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Abstract

The goal of this paper is to introduce the notion of polyconvolution for Fourier-cosine, Laplace integral operators, and its

applications. The structure of this polyconvolution operator and associated integral transforms is investigated in detail. The

Watson-type theorem is given, to establish necessary and sufficient conditions for this operator to be unitary on L 2 ( R ) ,

and to get its inverse represented in the conjugate symmetric form. The correlation between the existence of polyconvolution

with some weighted spaces is shown, and Young’s type theorem, as well as the norm-inequalities in weighted space, are also

obtained. As applications of the Fourier cosine–Laplace polyconvolution, the solvability in closed-form of some classes for

integral equations of Toeplitz plus Hankel type and integro-differential equations of Barbashin type is also considered. Several

examples are provided for illustrating the obtained results to ensure their validity and applicability.
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1 INTRODUCTION

In Fourier analysis and operator theory, the theory of convolutions of integral transforms and convolution type operators have
been studied for a long time due to their fundamental role in modeling and solving a wide range of mathematical physics
problems. Nowadays, there are two main approaches to the constructing of convolutions for integral transforms. The first one is
based on the construction of a generalized shift operator (also called generalized translation operator, or generalized displacement
operator). Then the classical translation operator (ordinary translation) in the convolution is replaced by the generalized shift
operator, and we get a generalized convolution. The generalized shift operators of the Delsarte[12, 13]–Levitan[21]–Povzner[23]
type are usually used in these constructions. For instance, this approach is often served to introduce the classical convolution
for the Hankel transform. Here we use the idea of the second approach, which rests on the works of Valentin A. Kakichev.
His convolution constructing method is based on factorization equality and can be applied to most convolutions with arbitrary
integral transform appearing already in [17]. In the year 1997, Kakichev generalized this approach and introduced the concept
of polyconvolution or "generalized convolution" [18], more details as follows.
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Definition 1.1. Let Ui(Xi) be the space of linear functions that can differ on the same field and V (Y ) is an algebra. Consider
the integral transformsKi ∶ Ui(Xi)→ V (Y ) with i = 1,… , n+1. Then polyconvolution (generalized convolution) of functions
f1 ∈ U1(X1), f2 ∈ U2(X2),… , fn ∈ Un(Xn)with a weighted function  for the integral transformsKi is a multi-linear operators

defined by ∗ ∶
n
∏

i=1
Ui(Xi)→ V (Y ), denoted by ∗


(f1, f2,… , fn) such that the following factorization property is valid

Kn+1
[

∗

(f1, f2,… , fn)

]

(y) = (y)
n
∏

i=1
(Kifi)(y). (1.1)

Notice that multiplication on the right-hand side of (1.1) is understood as multiplication in the algebra V (Y ). From (1.1), we
deduce that

∗

(f1, f2,… , fn)(x) = K−1

n+1

[

(y)
n
∏

i=1
(Kifi)(y)

]

(x), (1.2)

where K−1
n+1 is the inverse transform of Kn+1.

Using the Definition 1.1, the polyconvolutions generated by various linear operators can be constructed. In particular, this
method can be used to construct the polyconvolution involving the Hankel integral transform [7, 8] and Fourier-Kontorovich-
Lebedev integral transforms [29], which leads to the study of the operational properties of polyconvolution and can be applied
to solving some classes of integral equations, and systems of integral equations. In this paper, extending the notions in [18], we
introduce a new polyconvolution operator involving the Fourier cosine(Fc)-Laplace() integral transforms and apply it to study
the solvability in closed-form of the equations.
The organizations of this article as follows. Besides the introduction, the article has four sections. Section 2 is devoted to the

presentation of the definition of (Fc ,)−polyconvolution. We prove that this operator actually satisfies the concept of polycon-
volution following Definition 1.1. The structurally important properties of this polyconvolution associated with defined-spaces
are also clearly established. In section 3, we formulate the Watson-type theorem, establish necessary and sufficient conditions
for this operator is an isometric (unitary) isomorphism on L2(ℝ+) space and get its inverse represented in the conjugate sym-
metric form. Section 4 consists of two subsections. In Subsection 4.1, we prove Young’s Theorem of the polyconvolution (2.1)
and corollaries for estimation in L1(ℝ). We also prove to evaluate norm-boundedness in the weighted Lp(ℝ+, �j) spaces, which
are the contents mentioned in Subsection 4.2. Section 5 deals with applications of the constructed polyconvolution. We studying
the solvability and unique explicit solution of some classes for integral equations of Toeplitz plus Hankel type and integro-
differential equations of Barbashin type by applying the obtained results. Some computational examples can be found in the
paper to illustrate the results obtained to ensure their validity and applicability.
Background: We briefly recall some notions used in this article. The Fourier and Fourier cosine transforms of the func-

tion f , denoted by (F ) and (Fc) respectively, are defined by the integral formulas (see [27, 6]) as follows: (Ff )(y) ∶=
1

√

2�

+∞
∫
−∞

e−ixyf (x)dx, y ∈ ℝ, and (Fcf )(y) ∶=
√

2
�

∞
∫
0
cos(xy)f (x)dx, y > 0. The Fourier cosine transform agrees with the

Fourier transform if f (x) is an even function. In general, the even part of the Fourier transform of f (x) equals the even part of
the Fourier cosine transform of f (x) in the specified region. The Laplace transform [26] is denoted by () and defined by the
integral formula

(f )(y) ∶=

∞

∫
0

e−xyf (x)dx, ℜy > 0.

It is well-known that, for all the functions f ∈ L2(ℝ) then (Ff ) is unitary on the space L2(ℝ) and ‖Ff‖L2(ℝ)= ‖f‖L2(ℝ)
(refer [27, 24]). The above statement is still true for the (Fc) transform, but the opposite is true for the Laplace to transform
‖f‖L2(ℝ+)≤

√

�‖f‖L2(ℝ+) (see [36]). In 1941, R.V. Churchill [10] considered the convolution of two functions f and g for the
Fourier cosine transform defined by

(f ∗
Fc
g)(x) ∶= 1

√

2�

∞

∫
0

f (y)
[

g(x + y) + g(|x − y|)
]

dy, x > 0. (1.3)

This operator is bilinear and commutative (see [3, 26]). If f, g are functions belonging to Lp(ℝ+), then (f ∗
Fc
g) ∈ Lp(ℝ+) [30],

with p = 1, 2 and the factorization equality holds

Fc(f ∗
Fc
g)(y) = (Fcf )(y)(Fcg)(y), y > 0. (1.4)
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Throughout the article, we shall make frequent use of the weighted Lebesgue spaces Lp(ℝ+, w(x)dx), 1 ≤ p <∞ with respect

to a positive measure w(x)dx equipped with the norm for which ‖f‖Lp(ℝ+,w)=
( ∞
∫
0
|f (x)|pw(x)dx

)1∕p

< +∞. If the weighted

functionw = 1 thenLp(ℝ+, w) ≡ Lp(ℝ+). In case p = ∞ then the norm of functions defined by ‖f‖L∞(ℝ+)= sup
x∈ℝ+

|f (x)| < +∞.

