques. Aiming to improve on the existing methods usually based on the extended

Kalman filter, this paper investigates sliding-mode techniques to reach finite-time stabilization of the estimation error and

provide robustness to disturbances and uncertainties. The super-twisting algorithm (STA) is considered as a starting point for

its recognized performance when used to design differentiators. In particular, a modification of the STA is proposed, replacing

one of its terms with a certain time-varying function that allows the upper bound of the settling time of the resulting algorithm

to be a direct adjustable parameter. The proposed algorithm’s behavior is numerically evaluated and is shown to yield the

predicted properties even in the presence of bounded disturbances and uncertainties. Additionally, an attitude determination

problem employing the proposed algorithm is presented as an application. The three-dimensional attitude and angular velocity

of an MAV are accurately estimated under strict settling-time restrictions, using only the vector measurements provided by an

accelerometer and a magnetometer.
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Abstract

In recent works, well-known three-dimensional localization methods studied in the
aerospace field have been revisited for applications on multirotor aerial vehicles
(MAVs). However, most of these classic methods employ stochastic estimators that
are asymptotically stable, in a stochastic sense, and exhibit high sensitivity to dis-
turbances and model uncertainties. The goal of this paper is to propose and evaluate
a novel solution to the localization problem of MAVs, employing multivariable ro-
bust observers based on sliding-mode techniques. Aiming to improve on the existing
methods usually based on the extended Kalman filter, this paper investigates sliding-
mode techniques to reach finite-time stabilization of the estimation error and provide
robustness to disturbances and uncertainties. The super-twisting algorithm (STA)
is considered as a starting point for its recognized performance when used to de-
sign differentiators. In particular, a modification of the STA is proposed, replacing
one of its terms with a certain time-varying function that allows the upper bound of
the settling time of the resulting algorithm to be a direct adjustable parameter. The
proposed algorithm’s behavior is numerically evaluated and is shown to yield the
predicted properties even in the presence of bounded disturbances and uncertainties.
Additionally, an attitude determination problem employing the proposed algorithm
is presented as an application. The three-dimensional attitude and angular velocity
of an MAV are accurately estimated under strict settling-time restrictions, using only
the vector measurements provided by an accelerometer and a magnetometer.
KEYWORDS:
Super-twisting algorithm, Predefined convergence time, Attitude determination

1 INTRODUCTION

In the last three decades, the super-twisting algorithm (STA)1,2 has been widely applied to the design of finite-time robust state
estimators for mechanical systems3,4 and, in particular, for three-axis attitude kinematics5,6. Recent extensions of the classical
STA have been developed to provide it with fixed-time stability (FxTS)7,8 or prescribed-time stability (PTS)9, which allow
the bound of the settling time to be adjustable independent of the initial conditions. This new characteristic has an immediate
practical impact on the performance tweaking of state observers, from which an attitude determination system can benefit. An
example is the need for an accurate attitude estimate of a multirotor aerial vehicle (MAV) before a mission measurement or
manipulation can be carried out.
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The use of the STA in applications involving a bound requirement on the convergence time is not immediate since there is no
explicit and straightforward relationship between its settling-time bound and its parameters. In fact, the available settling-time
estimates obtained via Lyapunov analysis turn out to be very conservative10,11, while the one obtained from a recent analytical
solution to the STA is considerably complex to compute12. Moreover, a global finite upper bound for the settling time (UBST)
cannot be obtained for the conventional STA since the actual settling time itself increases indefinitely as the initial conditions
go to infinity. Cruz et al.13 have modified the STA to endow it with the FxTS property, thus allowing the derivation of a finite
UBST that is uniform in the initial condition. However, that UBST is also too conservative to be used as an estimate of the actual
settling time, while also presenting a complicated relation with the system’s parameters. To address both issues, Seeber et al.14
proposed a gain-tuning method to guarantee convergence of the fixed-time STA13 within a specified UBST. Nevertheless, no
STA-like algorithm that converges exactly at a directly specified instant has appeared in the literature yet.

The three-axis attitude determination from vector observations15 has been extensively investigated in the aerospace literature
since the 1960s16–25. It consists of estimating the three-dimensional attitude of a body using measurements of non-collinear
geometric vectors taken in a body-fixed Cartesian coordinate system (CCS) as well as in a reference CCS. Attitude determination
methods can be static or dynamic26. The former ones do not consider the attitude variation over time, thus being able to only
process the present measures for estimating the present attitude15–17,26. The QUEST algorithm17 is a classic example in this
class; it provides a least-square estimate of the body’s attitude quaternion using measurements of two or more non-collinear
vectors in a batch procedure. The dynamic methods, in turn, require knowledge of the body’s motion for assimilating information
of the past estimates into the present one. In this case, if the suite of sensors contains a three-axis rate-gyro, the body’s motion
can be acquired from the kinematic equation and the provided angular velocity measures, which enter the kinematic equation
as known forcing inputs20–25. It turns out, however, that those measures contain drifting biases, which must be jointly estimated
to achieve high precision in the attitude estimation. Otherwise, if a rate-gyro is not available, the angular velocity must also
be estimated to completely acquire the body’s motion, which requires the use of the attitude dynamic equation along with the
kinematic one27–33. A relevant issue found here is that the attitude dynamic equation usually involves unknown disturbances
(e.g., wind) and uncertainties (e.g., in the inertia parameters), which also negatively impact the overall estimation performance.

The classic attitude determination methods can be directly applied to MAVs equipped with an accelerometer and a magne-
tometer34,35. Furthermore, a dynamic attitude estimation method is required, since the flight control routines require a feedback
of the vehicle’s rotational states. A plethora of dynamic methods has been recently reported in the MAV literature, such as com-
plementary filters34–38, Kalman filters39–43, and high-gain observers44. None of the aforementioned methods provides robust
error convergence, which is desirable in gyroless applications to deal with the uncertainties in the dynamic equation. Contrarily,
estimators based on robust high-order sliding-mode observers45–48 and, particularly, on the conventional STA5,6 have also been
reported, but do not consider a strict convergence time restriction.

To fill the aforementioned gaps, the present paper proposes a modification of the conventional super-twisting algorithm, which
presents robust finite-time stability with convergence of its states to the origin at a predefined instant. Different from the works
in predefined-time stability9,49–51, our proposed algorithm uses both a time-varying and a switching gain, to provide robustness
and the desired convergence performance. With respect to three-axis attitude determination without rate-gyro measurements, our
proposed two-step solution enables the explicit tuning of the estimation error convergence instant, different from the aforemen-
tioned works in which this instant was not finite42 or was conservatively estimated5,6. First, the QUEST algorithm is employed
to calculate an optimal attitude estimate from the accelerometer and magnetometer measurements. Then, the determined attitude
is directly used as an input for the state observer, formulated from the previously proposed algorithm. While most of the liter-
ature in gyroless dynamic attitude determination rely on the estimation of the disturbances to compensate for their effect27–33,
our proposed observer provides estimates of attitude and its derivative that robustly converge to the actual states in predefined
time. In summary, the contributions of this paper are:

• A novel second-order sliding-mode algorithm that guarantees finite-time stability with a predefined convergence time.
• The application of the proposed algorithm to the robust attitude determination problem for a flying vehicle, without the

use of rate-gyro measurements.
In the following, Section 2 presents the mathematical preliminaries required to introduce the proposed results. Section 3

contains the proposed modified super-twisting algorithm, as well as a geometric analysis that proves the existence of system
parameters that guarantee the predefined-time attractiveness of the origin. A sliding-mode observer-based solution to the robust
attitude determination problem, without the use of rate-gyro measurements, is provided Section 4 as an evaluation of the proposed
algorithm’s efficacy. Finally, Sections 5 and 6 present the simulation results and the conclusions of this paper, respectively.
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2 PRELIMINARIES

This section presents an analysis of the properties of a first-order system formulated from a polynomial function with predefined
convergence time, followed by the description of the conventional STA in its SISO and MIMO formulations.

2.1 First-order system with predefined convergence time
Consider a polynomial time function 𝜋 ∶ ℝ≥𝑡0 → ℝ, with initial instant 𝑡0 ∈ ℝ≥0, defined as

𝜋(𝑡) = 𝜋(𝑡0)
(

𝑡𝑐 − 𝑡
𝑡𝑐 − 𝑡0

)𝜂

, (1)
where 𝑡 ∈ ℝ≥𝑡0 represents the current instant of time, 𝜂 ∈ ℤ≥1 is a constant exponent, and 𝑡𝑐 ∈ ℝ>𝑡0 is the predefined convergence
instant.