2 FOURIER COSINE–LAPLACE POLYCONVOLUTION

In this section, we establish the polyconvolution ∗
Fc ,

(f, g, ℎ)(x) of three functions f, g, and ℎ constructed for the Fourier
cosine (Fc); Laplace () integral transforms. Consider Ui(Xi)i=1,4 on the same field of real numbers and V (Y ) as algebraic
functions measured in the Lebesgue sense over ℝ. With the weight function  equal 1, transformations (K1) = (K4) = (Fc) and
(K2) = (K3) = (), we have definitions.

Definition 2.1. The Fourier cosine–Laplace polyconvolution of three functions f, g, ℎ is denoted by ∗
Fc ,

(f, g, ℎ) and defined
by

∗
Fc ,

(f, g, ℎ)(x) ∶= 1
� ∫

ℝ3
+

Φ(x, u, v, w)f (u)g(v)ℎ(w)dudvdw, x > 0. (2.1)

where
Φ(x, u, v, w) = v +w

(v +w)2 + (x + u)2
+ v +w
(v +w)2 + (x − u)2

. (2.2)

Firstly, we will show that this Definition actually gives the concept of polyconvolution, i.e operator (2.1) must satisfy the
factorization equality in Definition 1.1 for suitable integral transformations.

Theorem 2.2. Suppose that f, g and ℎ are arbitrary functions in L1(ℝ+), then the polyconvolution (2.1) for the Fourier cosine
and Laplace transforms of the functions f, g andℎ is well-defined and belongs toL1(ℝ+) and the following factorization property
holds

Fc
[

∗
Fc ,

(f, g, ℎ)
]

(y) = (Fcf )(y)(g)(y)(ℎ)(y), ∀y > 0. (2.3)

Moreover ∗
Fc ,

(f, g, ℎ) ∈ C0(ℝ+). Besides, the L1-norm estimation of Fourier cosine-Laplace polyconvolution is as follows

‖ ∗
Fc ,

(f, g, ℎ)‖L1(ℝ+)≤ ‖f‖L1(ℝ+)‖g‖L1(ℝ+)‖ℎ‖L1(ℝ+). (2.4)

Proof. We first prove that ∗
Fc ,

(f, g, ℎ) belongs to space L1(ℝ+). From (2.2) we deduce

∞

∫
0

|Φ(x, u, v, w)|dx =

∞

∫
0

[

v +w
(v +w)2 + (x + u)2

+ v +w
(v +w)2 + (x − u)2

]

dx, u, v, w > 0.

=

∞

∫
u

v +w
(v +w)2 + t2

dt +

∞

∫
−u

u +w
(v +w)2 + t2

dt =

+∞

∫
−∞

v +w
(v +w)2 + t2

dt = Arc tan t
v +w

|

|

|

|

+∞

−∞
= �.

(2.5)

It is easy to see that
∞
∫
0
| ∗
Fc ,

(f, g, ℎ)(x)|dx is finite. Indeed, from (2.1), (2.5) and the assumption of the theorem, we obtain

∞

∫
0

| ∗
Fc ,

(f, g, ℎ)(x)|dx ≤ 1
� ∫

ℝ4
+

|Φ(x, u, v, w)| |f (u)| |g(v)| |ℎ(w)| dudvdwdx

=
(

∞

∫
0

|f (u)|du
)(

∞

∫
0

|g(v)|dv
)(

∞

∫
0

|ℎ(w)|dw
)

= ‖f‖L1(ℝ+)≤ ‖f‖L1(ℝ+)‖g‖L1(ℝ+)‖ℎ‖L1(ℝ+)<∞.

This means that ∗
Fc ,

(f, g, ℎ) ∈ L1(ℝ+) and estimation (2.4) holds. Next, we prove that the polyconvolution (2.1) satisfying

factorization equality (2.3) is valid. Following formula 2.13.5, page 91 in [11], we obtain
∞
∫
0
e−�x cos(xy)dx = �

�2+y2
, ∀�, y > 0.
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Based on this, we can rewrite the equality as follows

Φ(x, u, v, w) =

∞

∫
0

e−(v+w)y{cos(x + u)y + cos(x − u)y}dy = 2

∞

∫
0

e−(v+w)y cos(xy) cos(uy)dy. (2.6)

Coupling (2.1),(2.6) then ∗
Fc ,

(f, g, ℎ)(x) = 2
�
∫
ℝ4
+

e−(v+w)y cos(xy) cos(uy) f (u) g(v) ℎ(w) dudvdwdy. This is equivalent for all

x > 0 then

∗
Fc ,

(f, g, ℎ)(x) = 2
�

∞

∫
0

{(

∞

∫
0

f (u) cos(yu)du
)(

∞

∫
0

g(v)e−vydv
)(

∞

∫
0

ℎ(w)e−wydw
)}

cos(xy)dy,

=
√

2
�

∞

∫
0

(Fcf )(y)(g)(y)(ℎ)(y) cos(xy)dy.

(2.7)

By applying the Fourier cosine transformation to both sides of the equality (2.7) and ∗
Fc ,

(f, g, ℎ) ∈ L1(ℝ+), we obtain the
factorization property (2.3). The Riemann-Lebesgue theorem in [24, 27], states that "If f ∈ L1(ℝn), then (Ff )(y) → 0 as
|y| →∞, and, hence (Fy) ∈ C0(ℝn)". This is still true for the (Fc) transform [30]. Therefore, ∗

Fc ,
(f, g, ℎ) belonging to C0(ℝ+)

is obvious by virtue of Riemann-Lebesgue theorem.