The following lemma summarizes the converging properties of 𝜋 in the time interval [𝑡0, 𝑡𝑐], as 𝑡 approaches 𝑡𝑐 from the left.
Lemma 1. It holds that

(i). 𝜋(𝑡𝑐) = 0,
(ii). 𝜋 is continuous in all its domain ℝ≥0,

(iii). if 𝜋(𝑡0) > 0, 𝜋(𝑡) is strictly decreasing in [𝑡0, 𝑡𝑐) ⊂ ℝ,
(iv). if 𝜋(𝑡0) < 0, 𝜋(𝑡) is strictly increasing in [𝑡0, 𝑡𝑐) ⊂ ℝ.

Proof. Item (i) can be immediately verified by replacing 𝑡 = 𝑡𝑐 into (1). To show item (ii), note that every polynomial function
is continuous everywhere. Therefore, since 𝜋 is polynomial, it is continuous in all its domain ℝ≥𝑡0 . Now, by taking the first
derivative of (1) with respect to 𝑡, we obtain

𝜋̇(𝑡) = −
𝜂𝜋(𝑡0)
𝑡𝑐 − 𝑡0

(

𝑡𝑐 − 𝑡
𝑡𝑐 − 𝑡0

)𝜂−1

, ∀𝑡 ∈ ℝ≥𝑡0 .

Since (𝑡𝑐 − 𝑡) > 0, ∀𝑡 ∈ [𝑡0, 𝑡𝑐), for any 𝜋(𝑡0) > 0, it holds that 𝜋̇(𝑡) < 0, ∀𝑡 ∈ [𝑡0, 𝑡𝑐), thus showing item (iii). Similarly, for any
𝜋(𝑡0) < 0, it holds that 𝜋̇(𝑡) > 0, ∀𝑡 ∈ [𝑡0, 𝑡𝑐), which proves item (iv). □

Based on Lemma 1, we can affirm that, independent of the initial condition 𝜋(𝑡0), in the time interval [𝑡0, 𝑡𝑐], the function 𝜋
always converges to 0 as 𝑡 approaches 𝑡𝑐 from the left. Moreover, since 𝜋̇ does not change its sign in [𝑡0, 𝑡𝑐], that convergence
occurs in a monotonic manner, i.e., without oscillating.

Function 𝜋(𝑡) has interesting convergence properties in the time interval [𝑡0, 𝑡𝑐], but, after 𝑡 = 𝑡𝑐 , we can immediately verify
that it does not keep at 0. Since we are rather interested in a function of time that converges to zero at a specified instant 𝑡𝑐 and
keeps there forever, now, let us consider the following modified function:

𝜛(𝑡) = 𝜛0

(

𝑡𝑐 − 𝑡
𝑡𝑐 − 𝑡0

)𝜂

𝕀[𝑡0,𝑡𝑐 )(𝑡), (2)

where 𝜛0 ≜ 𝜛(𝑡0), and 𝕀[𝑡0,𝑡𝑐 )(𝑡) is an indicator function of the time interval [𝑡0, 𝑡𝑐), i.e., 𝕀[𝑡0,𝑡𝑐 )(𝑡) = 1,∀𝑡 ∈ [𝑡0, 𝑡𝑐), and 𝕀[𝑡0,𝑡𝑐 )(𝑡) =
0,∀𝑡 ∈ [𝑡𝑐 ,∞).

The following lemma addresses the smoothness of the modified function 𝜛 at 𝑡 = 𝑡0 + 𝜏𝑐 .
Lemma 2. Consider a positive integer 𝑛 < 𝜂. It holds that 𝜛 is 𝑛th-order differentiable in ℝ>𝑡0 .
Proof. In both intervals [𝑡0, 𝑡𝑐) and [𝑡𝑐 ,∞), the function 𝜛 is polynomial and, therefore, it is differentiable of an arbitrary order.
It remains to analyze its differentiability at 𝑡 = 𝑡𝑐 . On the one hand, the right 𝑛th-order semi-derivative of 𝜛 at 𝑡 = 𝑡𝑐 is clearly
𝜛(𝑛)

+ (𝑡𝑐) = 0.
On the other hand, to evaluate its left 𝑛th-order semi-derivative at the same point, let us first obtain it in the time interval

[𝑡0, 𝑡𝑐) as
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𝜛(𝑛)
− (𝑡) = (−1)𝑛

𝜂!
(𝜂 − 𝑛)!

𝜛0

(𝑡𝑐 − 𝑡0)𝑛

(

𝑡𝑐 − 𝑡
𝑡𝑐 − 𝑡0

)𝜂−𝑛

, ∀𝑡 ∈ [𝑡0, 𝑡𝑐).

From the expression above, if 𝜂 = 𝑛 or 𝜂 < 𝑛, we have 𝜛(𝑛)
− (𝑡𝑐) = (−1)𝑛𝑛!𝜛0(𝑡𝑐 − 𝑡0)−𝑛 or 𝜛(𝑛)

− (𝑡𝑐) = ±∞, respectively.
However, under the condition 𝜂 > 𝑛, it is computed as 𝜛(𝑛)

− (𝑡𝑐) = 0, thus agreeing with its right counterpart, which implies the
𝑛th-order differentiability of 𝜛 at 𝑡 = 𝑡𝑐 . This completes the proof. □

From the previous lemma, we see that 𝜛 can be made arbitrarily smooth in all its domain (and, in particular, at instant 𝑡 = 𝑡𝑐)
by just choosing the integer exponent 𝜂 to be larger than the derivative order 𝑛. Particularly, note that if 𝜂 = 1, 𝜛(𝑡) is not smooth
at 𝑡 = 𝑡𝑐 , although it is continuous there (see Figure 1). To verify, note that it is immediate to check that the right limit of 𝜛 at
𝑡 = 𝑡𝑐 is zero and, on the other hand, we can also compute the left limit as zero:

lim
𝑡→𝑡−𝑐

𝜛(𝑡) = lim
𝑡→𝑡−𝑐

𝜛0

(

𝑡𝑐 − 𝑡
𝑡𝑐 − 𝑡0

)

= 0. (3)

Figure 1: Smoothness analysis of 𝜛(𝑡) at 𝑡 = 𝑡𝑐 , for 𝑡0 = 0, 𝑡𝑐 = 1, and |𝜛(0)| = 5.

From the proof of Lemma 2, we can extract the following formula for the 𝑛th-order time derivative of 𝜛(𝑡)

𝜛(𝑛)(𝑡) = (−1)𝑛
𝜂!

(𝜂 − 𝑛)!
𝜛0

(𝑡𝑐 − 𝑡0)𝑛

(

𝑡𝑐 − 𝑡
𝑡𝑐 − 𝑡0

)𝜂−𝑛

𝕀[𝑡𝑎,𝑡𝑐 )(𝑡), (4)
for 𝑛 < 𝜂.

Now, for convenience, consider the following initial value problem (IVP):

𝑥̇(𝑡) = 𝑓 (𝑡, 𝑥; Ω), 𝑥(𝑡0) ≜ 𝑥0 ∈ ℝ, 𝑡 ∈ ℝ≥𝑡0 , (5)
where 𝑥(𝑡) ∈ D ⊆ ℝ𝑛, with 0 ∈ D, 𝑡0 ∈ ℝ≥0 is the initial time, Ω ∈ ℝ𝑚 is the vector containing the constant parameters of the
system, and 𝑓 ∶ ℝ≥0 ×D → ℝ𝑛 is a nonlinear function such that 𝑓 (⋅, ⋅) is jointly continuous in 𝑡 and 𝑥, and 𝑓 (𝑡, 0) = 0, ∀𝑡 ∈
[𝑡0,∞). Consider that 𝑓 is given by

𝑓 (𝑡, 𝑥; Ω) ≜

{

− 𝜂
𝑡𝑐−𝑡

𝑥, 𝑡 ∈ [𝑡0, 𝑡𝑐),

0, 𝑡 ∈ [𝑡𝑐 ,∞),
(6)

with Ω ≜
(

𝜂, 𝑡𝑐
), 𝑡𝑐 ∈ ℝ>𝑡0 and 𝜂 ∈ ℤ≥1.

A solution to (5), which we denote by 𝑥(𝑡; 𝑡0, 𝑥0), is understood as a first-order differentiable function that satisfies the ODE
𝑥̇ = 𝑓 (𝑡, 𝑥) and the initial condition, i.e., 𝑥(𝑡0; 𝑡0, 𝑥0) = 𝑥0.
Proposition 1. The IVP in (5)–(6) has a unique solution in 𝑡 ∈ [𝑡0,∞) given by

𝑥(𝑡; 𝑡0, 𝑥0) = 𝑥0

(

𝑡𝑐 − 𝑡
𝑡𝑐 − 𝑡0

)𝜂

𝕀[𝑡0,𝑡𝑐 )(𝑡). (7)
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Proof. Suppose (7) is a solution to (5)–(6). By differentiating (7) with respect to time, we obtain:
𝑥̇(𝑡; 𝑡0, 𝑥0) = −

𝜂𝑥0
(𝑡𝑐 − 𝑡0)𝜂

(

𝑡𝑐 − 𝑡
)𝜂−1 𝕀[𝑡0,𝑡𝑐 )(𝑡). (8)

By substituting (7) and (10) into (5), we obtain an identity for all 𝑡 ∈ ℝ≥𝑡0 , thus proving that (7) is indeed a solution to (5).
Now, to prove uniqueness, suppose that there exists another solution and, without loss of generality, let us write it as

𝜈(𝑡; 𝑡0, 𝑥0) = 𝑥(𝑡; 𝑡0, 𝑥0) + 𝜙(𝑡), (9)
where 𝜙 is differentiable for 𝜈(𝑡; 𝑡0, 𝑥0) to also be. Therefore, by replacing (9) and its derivative into (5), we obtain:

𝑥̇(𝑡; 𝑡0, 𝑥0) + 𝜙̇(𝑡) =

{

− 𝜂
𝑡𝑐−𝑡

(

𝑥(𝑡; 𝑡0, 𝑥0) + 𝜙(𝑡)
)

, 𝑡 ∈ [𝑡0, 𝑡𝑐),
0, 𝑡 ∈ [𝑡𝑐 ,∞).

(10)

Since (7) is a solution to (5), we can write

𝑥̇(𝑡; 𝑡0, 𝑥0) =

{

− 𝜂
𝑡𝑐−𝑡

𝑥(𝑡; 𝑡0, 𝑥0), 𝑡 ∈ [𝑡0, 𝑡𝑐),
0, 𝑡 ∈ [𝑡𝑐 ,∞).

(11)

By substituting (11) into (10), we obtain:

𝜙̇(𝑡) =

{

− 𝜂
𝑡𝑐−𝑡

𝜙(𝑡), 𝑡 ∈ [𝑡0, 𝑡𝑐),
0, 𝑡 ∈ [𝑡𝑐 ,∞).

(12)

From the Peano’s Theorem (see52, p.10), we know that there is at most one solution to (5)–(6) on 𝑡 ∈ [𝑡0, 𝑡𝑐). On the other
hand, from (12), we have 𝜙̇(𝑡) = 0, 𝑡 ∈ [𝑡𝑐 ,∞). Furthermore, since the solution is unique for 𝑡 ∈ [𝑡0, 𝑡𝑐), 𝜙 is continuous, and
because 𝑥(𝑡, 𝑡0, 𝑥0) → 0 as 𝑡 → 𝑡−𝑐 , it is true that 𝜙(𝑡𝑐) = 0. Therefore, we have that 𝜙(𝑡) = 0,∀𝑡 ≥ 𝑡𝑐 , which implies that the
solution is unique on [𝑡𝑐 ,∞) as well. □

Additionally, the following lemma states the predefined-time attractiveness of the origin of a disturbed system like (5)–(6).
Lemma 3. Consider the nonautonomous system in (5) with 𝑓 given by

𝑓 (𝑡, 𝑥; Ω) ≜

{

− 𝑛
𝑡𝑐−𝑡

𝑥(𝑡) + 𝛿(𝑡), 𝑡 ∈ [𝑡0, 𝑡𝑐),
0, 𝑡 ∈ [𝑡𝑐 ,∞),

(13)

where 𝛿 ∶ ℝ≥0 → ℝ𝑛 is a bounded disturbance, with |𝛿(𝑡)| ≤ 𝐿 and 𝐿 is a positive finite known constant. For 𝜂 ≥ 2, 𝑥(𝑡)
converges to zero at the predefined instant 𝑡𝑐 .
Proof. The analytic solution of (13), for 𝑡 ∈ [𝑡0, 𝑡𝑐), is given by:

𝑥(𝑡) =
(

𝑡𝑐 − 𝑡
)𝜂

(

∫ 𝛿(𝜏)
(

𝑡𝑐 − 𝜏
)−𝜂 𝑑𝜏 + 𝑐

)

. (14)
By evaluating the disturbance as a constant signal at its minimum and maximum values, the solution will be bounded as follows:

𝑐1
(

𝑡𝑐 − 𝑡
)𝜂 − 𝐿

(

𝑡𝑐 − 𝑡
)

𝜂 − 1
≤ 𝑥(𝑡) ≤ 𝑐2

(

𝑡𝑐 − 𝑡
)𝜂 + 𝐿

(

𝑡𝑐 − 𝑡
)

𝜂 − 1
, (15)

where −∞ < 𝑐1 ≤
(

𝑥(𝑡0)
(𝑡𝑐−𝑡0)𝜂

+ 𝐿
(𝜂−1)(𝑡𝑐−𝑡0)𝜂−1

)

and ∞ > 𝑐2 ≥
(

𝑥(𝑡0)
(𝑡𝑐−𝑡0)𝜂

− 𝐿
(𝜂−1)(𝑡𝑐−𝑡0)𝜂−1

)

.
Since, for 𝜂 ≥ 2, both bounds of the inequality (15) approach zero as 𝑡 → 𝑡 −

𝑐 , so will the state 𝑥(𝑡). □

2.2 Super-twisting algorithm
The super-twisting algorithm can be described by2

𝜃̇1 = −𝜅1|𝜃1|1∕2 sign(𝜃1) + 𝜃2, (16)
𝜃̇2 = −𝜅2 sign(𝜃1) + 𝛿, (17)

where 𝜽 ≜ (𝜃1, 𝜃2) ∈ ℝ2 is its state vector, 𝜅1, 𝜅2 > 0 are design scalar parameters, and 𝛿 ∈ ℝ a unknown, but bounded,
disturbance signal. In order to extend its application to multi-input systems, it is necessary to substitute the signum function for a
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suitable multivariable version. Here, similarly to reported in Nagesh and Edwards53, the unit-vector approach will be considered,
altering equations (16)–(17) to their multivariable version given by

𝜽̇1 = −𝜅1
𝜽1

‖𝜽1‖
1∕2

+ 𝜽2, (18)

𝜽̇2 = −𝜅2
𝜽1

‖𝜽1‖
+ 𝜹, (19)

where 𝜽1 ∈ ℝ𝑛, 𝜽2 ∈ ℝ𝑛, and 𝜹 ∈ ℝ𝑛 are now states and disturbance vectors, respectively. As the differential equations in
(16)–(19) have discontinuous right hand sides, their solutions must be understood in the Filippov sense54.

The provided finite-time stable system with predefined convergence time in (5)–(6) is of first order and, therefore, cannot be
used to design a differentiator in the same was as the STA. For this reason, the main purpose of this paper is to propose an STA-
like finite-time stable system with a predefined convergence time based on system (5)–(6), as well as to construct a second-order
sliding-mode observer based on the proposed structure to solve an attitude determination problem.

3 MODIFIED SUPER-TWISTING ALGORITHM WITH PREDEFINED CONVERGENCE
TIME

It is well known that 𝜉̇ = −|𝜉|1∕2 sign (𝜉) is a first-order finite-time stabilizing function55. For the proposed modified algorithm,
the first term in the right-hand side of (16) is replaced by a function:

𝜎(𝑡, 𝑥) ≜

{ 𝜂
𝑡𝑐−𝑡

𝑥1(𝑡), 𝑡 ∈ [𝑡0, 𝑡𝑐),

𝜅1|𝑥1(𝑡)|1∕2 sign
(

𝑥1(𝑡)
)

, 𝑡 ∈ [𝑡𝑐 ,∞).
(20)

By doing so, the proposed system recovers the conventional STA behavior for all 𝑡 ≥ 𝑡𝑐 . Therefore, the obtained dynamic
system for the modified super-twisting algorithm is given by

𝑥̇1(𝑡) = −𝜎(𝑡, 𝑥) + 𝑥2(𝑡), (21)
𝑥̇2(𝑡) = −𝜅2 sign

(

𝑥1(𝑡)
)

+ 𝛿(𝑡), (22)
where 𝜎(𝑡, 𝑥) is given by (20).