The following theorems show the polyconvolution operator (2.1) is always well-defined in different functional spaces. In
the structure of (Fc ,)−polyconvolution, if we fix the functional space of any two functions, namely, let g, ℎ ∈ L1(ℝ+) and
substitute the assumption f ∈ L1(ℝ+) in the theorem 2.2 by f ∈ L2(ℝ+) then we have the following conclusion.

Theorem 2.3. Let f ∈ L2(ℝ+) and g, ℎ be arbitrary functions belonging to L1(ℝ+). Then ∗
Fc ,

(f, g, ℎ) ∈ L2(ℝ+) and for any
x > 0, the following Parseval’s identity holds

∗
Fc ,

(f, g, ℎ)(x) = Fc
[

(Fcf )(y)(g)(y)(ℎ)y
]

(x). (2.8)

Besides, the factorization property (2.3) is still valid.

Proof. Directly inferred from the formulas (2.5), (2.6), for any positive v,w, then
∞
∫
0
|Φ(x, u, v, w)|du = � is finite, and

|Φ(x, u, v, w)| ≤ 2
∞
∫
0
e−(v+w)ydy < M , where M is a positive constant. Therefore, by using Hölder inequality we have the

following evaluation
| ∗
Fc ,

(f, g, ℎ)(x)|

≤ 1
�

{

∫
R3+

|Φ(x, u, v, w)| |f (u)|2|g(v)| |ℎ(w)| dudvdw
}

1
2

×
{

∫
R3+

|Φ(x, u, v, w)| |g(v)| |ℎ(w)| dudvdw
}

1
2

≤
√

M
�

{

∫
R3+

|f (u)|2|g(v)| |ℎ(w)| dudvdw
}

1
2

×
{

∫
R2+

|g(v)| |ℎ(w)| dvdw
}

1
2

=
√

M
�
‖f‖L2(ℝ+)‖g‖L1(ℝ+)‖ℎ‖L1(ℝ+)<∞.

This proves that, the polyconvolution operator (2.1) exists for any functions f ∈ L2(ℝ+) and g, ℎ ∈ L1(ℝ+). By the same
explanations as in (2.7), we obtain

∗
Fc ,

(f, g, ℎ)(x) =
√

2
�

∞

∫
0

(Fcf )(y)(g)(y)(ℎ)(y) cos(xy)dy = Fc
[

(Fcf )(y)(g)(y)(ℎ)(y)
]

(x), ∀x > 0.

Since f ∈ L2(ℝ+) then Fcf belongs to the L2(ℝ+) (refer [26, 30]). Moreover, g be a function belonging to L1(ℝ+) then

|(g)(y)| ≤
∞
∫
0
|e−vy| |g(v)|dv ≤

∞
∫
0
|g(v)|dv is finite ∀y > 0, this yields (g)(y) as a bounded function. Similarly, since
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ℎ ∈ L1(ℝ+) then (ℎ)(y) is bounded. Thismeans that (Fcf )(y)(g)(y)(ℎ)(y) ∈ L2(ℝ+) andFc
[

(Fcf )(y)(g)(y)(ℎ)(y)
]

(x) ∈
L2(ℝ+). Therefore, for all functions f ∈ L2(ℝ+) and g, ℎ ∈ L1(ℝ+) then (Fc ,)−polyconvolution operator is well-defined in
the L2(ℝ+), and the Parseval’s identity (2.8) holds. Furthermore, we know that for the transform Fc ∶ L2(ℝ+) ↔ L2(ℝ+) is an
isometric isomorphism [27], hence we deduce that the factorization equality (2.3) is valid.

Before presenting further results, we give the definition for the new space class as follows.

Definition 2.4. Notation A (ℝ+) is the set of all functions defined on ℝ+ such that the effect of Laplace transform on them
belongs to L∞(ℝ+).

A (ℝ+) ∶= {k(x) ∈ ℝ+ ∶ (k) ∈ L∞(ℝ+)}.

It is easy to check that, for any functions k in L1(ℝ+), k belongs toA (ℝ+). On the other hand, for example consider the function
k(x) = cos(x) or k(x) = sin(x), then k(x) ∉ L1(ℝ+). However, applying Laplace transform to function k, following the formulas

4.7.1, page 150 and 4.7.43, page 154 in [6] then ( cos(x))(y) =
∞
∫
0
e−xy cos(x)dx = y

1+y2
and ( sin(x))(y) =

∞
∫
0
e−xy sin(x)dx =

1
1+y2

are finite. This implies that ( cos(x)), ( sin(x)) ∈ L∞(ℝ+) then k ∈ A (ℝ+), and therefore we concludeL1(ℝ+) ⊆ A (ℝ+).

Theorem 2.5. If f is a function belonging to L2(ℝ+) and g, ℎ ∈ A (ℝ+). Then ∗
Fc ,

(f, g, ℎ)(x) ∈ L2(ℝ+), the Parseval’s
identity (2.8) as well as factorization equality (2.3) still holds.

Proof. By assuming f ∈ L2(ℝ+) then (Fcf ) ∈ L2(ℝ+) [30]. On the other hand g, ℎ ∈ A (ℝ+), which implies that (g) and (ℎ)
are finite, then (g), (ℎ) ∈ L∞(ℝ+). This means that (g)(y), (ℎ)(y) are bounded functions, and (Fcf )(y)(g)(y)(ℎ)(y)
belongs to L2(ℝ+), which can be deduced that

Fc
[

(Fcf )(y)(g)(y)(ℎ)(y)
]

(x) ∈ L2(ℝ+).

By the same argument as in the Theorem 2.2 and 2.3, we obtain Parseval’s equality ∗
Fc ,

(f, g, ℎ)(x) =

Fc
[

(Fcf )(y)(g)(y)(ℎ)(y)
]

(x) ∈ L2(ℝ+), thereby using the unitary property of Fourier cosine transform overL2(ℝ+), we also
get (2.3).

3 THEWATSON TYPE THEOREM FOR (FC ,)−POLYCONVOLUTION

Following [37], G. N. Watson showed that the Mellin convolution type transforms g(x) = [Kf ](x) =
∞
∫
0
k(xy)f (y)dy, such that

their inverses have the similar form f (x) = [K̂g](x) =
∞
∫
0
k̂(xy)g(y)dy, where the kernel k̂(x) is called the conjugate kernel.