Since the conventional STA is known to be finite-time stable, it is necessary to investigate the performance of the system in
(21)–(22) during the specified time interval. Consider, from this moment forward, the unperturbed case of system (21)–(22),
i.e. 𝛿 = 0, ∀𝑡 ∈ ℝ≥0. The following theorem describes the behavior of x(𝑡), for 𝑡 ∈ [𝑡0, 𝑡𝑐).
Theorem 1. Denote by 𝐱(𝑡) the solution of system (21)–(22) on 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1), where 𝑗 = {0, 1, 2, …}, and 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑐 .
Define the instant 𝑡𝑗+1 as

𝑡𝑗+1 =
{

𝜁 > 𝑡𝑗 ∶ lim
𝑡→𝜁−

𝑥1(𝑡) = 0
}

.

The solution to the IVP (21)–(22), in 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1), is given by

𝑥1(𝑡) =
𝑡𝑐 − 𝑡

(𝜂 − 2)(𝜂 − 1)
[

sign
(

𝑥1(𝑡𝑗)
) [

𝜅2(𝑡𝑐 − 𝑡 − (𝜂 − 2)(𝑡 − 𝑡𝑗))
]

+ (𝜂 − 2)𝑥2(𝑡𝑗)
]

+ 𝛼(𝑡𝑗)
(

𝑡𝑐 − 𝑡
𝑡𝑐 − 𝑡𝑗

)𝜂

, (23)

𝑥2(𝑡) = 𝑥2(𝑡𝑗) − 𝜅2 sign(𝑥1(𝑡𝑗))
[

𝑡 − 𝑡𝑗
]

, (24)
where

𝛼(𝑡𝑗) = 𝑥1(𝑡𝑗) −

(

𝑡𝑐 − 𝑡𝑗
) [

𝑥2(𝑡𝑗)(𝜂 − 2) + sign(𝑥1(𝑡𝑗))𝜅2(𝑡𝑐 − 𝑡𝑗)
]

(𝜂 − 2)(𝜂 − 1)
. (25)

Proof. Consider equation (22). By the definition in the theorem statement, 𝑡1 is the instant that 𝑥1(𝑡) crosses the zero axis and,
consequently, sign(𝑥1(𝑡)) switches signal. Therefore, sign(𝑥1(𝑡𝑗)) remains constant for all 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1). Hence, the analytic



SILVA, J.F. and SANTOS, D.A. 7

solution of (22) in the interval 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1) is given by

𝑥2(𝑡) = −

𝑡

∫
𝑡𝑗

𝜅2 sign(𝑥1(𝑡𝑗)) 𝑑𝜏,

𝑥2(𝑡) = 𝑥2(𝑡𝑗) − 𝜅2 sign(𝑥1(𝑡𝑗))
[

𝑡 − 𝑡𝑗
]

.

(26)

By substituting (26) and (20) in (21), one obtains
𝑥̇1(𝑡) = −

𝜂
𝑡𝑐 − 𝑡

𝑥1(𝑡) + 𝑥2(𝑡𝑗) − 𝜅2 sign(𝑥1(𝑡𝑗))
[

𝑡 − 𝑡𝑗
]

. (27)
Based on the aforementioned assumption that sign(𝑥1(𝑡𝑗)) remains constant for all 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1), by direct integration one

obtains
𝑥1(𝑡) =

𝑡𝑐 − 𝑡
(𝜂 − 2)(𝜂 − 1)

[

sign
(

𝑥1(𝑡𝑗)
) [

𝜅2(𝑡𝑐 − 𝑡 − (𝜂 − 2)(𝑡 − 𝑡𝑗))
]

+ (𝜂 − 2)𝑥2(𝑡𝑗)
]

+ 𝛼
(

𝑡𝑐 − 𝑡
𝑡𝑐 − 𝑡𝑗

)𝜂

, (28)

𝛼(𝑡𝑗) = 𝑥1(𝑡𝑗) −

(

𝑡𝑐 − 𝑡𝑗
) [

𝑥2(𝑡𝑗)(𝜂 − 2) + sign(𝑥1(𝑡𝑗))𝜅2(𝑡𝑐 − 𝑡𝑗)
]

(𝜂 − 2)(𝜂 − 1)
, (29)

thus concluding the proof. □

Figure 2 verifies the analytic solution (23)–(24) by comparing it with the corresponding numerical solution of (21)–(22).

(a) (b)

Figure 2: A comparison between the proposed modified STA and its analytic solution, for 𝑡 ∈ [𝑡0, 𝑡𝑐), assuming Ω ≜
(

𝜅1, 𝜅2, 𝜂, 𝑡𝑐
)

= (2, 15, 6, 1s).

Corollary 1. For 𝑡 ∈ [𝑡0, 𝑡𝑐), the state 𝑥1 of the unperturbed system (21)–(22) will converge to zero at exactly the predefined
instant 𝑡𝑐 .
Proof. From (24), for any finite time interval, 𝑥2(𝑡) will only assume infinite values if |𝑥2(𝑡0)| = ∞ or 𝜅2 = ∞. For any other
finite values of |𝑥2(𝑡0)| and 𝜅2, 𝑥2(𝑡) will remain bounded. Therefore, from (23), for any 𝜂 ≥ 3, 𝑥1(𝑡) approaches zero as 𝑡
approaches 𝑡𝑐 . □

Remark 1. The convergence of the state 𝑥2 to zero at 𝑡 = 𝑡𝑐 is not as straightforward to verify, but can be guaranteed with the
proper choice of the parameters 𝜂 and 𝜅2, as the next theorem will demonstrate.
Corollary 2. The unperturbed system (21)–(22) is finite-time stable.
Proof. From the proof of Corollary 1, by assuming that the initial states and switching gain are finite and by choosing 𝜂 ≥ 3,
the proposed algorithm can be seen as a maneuverer for the conventional STA, delivering to it a vector of initial conditions
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𝑥(𝑡𝑐) =
[

0 𝑥2(𝑡𝑐)
]. Therefore, by satisfying the gain conditions for the stability of the conventional STA2,56, the states will

converge to the origin in finite-time and remain there afterwards. □

The following theorem demonstrates the existence of sufficient parameters to guarantee the predefined convergence time of
the state vector to the origin of system (21)–(22), when 𝛿(𝑡) = 0.
Theorem 2. Assume that the initial states of the system are known a priori and consider a set X =
{(

𝑡, 𝑥2(𝑡)
)

| − 𝜅2
(

𝑡𝑐 − 𝑡
)

≤ 𝑥2(𝑡) ≤ 𝜅2
(

𝑡𝑐 − 𝑡
)}. Denote this set as the predefined-time convergence (PTC) area. It is possible

to tune the convergence rate 𝜂 and the switching gain 𝜅2 to guarantee that (𝑡, 𝑥2(𝑡)
)

∈ X , ∀𝑡 ∈ [𝑡0, 𝑡𝑐).
Proof. Consider the known initial condition 𝑥2(𝑡0) ≠ 0. From the line segments that delimit the set X , it is possible to see that
by choosing a value of 𝜅2 that satisfies

𝜅2(𝑡𝑐 − 𝑡0) ≥ |𝑥2(𝑡0)|, (30)
the pair (𝑡0, 𝑥2(𝑡0)

) will belong to X .
The next step is to ensure that the pair (𝑡, 𝑥2(𝑡)

) at the instant that 𝑥1(𝑡) crosses the zero axis for the first time, belongs to X .
From (24), this value is given by

𝑥2(𝑡1) = 𝑥2(𝑡0) − 𝜅2 sign(𝑥1(𝑡0))
[

𝑡1 − 𝑡0
]

. (31)
Assume 𝑡0 = 0. Then, from the line segments that delimit X and considering 𝑡 = 𝑡1, 𝜅2 can be calculated by

−𝜅2(𝑡𝑐 − 𝑡1) ≤ 𝑥2(𝑡1) ≤ 𝜅2(𝑡𝑐 − 𝑡1), (32)
−𝜅2(𝑡𝑐 − 𝑡1) ≤ 𝑥2(𝑡0) − 𝜅2 sign(𝑥1(𝑡0))𝑡1 ≤ 𝜅2(𝑡𝑐 − 𝑡1), (33)

−𝜅2(𝑡𝑐 − 𝑡1) ≤ sign(𝑥2(𝑡0))|𝑥2(𝑡0)| − 𝜅2 sign(𝑥1(𝑡0))𝑡1 ≤ 𝜅2(𝑡𝑐 − 𝑡1), (34)
−𝜅2(𝑡𝑐 − 𝑡1 − sign(𝑥1(𝑡0))𝑡1) ≤ sign(𝑥2(𝑡0))|𝑥2(𝑡0)| ≤ 𝜅2(𝑡𝑐 − 𝑡1 + sign(𝑥1(𝑡0))𝑡1), (35)

Considering all the possible values that sign(𝑥1(𝑡0)) and sign(𝑥2(𝑡0)) can assume, one obtains from the previous analysis that
{

−𝜅2(𝑡𝑐 − 2𝑡1) ≤ |

|

𝑥2(𝑡0)|| ≤ 𝜅2𝑡𝑐 , sign(𝑥1(𝑡0)) = sign(𝑥2(𝑡0)),

−𝜅2(𝑡𝑐 − 2𝑡1) ≤ − |

|

𝑥2(𝑡0)|| ≤ 𝜅2𝑡𝑐 , sign(𝑥1(𝑡0)) ≠ sign(𝑥2(𝑡0)).
(36)

By choosing a convergence rate 𝜂 ≥ 3 and 𝜅2 that satisfies (30), the analytic solution (23) can be solved to find the instant 𝑡1.
Equation (36) can be satisfied by either altering the gain 𝜅2 or the convergence rate 𝜂, which directly affects the instant 𝑡1.

Consider now the generalization of (32), to evaluate 𝑥2(𝑡) at every instant that 𝑥1(𝑡) crosses the zero axis. With 𝑗 ≥ 1 and
𝑡𝑗 < 𝑡𝑐 , (32) can be rewritten as

−𝜅2(𝑡𝑐 − 𝑡𝑗) ≤ 𝑥2(𝑡𝑗) ≤ 𝜅2(𝑡𝑐 − 𝑡𝑗), (37)

−𝜅2(𝑡𝑐 − 𝑡𝑗) ≤ sign(𝑥2(𝑡0))|𝑥2(𝑡0)| −
𝑗
∑

𝑚=1
𝜅2 sign(𝑥1(𝑡𝑚−1))

[

𝑡𝑚 − 𝑡𝑚−1
]

≤ 𝜅2(𝑡𝑐 − 𝑡𝑗), (38)

where sign(𝑥1(𝑡𝑗−1)) = − sign(𝑥1(𝑡𝑗)). By choosing parameters that satisfy (36), the inequality in (38) is satisfied for every
instant 𝑡𝑗 obtained from solving (23) for 𝑥1(𝑡) = 0. Therefore, a convergence rate 𝜂 ≥ 3 and a switching gain 𝜅2 that ensure
equations (30) and (36) are satisfied, are sufficient to guarantee that (𝑡, 𝑥2(𝑡)

)

∈ X , ∀𝑡 ∈ [𝑡0, 𝑡𝑐). □

The parameter tuning process presented in the proof of Theorem 2 is summarized in Algorithm 1.
Example 1. Consider the system in (21)–(22), with 𝑡𝑐 = 0.5s, 𝑡0 = 0s, 𝐱(0) = (−2, 1), 𝜅1 = 1, 𝜂 = 5 and 𝜅2 = 8. The proposed
parameters satisfy (30), but not (36), as illustrated in Fig 3a. From (23), one obtains that 𝑡1 = 0.2062s. Using this value to solve
(36), the switching gain lower bound is given by 𝜅2 ≥ 11.4155. Figure 3b shows the trajectory of 𝑥2(𝑡) after adopting 𝜅2 = 12.
Another way to satisfy (36) is to reduce 𝑡1 by increasing the convergence rate 𝜂. The state trajectory obtained by adopting 𝜂 = 8
is illustrated in Fig 3c.

Remark 2. It is clear from the definition of X that its delimiting functions are directly dependent of the switching gain 𝜅2,
which is consequently dependent of the initial value of 𝑥2(𝑡). Therefore, since the system parameters are dependent of the initial
conditions of the system, the proposed methodology cannot be defined as fixed-time stable.
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Algorithm 1 Modified STA Parameter Tuning
Input: 𝑥1(𝑡0), 𝑥2(𝑡0), 𝑡𝑐 , 𝑡0, 𝜂 ≥ 3, 𝜅2 ≥ |

𝑥2(𝑡0)|
𝑡𝑐−𝑡0

Output: 𝜂, 𝜅2
𝑡1 ← 𝑡 | 𝑥1(𝑡) = 0 ⊳ Equation (23)
while 𝑥2(𝑡1) ∉ X do ⊳ Equations (31)–(32)

if sign(𝑥1(𝑡0)) = sign(𝑥2(𝑡0)) then
𝜅2 ← floor

(

|

|

|

𝑥2(𝑡0)
(𝑡𝑐−2𝑡1)

|

|

|

)

or 𝜂 ← 𝜂 + 1
else

𝜅2 ← ceil
(

|

|

|

𝑥2(𝑡0)
(𝑡𝑐−2𝑡1)

|

|

|

)

or 𝜂 ← 𝜂 + 1
end if
𝑡1 ← 𝑡 | 𝑥1(𝑡) = 0

end while

(a) (b) (c)

Figure 3: 𝑥2(𝑡) trajectories of the modified STA under different values of 𝜂 and 𝜅2, with the PTC area is shaded in yellow. The
parameters used in each simulation are (a): 𝜂 = 5 and 𝜅2 = 8, (b): 𝜂 = 5 and 𝜅2 = 12, and (c): 𝜂 = 8 and 𝜅2 = 8.

3.1 High-gain problem
The proposed stabilizing function contains a term that goes to infinity as 𝑡 approaches 𝑡𝑐 . Nevertheless, the analytic solution
in (23) shows that the state 𝑥1(𝑡) approaches the origin as the term is increasing to infinity. However, in an non-ideal scenario,
numerical problems such as measurement and discretization errors can cause the state to converge not to the origin, but to a
small vicinity of it. This means that the increasing gain 𝜂(𝑡𝑐 − 𝑡)−1 will be multiplied by a nonzero value, which causes the state
to recede from the origin.

To circumvent this problem, it is possible to alter the instant that the function 𝜎(𝑡, 𝑥) switches. By employing this solution,
the states will not converge to the origin at the switching instant, but to a vicinity of it. Although the property of predefined-time
attractiveness of the equilibrium point is lost, convergence to a bounded region around the origin can still be observed.
Corollary 3. For any instant 𝑡𝑒 ∈ [𝑡0, 𝑡𝑐), the proposed method provides predefined-time convergence of the states to an
ultimately bounded region around the origin.
Proof. Consider once again the PTC areaX . Assuming the parameters 𝜂 and 𝜅2 were sufficiently chosen to provide the predefined-
time convergence, the pair (𝑡, 𝑥2(𝑡)

) will remain in X for all 𝑡 ∈ [𝑡0, 𝑡𝑐). By replacing 𝑥2(𝑡) in (21) by the upper and lower line
segments that delimit X , it is possible to obtain functions that delimit a similar bounding region for 𝑥1(𝑡). Denote this set by
Y =

{(

𝑡, 𝑥1(𝑡)
)

| − 𝜉(𝑡, 𝑥,Ω) ≤ 𝑥1(𝑡) ≤ 𝜉(𝑡, 𝑥,Ω)
}, where 𝜉(𝑡, 𝑥,Ω) is given by

𝜉(𝑡, 𝑥,Ω) =
𝜅2(𝑡𝑐 − 𝑡)2

𝜂 − 2
+
(

|𝑥1(𝑡0)| −
𝜅2(𝑡𝑐 − 𝑡0)2

𝜂 − 2

)(

𝑡𝑐 − 𝑡
𝑡𝑐 − 𝑡0

)𝜂

. (39)