Let us consider the above transform from the point of view of general Fourier transforms (refer [30]), it is well-known that

the integral transform g(x) = )
)x

∞
∫
0
k1(xy)f (y)

dy
y
is an automorphism of the space L2(ℝ+) ≡ L2(0,∞) and has the symmetric

inversion formula if and only if the function k1(x) satisfies the conditions

∞

∫
0

k1(ax)k1(bx)x−2dx = min(a, b), and
∞

∫
0

k1(ax)k1(bx)x−2dx = min(a, b), (3.1)

with all positive a and b. The function k1(x) satisfying the conditions in (3.1) is called one-dimensional Watson kernel [30]. It

is shown that the conditions (3.1) may be written in the following equivalent form k1(x) =
x
2�i

lim
N→∞

1
2
+iN

∫
1
2
−iN

Ω(t)
1−t
x−tdt, where the

function Ω(t), defined on the line � = {t,ℜt = 1
2
}, fulfills the conditions Ω(t)Ω(1 − t) and |Ω(t)| = 1. Here l.i.m means the

limit with respect to the norm in the spaceL2. The first equality in condition (3.1) is the classical definition of the Watson kernel
[37], which leads to a unitary Watson transform when k1(x) is a real function. According to this view, we can study the Watson-
type integral transform for other multiple convolutions as follows f → g = D(f ∗ k), where D is an arbitrary differential
operator and k is the known kernel. An example is the previously published works of the Watson-type theorem for convolutions
involving the Fourier-cosine [35], Hartley [33], Hartley-Fourier [34], and Kontorovich-Lebedev-Fouriersine [32] transforms. In
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this section, we study the Watson-type transform for the (Fc ,) polyconvolution operator by fixing a function, and letting the
remaining functions vary in certain functional spaces. We establish necessary and sufficient conditions for this operator to be
unitary on L2(ℝ+) and get its inverse represented in the conjugate symmetric form. Consider the operator

T�,� ∶ L2(ℝ+)→ L2(ℝ+)
f → ' = (T�,�f ) = D( ∗Fc ,

(f, �, �)),

where D is the second-order differential operator defined by D ∶=
(

I − d2

dx2

)

and image

'(x) = (T�,�f )(x) =
(

1 − d2

dx2

)

1
� ∫

ℝ3
+

Φ(x, u, v, w) f (u) �(v)�(w) dudvdw, ∀x > 0. (3.2)

Here Φ(x, u, v, w) is defined by (2.2) and �, � are given functions.

Theorem 3.1. Suppose that �, � ∈ A (ℝ+) are given functions and satisfy

|(�)(y)(�)(y)| = 1
1 + y2

, ∀y > 0. (3.3)

Then the condition (3.3) is the necessary and sufficient condition for operator (T�,�) to be unitary on L2(R+). Moreover, the
inverse operator of (T�,�) has a symmetric form and is represented by

f (x) = (T�̄,�̄')(x) = D( ∗Fc ,
(f, �̄, �̄))(x)

=
(

1 − d2

dx2

)

1
� ∫

ℝ3
+

Φ(x, u, v, w) '(u) �̄(v)�̄(w) dudvdw, ∀x > 0,

where �̄, �̄ are complex conjugate functions of �, � respectively.

In order to prove Theorem 3.1, we need the following auxiliary lemma.

Lemma 3.2. If �, � are functions belonging to A (ℝ+) and satisfy

(1 + y2)|(�)(y)(�)(y)| bounded for any y > 0. (3.4)

Then, for any function f belonging to the L2(ℝ+), we obtain

D( ∗
Fc ,

(f, g, ℎ))(x) = Fc
[

(1 + y2)(Fcf )(y)(�)(y)(�)(y)
]

(x) ∈ L2(ℝ+), (3.5)

where D is the second order differential operator having the form D =
(

I − d2

dx2

)

.

Proof. One obvious thing is that, the functions f (y), yf (y), y2f (y),… , ynf (y) belong to the space L2(ℝ) if and only if
(Ff )(x), d

dx
(Ff )(x), d

2

dx2
(Ff )(x),… , d

n

dxn
(Ff )(x) ∈ L2(ℝ) (refer Theorem 68, page92, in [30]). This confirmation is still

true for the Fourier cosine (Fc) transform on L2(ℝ+). Furthermore, we have d
dx
(Fcf )(x) =

√

2
�

∞
∫
0
f (y)

(

d
dx
cos(xy)

)

dy =
√

�
2

∞
∫
0
(−y)f (y)

(

d
dx
sin(xy)

)

dy, and d2

dx2
(Fcy)(x) =

√

�
2

∞
∫
0
(−y)f (y)

(

d
dx
sin(xy)

)

dy = Fc(−y2f (y))(x) ∈ L2(ℝ+). That

means, if f (y), y2f (y) belong to L2(R+), then we obtain
(

1 − d2

dx2

)

(

Fcf (y)
)

(x) = Fc
[

(1 + y2)f (y)
]

(x). (3.6)

By condition (3.4), we deduce that (1 + y2)(�)(y)(�)(y) is a bounded function ∀y > 0, and f ∈ L2(ℝ+) implies that
Fcf ∈ L2(ℝ+). Thus, (1 + y2)(Fcf )(y)(�)(y)(�)(y) belongs to the L2(R+). Therefore, deducing directly from Parseval’s
identity (2.8) and (3.6), we obtain

D( ∗
Fc ,

(f, g, ℎ))(x) =
(

1 − d2

dx2

)

{

Fc
[

(Fcf )(y)(�)(y)(�)(y)
]

(x)
}

= Fc
[

(1 + y2)(Fcf )(y)(�)(y)(�)(y)
]

(x) ∈ L2(ℝ+).
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Proof. of Theorem 3.1.
Necessary condition: From (3.3), it can be seen that (1+y2)(�)(y)(�)(y) is bounded, together with Fcf belonging to L2(ℝ+),
we deduce that (1 + y2)(Fcf )(y)(�)(y)(�)(y) ∈ L2(ℝ+). Applying the equality (3.5) to (3.2), we have

'(x) = (T�,�f )(x) = D( ∗Fc ,
(f, �, �))(x)

= Fc
[

(1 + y2)(Fcy)(y)(�)(y)(�)(y)
]

(x) ∈ L2(ℝ+).
(3.7)

According to Theorem 9.13 in [24], for any f be a function belonging to the L2(ℝ), then ‖Ff‖L2(ℝ)= ‖f‖L2(ℝ). This is still
true for the (Fc) transform which implies that ‖Fcf‖L2(ℝ+)= ‖f‖L2(ℝ+),∀f ∈ L2(ℝ+). Applying this to equality (3.7) and under
the condition (3.3), we obtain

‖'‖L2(ℝ+)= ‖T�,�f‖L2(ℝ+) = ‖D( ∗
Fc ,

(f, �, �))‖L2(ℝ+)

= (1 + y2)|(�)(y)(�)(y)| ‖Fcf‖L2(ℝ+)= ‖Fcf‖L2(ℝ+)= ‖f‖L2(ℝ+).