Therefore, by properly choosing the system parameters, the states will be confined by the bounding regions X and Y for any
instant 𝑡𝑒 ∈ [𝑡0, 𝑡𝑐), thus concluding the proof. □
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Now assume that 𝑥1(𝑡) is measured with a non-ideal sensor, and (20) for the first finite interval is rewritten as
𝜎(𝑡, 𝑥) =

𝜂
𝑡𝑐 − 𝑡

𝑥̌1(𝑡), 𝑡 ∈ [𝑡0, 𝑡𝑐), (40)
𝑥̌1(𝑡) ≜ 𝑥1(𝑡) + 𝜐, (41)

where 𝜐 ∈ ℝ𝑛 is a unknown bounded measurement error, |𝜐| ≤ 𝓁, and 𝓁 is a positive finite known constant. Considering
the worst case scenario, where the minimum value |

|

𝑥̌1(𝑡)|| assumes is 𝓁, there will be an instant of time 𝑡𝑒 ∈ [𝑡0, 𝑡𝑐) when the
increasing gain 𝜂(𝑡𝑐 − 𝑡)−1 starts to increase the value of 𝜎(𝑡, 𝑥), instead of reducing it. This instant is obtained by

𝜂
𝑡𝑐 − 𝑡𝑒

𝓁 = 1, (42)
𝑡𝑒 = 𝑡𝑐 − 𝜂𝓁. (43)

Therefore, by altering the proposed function 𝜎(𝑡, 𝑥) in 24 to

𝜎𝑒(𝑡, 𝑥) ≜

{ 𝜂
𝑡𝑐−𝑡

𝑥̌1(𝑡), 𝑡 ∈ [𝑡0, 𝑡𝑒),

𝜅1|𝑥̌1(𝑡)|1∕2 sign
(

𝑥̌1(𝑡)
)

, 𝑡 ∈ [𝑡𝑒,∞),
(44)

the high-gain problem is avoided. And, since the proposed method drives the states to an ultimately bounded region around the
origin, the conventional STA is initialized with finite conditions. However, the predefined-time convergence of the states to the
origin at the specified instant of time cannot be guaranteed.

4 ATTITUDE DETERMINATION PROBLEM

This section proposes an gyroless attitude determination problem to demonstrate an application of the modified STA in the
design of state observers. The problem is structured in three phases. The first phase refers to the vehicle’s dynamics and sensor
measurements. In phase two, an attitude determination method is employed to estimate the vehicle’s attitude from the sensor
measurements. Finally, in phase three, the estimated attitude is fed to the proposed modified super-twisting observer, to provide
estimates of the attitude and its derivative, which will in turn be used to calculate an estimate of the MAV’s angular velocity.
The framework of this method is illustrated in Figure 4.

MAV

Attitude
Determination
Algorithm

STSMO Attitude
Kinematic
Equation

u(t) y(t) ĝQ(t)

ĝ(t)

˙̂g(t) ω̂(t)

Figure 4: Block diagram representation of the attitude determination problem; 𝐮(𝑡) is the control input, 𝐲(𝑡) is the vector of
sensor measurements, 𝐠̂𝑄(𝑡) is the attitude estimate from the attitude determination algorithm, represented in Gibbs vector, and
𝐠̂(𝑡), ̇̂𝐠(𝑡) and 𝝎̂(𝑡) denote, respectively, the attitude estimate, its derivative, and the angular velocity estimate.

The following sections will detail the contents of each phase.

4.1 Vehicle dynamics and sensor modeling
A Cartesian coordinate system (CCS) with its origin coincident with the MAV’s center of mass is defined as S𝑏 ≜
{𝐵; 𝑥⃗ 𝑏, 𝑦 𝑏, 𝑧 𝑏}, where 𝐵 is a point representing its origin, and 𝑥⃗ 𝑏, 𝑦 𝑏, and 𝑧 𝑏 are its orthogonal unit vectors, with 𝑧 𝑏 perpen-
dicular to the rotor plane. Similarly, S𝑔 represents an inertial CCS with its origin at a reference point fixed on the ground, and its
z-axis, 𝑧 𝑔 , aligned with the local vertical. Denote the attitude of S𝑏 with respect to S𝑔 , represented in Gibbs vector, by 𝐠𝑏∕𝑔 ∈ ℝ3.
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This notation can also be abbreviated as 𝐠 to avoid notation conflicts with transposition superscripts. The corresponding attitude
matrix is given by

𝐃𝑏∕𝑔(𝐠) =
(

1 − 𝐠T𝐠
)

𝐈3 + 2𝐠𝐠T − 2
[

𝐠×
]

1 + 𝐠T𝐠
, (45)

where 𝐠 =
[

𝑔1 𝑔2 𝑔3
]𝑇 and [

g×
] is the following skew-symmetric matrix

[

g×
]

≜
⎡

⎢

⎢

⎣

0 −𝑔3 𝑔2
𝑔3 0 −𝑔1
−𝑔2 𝑔1 0

⎤

⎥

⎥

⎦

. (46)

The MAV attitude kinematics are described in terms of the attitude Gibbs vector by
𝐠̇𝑏∕𝑔 = 1

2
𝚪
(

𝐠𝑏∕𝑔
)

𝛚𝑏∕𝑔
𝑏 , (47)

where 𝝎𝑏∕𝑔
𝑏 represents the angular velocity of S𝑏 with respect to S𝑔 and

𝚪 (𝐠) ≜ 𝐠𝐠T +
[

𝐠×
]

+ 𝐈3. (48)
The MAV attitude dynamics can be described by

𝛚̇𝑏∕𝑔
𝑏 = 𝐉−1𝑏

[

(𝐉𝑏 𝜔
𝑏∕𝑔
𝑏 )×

]

+ 𝐉−1𝑏 𝐮(𝑡) + 𝐉−1𝑏 𝐝(𝑡), (49)
where 𝐉𝑏 ∈ ℝ3×3 is the inertia matrix in S𝑏, 𝐮(𝑡) ∈ ℝ3 is an input torque, and 𝐝(𝑡) ∈ ℝ3 is a bounded disturbance torque.

This MAV is equipped with an accelerometer and a magnetometer. The accelerometer measure 𝐚̌𝑏 ∈ ℝ3 can be modeled by
𝐚̌𝑏 = 𝐃𝑏∕𝑔 𝐚̌𝑔 + 𝜹𝑎𝑐𝑏 , for 𝐚̌𝑔 ≜ 𝐯̇𝑏∕𝑔𝑔 + 𝑔𝐞3, (50)

where 𝐚̌𝑔 ∈ ℝ3 is the S𝑔 representation of the accelerations affecting the MAV, 𝐯̇𝑏∕𝑔𝑔 ∈ ℝ3 is the S𝑔 representation of the relative
acceleration of S𝑏 with respect to S𝑟, 𝑔𝐞3 ∈ ℝ3 is the gravity acceleration vector, and 𝜹𝑎𝑐𝑏 ∈ ℝ3 is a bounded measurement error.
To simplify, assume that 𝐯̇𝑏∕𝑔𝑔 = 0 throughout the experiment. Consequently, 𝐚̌𝑔 keeps constant throughout the experiment.

The magnetometer measure 𝐦̌𝑏 ∈ ℝ3 can be modeled by
𝐦̌𝑏 = 𝐃𝑏∕𝑔𝐦̌𝑔 + 𝜹𝑚𝑔𝑏 , (51)

where 𝐦̌𝑔 ∈ ℝ3 is the S𝑔 representation of the local magnetic field and 𝜹𝑚𝑔𝑏 ∈ ℝ3 is a bounded measurement error. To simplify,
assume that 𝐦̌𝑔 keeps constant throughout the experiment.

The derivative of equation (48), followed by the substitution of (47) results in
𝐠̈ = 1

2

[

Γ̇ (𝐠)𝜔𝑏∕𝑔
𝑏 + Γ (𝐠)

(

𝐉−1𝑏
[

(𝐉𝑏𝜔
𝑏∕𝑔
𝑏 )×

]

+ 𝐉−1𝑏 𝐮(𝑡) + 𝐉−1𝑏 𝐝(𝑡)
)]

, (52)
where Γ̇ = 𝐠𝐠̇T + 𝐠̇𝐠T +

[

𝐠̇×
]. By defining the states as 𝐱1 ≜ 𝐠 and 𝐱2 ≜ 𝐠̇, the system state equations can be written as
𝐱̇1 = 𝐱2, (53)
𝐱̇2 =

1
2

[

Γ̇ (𝐠)𝜔𝑏∕𝑔
𝑏 + Γ (𝐠)

(

𝐉−1𝑏
[

(𝐉𝑏𝜔
𝑏∕𝑔
𝑏 )×

]

+ 𝐉−1𝑏 𝐮(𝑡) + 𝐉−1𝑏 𝐝(𝑡)
)]

, (54)
𝐲 =

[

𝐚̌T𝑏 𝐦̌T
𝑏

]T . (55)

4.2 Attitude estimation
In this phase, the measurements obtained from the available sensors embedded in the vehicle are paired with the measurements
taken at the reference CCS to feed the attitude determination algorithm.

A least square estimate of the attitude of a body, represented in quaternion q̂(𝑘), at instant 𝑘 can be stated as the minimization
of

𝐽 (q(𝑘)) = 1
2

𝑛
∑

𝑖=1
𝑎𝑖‖𝝁̌

𝑖
𝑏(𝑘) − D(q(𝑘))𝝁̌𝑖

𝑔(𝑘)‖
2, (56)

subject to ‖q(𝑘)‖ = 1, where
(

𝝁̌𝑖
𝑏(𝑘), 𝝁̌

𝑖
𝑔(𝑘)

)

is the pair of vector measurements with respect to S𝑏 and S𝑔 respectively, D(q(𝑘))
is the attitude matrix corresponding to the quaternion q(𝑘), 𝑛 is the number of vector measurements available at instant 𝑘, and
𝑎𝑖 is a positive weight associated with the 𝑖th measurement pair.
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From the work of Shuster and Oh17, the minimization problem of equation (57) can be replaced by the maximization of
𝐺(q(𝑘)) = q(𝑘)TK(𝑘)q(𝑘), (57)

where
K(𝑘) ≜

[

S(𝑘) − 𝜚(𝑘)I3 z(𝑘)
z(𝑘)T 𝜚(𝑘)

]

∈ ℝ4×4, (58)
S(𝑘) ≜ B(𝑘) + B(𝑘)T ∈ ℝ3×3, (59)

𝜚(𝑘) ≜ 1
𝑚(𝑘)

𝑛
∑

𝑖=1
𝑎𝑖𝝁̌

𝑖
𝑏(𝑘)

T𝝁̌𝑖
𝑔(𝑘) ∈ ℝ, (60)

B(𝑘) ≜ 1
𝑚(𝑘)

𝑛
∑

𝑖=1
𝑎𝑖𝝁̌

𝑖
𝑏(𝑘)𝝁̌

𝑖
𝑔(𝑘)

T ∈ ℝ3×3, (61)

z(𝑘) ≜ 1
𝑚(𝑘)

𝑛
∑

𝑖=1
𝑎𝑖
[

𝝁̌𝑖
𝑏(𝑘)×

]

𝝁̌𝑖
𝑔(𝑘) ∈ ℝ3, (62)

and
𝑚(𝑘) ≜

𝑛
∑

𝑖=1
𝑎𝑖. (63)

The solution q̂𝑄(𝑘) to the maximization of 𝐺(q(𝑘)) in (57) is given by following eigenvalue/eigenvector equation:
K(𝑘)q̂𝑄(𝑘) = 𝜆q̂𝑄(𝑘), (64)

where 𝜆 is the maximum eigenvalue of K(𝑘). In other words, the solution q̂𝑄(𝑘) is the eigenvector corresponding to the maximum
eigenvalue of K(𝑘). Shuster and Oh17 present an efficient algorithm for solving the above eigenvalue/eigenvector problem; this
is the well-known QUEST algorithm. The cited work shows that the optimal Gibbs vector16 is given by

𝐠̂𝑄(𝑘) =
[

(𝜆 + 𝜚(𝑘)) I3 − S(𝑘)
]−1 z(𝑘), (65)

and the corresponding quaternion is given by
q̂𝑄(𝑘) =

1
√

(

1 + 𝐠̂𝑄(𝑘)T𝐠̂𝑄(𝑘)
)

[

𝐠̂𝑄(𝑘)
1

]

. (66)

4.3 State observer
Theorem 2 shows that there exist positive parameters that guarantee the finite-time stability with predefined convergence time of
the modified STA. Therefore, it is feasible to assign the dynamics of this algorithm to the estimation error, to obtain a finite-time
stable observer. Substituting the signum function in equations (21)–(22) for its unit-vector representation results in

𝐱̇1(𝑡) = −𝜎(𝑡, 𝐱) + 𝐱2(𝑡), (67)
𝐱̇2(𝑡) = −𝜅2

𝐱1
‖𝐱1‖

+ 𝜹(𝑡), (68)
where

𝜎(𝑡, 𝐱) ≜
⎧

⎪

⎨

⎪

⎩

𝜂
𝑡𝑐−𝑡

𝐱1(𝑡), 𝑡 ∈ [𝑡0, 𝑡𝑐),

𝜅1
𝐱1

‖𝐱1‖1∕2
, 𝑡 ∈ [𝑡𝑐 ,∞).

(69)

Define the estimation error of the states in (53)-(54) as
𝐱̃1 ≜ 𝐱1 − 𝐱̂1, (70)
𝐱̃2 ≜ 𝐱2 − 𝐱̂2, (71)

where 𝐱̂1 and 𝐱̂2 are the states estimates. The modified super-twisting algorithm in (76)–(77) can be rewritten as
̇̃𝐱1(𝑡) = −𝜎(𝑡, 𝐱̃) + 𝐱̃2(𝑡), (72)
̇̃𝐱2(𝑡) = −𝜅2

𝐱̃1
‖𝐱̃1‖

+ 𝜹(𝑡), (73)
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where 𝜹 ≜ (𝑓 (𝐱) − 𝑓 (𝐱̂)) + (𝑏(𝐱) − 𝑏(𝐱̂))𝐮(𝑡) + 𝚪(𝐠)𝐝(𝑡) and

𝜎(𝑡, 𝐱̃) ≜
⎧

⎪

⎨

⎪

⎩

𝜂
𝑡𝑐−𝑡

𝐱̃1(𝑡), 𝑡 ∈ [𝑡0, 𝑡𝑐),

𝜅1
𝐱̃1

‖𝐱̃1‖1∕2
, 𝑡 ∈ [𝑡𝑐 ,∞).

(74)

From equations (53)–(54) and (70)–(71), the following multivariable modified super-twisting sliding mode observer (STSMO)
is obtained

̇̂𝐱1 = 𝐱̂2 + 𝜎(𝑡, 𝐱̃), (75)
̇̂𝐱2 =

1
2

[

Γ̇
(

𝐱̂1
)

𝜔𝑏∕𝑔
𝑏 + Γ

(

𝐱̂1
)

(

𝐉−1𝑏
[

(𝐉𝑏𝜔
𝑏∕𝑔
𝑏 )×

]

+ 𝐉−1𝑏 𝐮(𝑡) + 𝐉−1𝑏 𝜅2
𝐱̃1

‖𝐱̃1‖

)]

, (76)

where Γ̇
(

𝐱̂1
)

= 𝐱̂1𝐱̂T2 + 𝐱̂2𝐱̂T1 +
[

𝐱̂2×
] and

𝜎(𝑡, 𝐱̃) ≜
⎧

⎪

⎨

⎪

⎩

𝜂
𝑡𝑐−𝑡

𝐱̃1(𝑡), 𝑡 ∈ [𝑡0, 𝑡𝑐),

𝜅1
𝐱̃1

‖𝐱̃1‖1∕2
, 𝑡 ∈ [𝑡𝑐 ,∞),

(77)

5 SIMULATION RESULTS

The simulations in this section were developed in the Matlab software, using the Euler’s method of numerical integration, with
an integration step 𝑇𝑠 = 0.0001 s. Consider the following signals

𝝎𝑏∕𝑔
𝑏 (𝑡) = 2𝜋

20

⎡

⎢

⎢

⎣

sin (0.5𝜋𝑡)
sin (0.5𝜋𝑡 + 0.5𝜋)
sin (0.5𝜋𝑡 + 𝜋)

⎤

⎥

⎥

⎦

, 𝐝(𝑡) = 0.05
⎡

⎢

⎢

⎣

sin (50𝜋𝑡)
sin (50𝜋𝑡 + 0.5𝜋)
sin (50𝜋𝑡 + 𝜋)

⎤

⎥

⎥

⎦

, (78)

where 𝝎𝑏∕𝑔
𝑏 (𝑡) is a forcing function acting on equations (54) and (76), and 𝐝(𝑡) is a disturbance torque acting on the system in

(53)-(54).
Since the system does not provide a perfect measurement of 𝐱1, the state estimation error described in (70), and used in the

observer model in equations (75)–(76), will be rewritten as
𝐱̃1 = 𝐠̂𝑄(𝑘) − 𝐱̂1, (79)

where 𝐠̂𝑄(𝑘) is the optimal Gibbs vector obtained from computing the vector measurements through the QUEST algorithm,
using the inverse of the measurement error as the weighting factor 𝑎𝑖. It is possible to see that the existence of measurement
error directly affects how close 𝐠̂𝑄(𝑘) is to the real attitude vector 𝐠𝑏∕𝑔 . Consequently, 𝐱̃1 and the observed states will also be
affected by the aforementioned error.