This means T�,� is an isometric transformation or unitary in L2(R+). Now, we need to show the inverse operator of (T�,�) has a
symmetric form. Indeed, in L2, by using the unitary property of (Fc) transform on equality (3.7), we get

(Fc')(y) = Fc(T�,�f )(y) = (1 + y2)(Fcf )(y)(�)(y)(�)(y) ∈ L2(ℝ+). (3.8)
On the other hand, since (�)(y) = (�̄)(y) and (�)(y) = (�̄)(y), we have

(1 + y2)|(�)(y)(�)(y)| = (1 + y2)(�̄)(y)(�̄)(y).

Due to (3.3), it follows that (1 + y2)|(�)(y)(�)(y)| = 1. This leads to (�)(y)(�)(y)(Fc')(y) =
1

1+y2
(Fcf )(y) based on (3.8),

equivalent to (�̄)(y)(�̄)(y)(Fc')(y) =
1

1+y2
(Fcf )(y). We obtain

(1 + y2)(�̄)(y)(�̄)(y)(Fc')(y) = (Fcf )(y). (3.9)

By the same reasoning as above, we get Fc' ∈ L2(ℝ+) and (1 + y2)(�̄)(y)( L�̄)(y) is a bounded function, implying that
(1 + y2)(�̄)(y)(�̄)(y)(Fc')(y) ∈ L2(ℝ+). Combining (3.9) and (3.5), we obtain

f (x) = Fc
[

(1 + y2)(�̄)(y)(�̄)(y)(Fc')(y)
]

(x) = D( ∗
Fc ,

(', �̄, �̄))(x) = (T�̄,�̄')(x).

Sufficient condition: Assume that T�,� is a unitary operator on L2(ℝ+) and has the inverse operator T�̄,�̄ . We need to show that
the functions �, � must satisfy the condition (3.3). Indeed, since T�,� has the unitary property on L2(ℝ+), then for any functions
' belonging to L2(ℝ+), we obtain

‖Fc'‖L2(ℝ+)= ‖Fc(T�,�f )‖L2(ℝ+) = ‖'‖L2(ℝ+)= ‖Fc
[

(1 + y2)(Fcf )(y)(�)(y)(�)(y)
]

‖L2(ℝ+)

= (1 + y2)|(�)(y)(�)(y)|. ‖Fcf‖L2(ℝ+)

= ‖Fcf‖L2(ℝ+)= ‖f‖L2(ℝ+), ∀f ∈ L2(ℝ+).

This shows that there exists a multiplication operator of the formΘ[.] defined byΘ[f ](y) ∶= Θ(y).f (y), where the function
Θ(y) = (1 + y2).|(�)(y)(�)(y)|, ∀y > 0. The above expression can be rewritten as ‖Fcf‖L2(ℝ+)= ‖Θ(Fcf )‖L2(ℝ+) for any
f ∈ L2(ℝ+). This means thatΘ[.] is an isometric isomorphism on the L2(ℝ+), and this happens if and only if

|(�)(y)(�)(y)| = 1
1 + y2

.

In conclusion, � and � must satisfy the condition (3.3).

Remark 3.3. It should be emphasized that condition (3.3) is indeed narrower than condition (3.4), and these conditions are
well-defined with the given assumptions. To make it clear, we consider an example of the pair of functions �, � that satisfies
condition (3.4) but does not satisfy condition of (3.3). Let � = i sin t and � = cos t. It is easy to check these functions do not
belong to L1(ℝ+), according to the formulas 4.7.1, page 150 and 4.7.43, page 154 in [6], we obtain (i sin t)(y) = i

1+y2
< ∞,

( cos t)(y) = y
1+y2

< ∞ respectively, for any y > 0. This means that ( sin t) and ( cos t) ∈ L∞(ℝ+), implying �, � belong to
the A (ℝ+). Therefore, (1 + y2)|(i sin t)(y)( cos t)(y)| =

y
(y2+1)2

is finite. In this case, we conclude that the pair �, � satisfies
(3.4) but the condition (3.3) is invalid.
A straightforward instance shows that the pair �, � actually satisfies the condition (3.3). Let � = eit and � = e−it. According to

the formula 4.5.1, page 143 in [6], then (eit)(y) = 1
y−i

is finite and (e−it)(y) = 1
y+i

is finite, implying that (e±it) ∈ L∞(ℝ+).
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Therefore �, � ∈ A (ℝ+) and (eit)(y)(e−it)(y) =
1

1+y2
,∀y > 0 deduce these functions indeed satisfy the condition (3.3). The

condition 3.3 would not exist if we substituted the assumptions of Theorem 3.1 by �, � ∈ L1(ℝ+).

Remark 3.4. In the general case, Theorem 3.1 can be studied by replacing the second-order differential operator by D with an

arbitrary differential operator of order 2n with coefficients in the following form D2n ∶=
n
∑

k=0
(−1)kak

d2k

dx2k
, n ∈ ℕ. Then, the

condition 3.3 becomes
|(�)(y)(�)(y)| = 1

2n(y)

which is the necessary and sufficient condition for operator (T�,�) to be unitary on L2(R+). Here, 2n(y) =
n
∑

k=0
aky2k is a

polynomial with real coefficients without real zero-points. It can be seen that, the second-order differential operatorD becomes
a special case with n = 1, a0 = a1 = 1.