After obtaining the estimates 𝐠̂ and ̂̇𝐠, the attitude kinematic equation (47) is used to compute an angular velocity estimate.
Since the matrix 𝚪(𝐠) in equation (48) is non-singular for every 𝐠 in this simulation, the MAV angular velocity can be calculated
by

𝝎𝑏∕𝑔
𝑏 = 2𝚪−1(𝐠)𝐠̇, (80)

and, inspired by the certainty equivalence principle57, the angular velocity estimate 𝝎̂𝑏∕𝑔
𝑏 can be calculated by (80), by assuming

the estimated parameters 𝐠̂ and ̂̇𝐠 as the real ones. The angular velocity estimation error is given by 𝝎̃𝑏∕𝑔
𝑏 ≜ 𝝎𝑏∕𝑔

𝑏 − 𝝎̂𝑏∕𝑔
𝑏 .

Initially, consider a perfect measurement of 𝐚̌𝑏 and 𝐦̌𝑏, i.e. 𝜹𝑎𝑐𝑏 = 𝜹𝑚𝑔𝑏 = 0. Using the proposed modified STSMO in (75)–(76),
the parameters in Table 1, 𝜅1 = 1, 𝜅2 = 1.5, and 𝜂 = 5, which satisfy the conditions stated in the proof of Theorem 2 for 𝑡𝑐 = 1.5
s, Figure 5 illustrates the behaviour of the estimation error of 𝐠 and 𝝎. Also, Figure 6 reproduces a similar simulation, altering
only the predefined convergence instant to 𝑡𝑐 = 0.5 s, which shows that the chosen parameters are also sufficient to satisfy the
stricter time restriction. Even though the provided convergence analyses have considered 𝛿(𝑡) = 0, Figures 5 and 6 illustrate that
the proposed algorithm also provides robustness to disturbances.
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Table 1: Simulation Parameters.

Symbol Description Value
𝑡𝑓 Simulation Time 3s
𝑇 𝑠 Integration Step 0.0001s
𝐽 Inertia Matrix diag (0.05, 0.05, 0.02) kgm2

𝐠0 Initial State [0.11 0.09 0.11]T

𝐠̂0 Initial State Estimate [-0.17 -0.10 0.3]T
̇̂𝐠0 Initial State Estimate [-0.15 0.07 0.11]T

𝑔 Gravity Acceleration 9.81 m/s2
𝐦̌𝑔 Local Magnetic Field [13.7 -4.6 -10.9]T 𝜇T

(a) (b)

Figure 5: Attitude and angular velocity estimation errors over time, using the proposed modified STSMO, and a predefined
convergence instant of 𝑡𝑐 = 1.5 s.

For the sake of comparison, consider an STSMO designed from the conventional super-twisting algorithm, described by
̇̂𝐱1 = 𝐱̂2 + 𝜅1

𝐱̃1
‖𝐱̃1‖1∕2

, (81)

̇̂𝐱2 =
1
2

[

Γ̇
(

𝐱̂1
)

𝜔𝑏∕𝑟
𝑏 + Γ

(

𝐱̂1
)

(

𝐉−1𝑏
[

(𝐉𝑏𝜔
𝑏∕𝑟
𝑏 )×

]

+ 𝐉−1𝑏 𝐮(𝑡) + 𝐉−1𝑏 𝜅2
𝐱̃1

‖𝐱̃1‖

)]

, (82)

where Γ̇
(

𝐱̂1
)

= 𝐱̂1𝐱̂T2 + 𝐱̂2𝐱̂T1 +
[

𝐱̂2×
]. Using the same parameters from the previous simulation, figures 7a and 7b illustrate the

behaviour of the estimation error of 𝐠 and 𝝎. It is possible to see that the observer is able to accurately estimate the system’s
states, even under the influence of a disturbance, driving the estimation error to zero at approximately 1.6s. Unlike the proposed
observer, this convergence instant cannot be explicitly chosen and it is directly dependant of the switching gains 𝜅1 and 𝜅2 12.

Now, consider the following bounded noise signals

𝜹𝑎𝑐𝑏 (𝑡) = 1.5 × 10−5
⎡

⎢

⎢

⎣

𝜖 ∼ U(−1, 1)
𝜖 ∼ U(−1, 1)
𝜖 ∼ U(−1, 1)

⎤

⎥

⎥

⎦

m∕s2, (83)

𝜹𝑚𝑔𝑏 (𝑡) = 2 × 10−2
⎡

⎢

⎢

⎣

𝜖 ∼ U(−1, 1)
𝜖 ∼ U(−1, 1)
𝜖 ∼ U(−1, 1)

⎤

⎥

⎥

⎦

𝜇T. (84)

Using the proposed modified STSMO in (75)–(76), with the parameters in Table 1, 𝜅1 = 1, 𝜅2 = 1.5, and 𝜂 = 5, Figure 8
illustrates the effects of the so-called high-gain problem, addressed in section 3.1. The state 𝑥1(𝑡), when measured with non-ideal
sensors, does not converge exactly to zero, but to a bounded neighborhood of zero. So, when 𝑡 approaches 𝑡𝑐 , the time-varying
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(a) (b)

Figure 6: Attitude and angular velocity estimation errors over time, using the proposed modified STSMO, and a predefined
convergence instant of 𝑡𝑐 = 0.5 s.

(a) (b)

Figure 7: Attitude and angular velocity estimation errors over time, using a conventional super-twisting sliding-mode observer.

gain 𝜂(𝑡𝑐 − 𝑡)−1 approaches infinity and it multiplies a non-zero state, which causes the departure from the origin in Figures
8a–8b. As proposed, it is possible to avoid this problem by switching the 𝜎-function in (77) earlier.

From equations (83)–(84), it is possible to calculate an upper bound to the measurement error at ‖𝜹(𝑡)‖ ≤ 0.0346. By using
this bound and the system parameters, equation (43) gives an earlier switching instant of 𝑡𝑒 = 1.3268 s. Figure 9 illustrates the
behaviour of the estimation errors, using a earlier switching instant.

6 CONCLUSIONS

The conventional super-twisting algorithm (STA) does not provide to the user an explicit convergence instant, nor can it be easily
calculated from its switching gains. Theorems that prove the algorithm’s finite-time stability only specify an upper bound for
the reaching time, but cannot pinpoint the exact instant of convergence. With the proper choice of the parameters in the vector
𝛀, the proposed modified STA provides the desired finite-time stability with predefined convergence time, as verified by the
simulations. Also, by sacrificing exactness of convergence time, it is possible to avoid the high-gain problem which appears in
non-ideal scenarios involving predefined-time convergence. Additionally, a multivariable super-twisting sliding mode observer,
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(a) (b)

Figure 8: Attitude and angular velocity estimation errors over time under the influence of measurement noise, using the proposed
modified super-twisting sliding-mode observer with a predefined convergence instant of 𝑡𝑐 = 1.5 s.

(a) (b)

Figure 9: Attitude and angular velocity estimation errors over time under the influence of measurement noise, using the proposed
modified super-twisting sliding-mode observer with a predefined convergence instant of 𝑡𝑐 = 1.5 s, and an earlier switching
time of 𝑡𝑒 = 1.3268 s.

created from the proposed modified STA, was employed to estimate the attitude and the angular velocity of a multirotor aerial
vehicle. This observer has shown to provide a robust and accurate estimation of the vehicle rotational states, while also allowing
a straightforward performance tweaking by altering the predefined convergence time, demonstrating its increased versatility in
comparison to the conventional super-twisting observer.
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