4 YOUNG-TYPE THEOREM AND ESTIMATION IN THE LP (ℝ+, �J )WEIGHTED SPACES

For the Fourier convolution (f ∗
F
g)(x) ∶= 1

√

2�

∞
∫
−∞

f (x− y) g(y)dy, x ∈ ℝ, W.H. Young [38] obtained the following inequality

‖f ∗
F
g‖Lr(ℝ)≤ ‖f‖Lp(ℝ)‖g‖Lq(ℝ),where p, q, r > 1 such that

1
p
+ 1
q
= 1+ 1

r
and f ∈ Lp(ℝ), g ∈ Lq(ℝ). Afterwards, R.A. Adams

and J.F. Fournier generalized Young’s inequality for the Fourier convolution ([1], Theorem 2.24, page 33) to include a weight
|

|

|

∫
ℝn
(f ∗

F
g)(x).w(x)dx||

|

≤ ‖f‖Lp(ℝn)‖g‖Lq(ℝn)‖w‖Lr(ℝn) where p, q, r > 1 such that
1
p
+ 1

q
+ 1

r
= 2 with f ∈ Lp(ℝn), g ∈ Lq(ℝn),

and w ∈ Lr(ℝn). Notice that for the important case f, g ∈ L2(ℝ), Young’s inequality does not hold. In [25], Saitoh derived a
weighted Lp(ℝ, |�j|) norm inequality for the Fourier convolution of the following form:

‖

‖

‖

(

(F1�1) ∗F (F2�2)
)

(�1 ∗F �2)
1
p
−1‖
‖

‖Lp(ℝ)
≤ ‖F1‖Lp(ℝ,|�1|)‖F2‖Lp(ℝ,|�2|), with p > 1,

where �j are non-vanishing functions, Fj ∈ Lp(ℝ, |�j|), j = 1, 2. Here, the norm of Fj in the weighted space Lp(ℝ, �j)

is understood as ‖Fj‖Lp(ℝ,�j )=
{ ∞

∫
−∞

|Fj(x)|p�j(x)dx
}

1
p

. The reverse weighted Lp-norm inequality for Fourier convolution

has also been investigated. Unlike Young’s inequality, the Saitoh’s inequality also holds in case p = 2, which is the most
obvious difference between these two inequalities. Furthermore, in many cases of interest, the convolution is given in the form
�2(x) ≡ 1, F2(x) = G(x), where G(x − �) is some Green’s functions. Then the above inequality becomes ‖(F�) ∗

F
G‖Lp(ℝ) ⩽

‖�‖1−1∕p
L1(ℝ+)

‖G‖Lp(ℝ)‖F‖Lp(ℝ,|�|), where �, F and G are such that the right-hand side is finite. Saitoh’s inequality can be applied to
estimating the solution to a parabolic integro-differential equation [15] modeling a scattered acoustic field. Based on the above
aspects, we will obtain certain norm inequalities for polyconvolution (2.1) in a very general framework, and estimation in Lp
weighted space. Some techniques used in the proof of our theorem come from [32], we follow closely the strategy of these results.

4.1 Young-type theorem for (Fc ,)−polyconvolution operator
Theorem 4.1. Let p, q, r, and s be real numbers in open interval (1,∞) such that 1∕p+1∕q +1∕r+1∕s = 3. For any functions
f ∈ Lp(ℝ), g ∈ Lq(ℝ+, (w + x)q−1), ℎ ∈ Lr(ℝ+, (v + x)r−1), and k ∈ Ls(ℝ+), the following inequality holds true for

|

|

|

|

∞

∫
0

( ∗
Fc ,

(f, g, ℎ))(x).k(x)dx
|

|

|

|

≤ w(1−q)∕qv(1−r)∕r‖f‖Lp(ℝ+)‖g‖Lq(ℝ+,(w+x)q−1)‖ℎ‖Lr(ℝ+,(v+x)r−1)‖k‖Ls(ℝ+), (4.1)

Proof. Based on (2.2), |Φ(x, u, v, w)| ≤ 2
w+v

. We have
∞
∫
0

|

|

|

Φ(x,u,v,w)
v+w

|

|

|

dv ≤ 2
∞
∫
0

1
(v+w)2

dv ≤ 2
∞
∫
0

1
v2+w2

dv = 2
w
Arc tan v

w
|

|

|

∞

0
=

�
w
,∀w > 0. On a similar way, we also obtain

∞
∫
0

|

|

|

Φ(x,u,v,w)
v+w

|

|

|

dw ≤ �
v
finite ∀v > 0. Let p1, q1, r1, s1 be the conjugate exponentials

of p, q, r, s respectively. This means that 1
p
+ 1

p1
= 1

q
+ 1

q1
= 1

r
+ 1

r1
+ 1

s
+ 1

s1
= 1 and together with the assumption of theorem,
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we get the correlation between exponential numbers as follows
⎧

⎪

⎪

⎨

⎪

⎪

⎩

1∕p1 + 1∕q1 + 1∕r1 + 1∕s1 = 1

p
(

1
q1
+ 1

r1
+ 1

s1

)

= q
(

1
p1
+ 1

r1
+ 1

s1

)

= r
(

1
p1
+ 1

q1
+ 1

s1

)

= s
(

1
p1
+ 1

q1
+ 1

r1

)

= 1.

(q − 1)
(

1
p1
+ 1

r1
+ 1

s1

)

− 1
q1
= (r − 1)

(

1
p1
+ 1

q1
+ 1

s1

)

− 1
r1
= 0.

(4.2)

For simplicity, we denote Ω = ℝ4
+ and without loss of generality, for all (x, u, v, w) ∈ Ω, we put

T1(x, u, v, w) = |g(v)|
q
p1
|ℎ(w)|

r
p1
|k(x)|

s
p1
|v +w|

(q−1)+(r−1)
p1

|(x, u, v, w)|
1
p1 ,

T2(x, u, v, w) = |f (u)|
p
q1
|ℎ(w)|

r
q1
|k(x)|

s
q1
|v +w|

r−1
q1

|

|

|

Φ(x, u, v, w)
v +w

|

|

|

1
q1 ,

T3(x, u, v, w) = |f (u)|
p
r1
|g(v)|

q
r1
|k(x)|

s
r1
|v +w|

q−1
r1

|

|

|

Φ(x, u, v, w)
v +w

|

|

|

1
r1 ,

T4(x, u, v, w) = |f (u)|
p
s1
|g(v)|

q
s1
|k(x)|

r
s1
|v +w|

(q−1)+(r−1)
s1

|Φ(x, u, v, w)|
1
s1 .

From (4.2), we deduce that

4
∏

i=1
Ti(x, u, v, w) = |f (u)| |g(v)| |ℎ(w)| |k(x)| |Φ(x, u, v, w)|, ∀(x, u, v, w) ∈ Ω. (4.3)

Based on the assumption of g ∈ Lq(ℝ+, (w + x)q−1), ℎ ∈ Lr(ℝ+, (v + x)r−1), k ∈ Ls(ℝ+), using Fubini’s theorem, we obtain
Lp1(Ω)-norm estimation for the operator T1 as follows

‖T1‖
p1
Lp1 (Ω)

≤ ∫
Ω

|g(v)|q|ℎ(w)|r|k(x)|s|v +w|(q−1)|v +w|(r−1)|Φ(x, u, v, w)| dudvdwdx

≤ �
(

∞

∫
0

|g(v)|q|v +w|(q−1)dv
)(

∞

∫
0

|ℎ(w)|r|v +w|(r−1)dw
)(

∞

∫
0

|k(x)|sdx
)

= �‖g‖qLq(ℝ+,(x+w)q−1)
‖ℎ‖rLr(ℝ+,(x+v)r−1)

‖k‖sLs(ℝ+)
.

(4.4)

Similar to what we did with the evaluation of T1, we also get the norm estimation of T4 on Ls1(Ω) as follows

‖T4‖
s1
Ls1 (Ω)

≤ �‖f‖pLp(ℝ+)
‖g‖qLq(ℝ+,(x+w)q−1)

‖ℎ‖rLr(ℝ+,(x+v)r−1)
. (4.5)

For the evaluation of operator T2 on Lq1(Ω), since
∞
∫
0

|

|

|

Φ(x,u,v,w)
v+w

|

|

|

dv ≤ �
w
, using Fubini’s theorem we have

‖T2‖
q1
Lq1 (Ω)

= ∫
Ω

|f (u)|p|ℎ(w)|r|k(x)|s|v +w|r−1
|

|

|

|

Φ(x, u, v, w)
v +w

|

|

|

|

dudvdwdx

≤ �
w

(

∞

∫
0

|f (u)|pdu
)(

∞

∫
0

|ℎ(w)|r|v +w|r−1dw
)(

∞

∫
0

|k(x)|sdx
)

= �
w
‖f‖pLp(ℝ+)

‖ℎ‖rLr(ℝ+,(v+x)r−1)
‖k‖sLs(ℝ+)

, w > 0.

(4.6)

And Lr1(Ω)-norm estimation for the operator T3 has the following form

‖T3‖
r1
Lr1 (Ω)

≤ �
v
‖f‖pLp(ℝ+)

‖g‖qLq(ℝ+,(x+w)q−1)
‖k‖sLs(ℝ+)

. (4.7)

Combining (4.4)(4.5)(4.6) and (4.7), under condition (4.2), we obtain
‖T1‖Lp1 (Ω)‖T2‖Lq1 (Ω)‖T3‖Lr1 (Ω)‖T4‖Ls1 (Ω)

≤ �
(

1
p1
+ 1
q1
+ 1
r1
+ 1
s1

)

( 1
w

)

1
q1
(1
v

)

1
r1
‖f‖

p
(

1
q1
+ 1
r1
+ 1
s1

)

Lp(ℝ+)
‖g‖

q
(

1
p1
+ 1
r1
+ 1
s1

)

Lq(ℝ+,(x+w)q−1)
‖ℎ‖

r
(

1
p1
+ 1
q1
+ 1
s1

)

Lq(ℝ+,(x+v)r−1)
‖k‖

s
(

1
p1
+ 1
q1
+ 1
r1

)

Ls(ℝ+)

= �
( 1
w

)

1
q1
(1
v

)

1
r1
‖f‖Lq(ℝ+)‖g‖Lq(ℝ+,(x+w)q−1)‖ℎ‖Lr(ℝ+(x+v)r−1)‖k‖Ls(ℝ+).

(4.8)
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Moreover, from (2.1) and (4.3), we get

|

|

|

∞

∫
0

( ∗
Fc ,

(f, g, ℎ))(x).k(x)||
|

≤ 1
� ∫

ℝ4
+

|

|

|

Φ(x, u, v, w)||
|

|f (u)| |g(v)| |ℎ(w)| |k(x)| dudvdwdx

= 1
� ∫

ℝ4
+

4
∏

i=1
Ti(x, u, v, w) dudvdwdx.

Since p1, q1, r1, s1 are the conjugate exponentials then
1
p1
+ 1

q1
+ 1

r1
+ 1

s1
= 1, applying Hölder’s inequality to four operators and

following (4.8), we obtain

|

|

|

|

∞

∫
0

( ∗
Fc ,

(f, g, ℎ))(x).k(x)
|

|

|

|

= 1
� ∫

ℝ4
+

4
∏

i=1
Ti(x, u, v, w) dudvdwdx

≤ 1
�

{

|T1|
p1 dudvdwdx

}
1
p1
×
{

|T2|
q1 dudvdwdx

}
1
q1
×
{

|T3|
r1 dudvdwdx

}
1
r1
×
{

|T4|
s1 dudvdwdx

}
1
s1

= 1
�
‖T1‖Lp1 (Ω)‖T2‖Lq1 (Ω)‖T3‖Lr1 (Ω)‖T4‖Ls1 (Ω)

≤
( 1
w

)

1
q1
(1
v

)

1
r1
‖f‖Lp(ℝ+)‖g‖Lq(ℝ+,(x+w)q−1)‖ℎ‖Lr(ℝ+,(x+v)r−1)‖k‖Ls(ℝ+).

Finally, since 1∕q + 1∕q1 = 1, then
(

1
w

)
1
q1 = w(1−q)∕q , and 1∕r + 1∕r1 = 1, then

(

1
v

)
1
r1 = w(1−r)∕r, getting the desired

conclusion.

In case the given function k(x) becomes (Fc ,)−polyconvolution operator (2.1), then the following Young type inequality is
a direct consequence of Theorem 4.1.

Corollary 4.2. Let p, q, r, s > 1 be real numbers, satisfy 1∕p+1∕q+1∕r = 1∕s+2. If f ∈ Lp(ℝ+), g ∈ Lq(ℝ+, (w+x)q−1) and
ℎ ∈ Lr(ℝ+, (v + x)q−1), then the polyconvolution ∗

Fc ,
(f, g, ℎ) is well-defined and belongs to Ls(ℝ+). Moreover, the following

inequality holds
‖ ∗
Fc ,

(f, g, ℎ)‖Ls(ℝ+)≤ w(1−q)∕qv(1−r)∕r‖f‖Lp(ℝ+)‖g‖Lq(ℝ+,(w+x)q−1‖ℎ‖Lr(ℝ+,(v+x)r−1 . (4.9)

Proof. Let s1 be the conjugate exponent of s, i.e
1
s
+ 1

s1
= 1. From the assumptions of Corollary 4.2, we have 1

p
+ 1

q
+ 1

r
+ 1

s1
= 3,

which shows the numbers p, q, r, and s1 satisfy the conditions of Theorem 4.1 (with s being replaced by s1). Therefore, if
f ∈ Lp(ℝ+), g ∈ Lq(ℝ+, (w + x)q−1) and ℎ ∈ Lr(ℝ+, (v + x)q−1), then the linear functional

Lk ∶=

∞

∫
0

( ∗
Fc ,

(f, g, ℎ))(x) .k(x)dx

is bounded in Ls1(ℝ+). Consequently, by the Riesz’s representation theorem [28], then polyconvolution ∗
Fc ,

(f, g, ℎ) belongs to
Ls(ℝ+). To prove the inequality (4.9), we choose the function

k(x) = sign
[

( ∗
Fc ,

(f, g, ℎ))(x)
]s.
[

( ∗
Fc ,

(f, g, ℎ))(x)
]s∕s1 .

Then k ∈ Ls1(ℝ+), with the norm ‖k‖Ls1 (ℝ+)= ‖ ∗
Fc ,

(f, g, ℎ)‖s∕s1Ls(ℝ+)
. Applying inequality (4.1) to such k(x), we get

‖ ∗
Fc ,

(f, g, ℎ)‖sLs(ℝ+)
=

∞

∫
0

|( ∗
Fc ,

(f, g, ℎ))(x)|sdx =
|

|

|

|

∞

∫
0

( ∗
Fc ,

(f, g, ℎ))(x). k(x)dx
|

|

|

|

≤ w(1−q)∕qv(1−r)∕r‖f‖Lp(ℝ+)‖g‖Lq(ℝ+,(w+x)q−1)‖ℎ‖Lr(ℝ+,(v+x)r−1)‖k‖Ls(ℝ+)

= w(1−q)∕qv(1−r)∕r‖f‖Lp(ℝ+)‖g‖Lq(ℝ+,(w+x)q−1)‖ℎ‖Lr(ℝ+,(v+x)r−1)‖ ∗Fc ,
(f, g, ℎ)‖s∕s1Ls(ℝ+)

.

Since s − s
s1
= 1, from the above equality, we arrive at the conclusion of the corollary.
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4.2 Norm estimation in the Lp(ℝ+, �j) weighted spaces
Theorem 4.3. Assume that �1, �2, �3 are non-vanishing positive functions such that polyconvolution ∗

Fc ,
(�1, �2, �3) is well-

defined. For any Fj ∈ Lp(ℝ+, �j) with p > 1, the following Lp(ℝ+) weighted inequality holds true

‖

‖

‖

∗
Fc ,

(F1�1, F2�2, F3�3) ∗Fc ,
(�1, �2, �3)

1
p
−1‖
‖

‖Lp(ℝ+)
≤

3
∏

j=1
‖Fj‖Lp(ℝ+,�j ), (4.10)

where ∗
Fc ,L

(., ., .) is defined by formula (2.1) and Lp(ℝ+, �j) are weighted spaces with respect to a positive measure �j(x)dx

equipped with the norm ‖Fj‖Lp(ℝ+,�j )=
( ∞
∫
0
|Fj(x)|p�j(x)dx

)1∕p

< +∞, j = 1, 2, 3.

Proof. Based on Definition 2.1 of the polyconvolution for Fourier cosine, Laplace integral transforms, we get

‖

‖

‖

∗
Fc ,

(F1�1, F2�2, F3�3) ∗Fc ,
(�1, �2, �3)

1
p
−1‖
‖

‖

p

Lp(ℝ+)
=

∞

∫
0

|

|

|

( ∗
Fc ,

(F1�1, F2�2, F3�3))(x)
|

|

|

p
.||
|

( ∗
Fc ,

(�1, �2, �3))(x)
|

|

|

1−p
dx

= 1
�

∞

∫
0

{

|

|

|

|

∫
R3+

Φ(x, u, v, w).(F1�1)(u)(F2�2)(v)(F3�3)(w)dudvdw
|

|

|

|

p
×
|

|

|

|

∫
R3+

Φ(x, u, v, w).�1(u)�2(v)�3(w)dudvdw
|

|

|

|

1−p}

dx,

(4.11)
where Φ(x, u, v, w) is defined by (2.2). On the other hand, using Hölder’s inequality for q as the exponential conjugate to p, we
obtain

|

|

|

|

∫
R3+

Φ(x, u, v, w)(F1�1)(u)(F2�2)(v)(F3�3)(w)dudvdw
|

|

|

|

≤
{

∫
R3+

|Φ(x, u, v, w)|.|F1(u)|p �1(u)|F2(v)|p �2(v)|F3(w)|p �3(w)dudvdw
}

1
p

×
{

∫
R3+

|Φ(x, u, v, w)|.�1(u)�2(v)�3(w)dudvdw
}

1
q

(4.12)
Deducing directly from the formulas (4.11) and (4.12), we have

‖

‖

‖

∗
Fc ,

(F1�1, F2�2, F3�3) ∗Fc ,
(�1, �2, �3)

1
p
−1‖
‖

‖

p

Lp(ℝ+)

≤ 1
�

∞

∫
0

{(

∫
R3+

|Φ(x, u, v, w)|.|F1(u)|p �1(u)|F2(v)|p �2(v)|F3(w)|p �3(w)dudvdw
)

×

×
(

∫
R3+

|Φ(x, u, v, w)|.�1(u)�2(v)�3(w)dudvdw
)

p
q

×
(

∫
R3+

|Φ(x, u, v, w)|.�1(u)�2(v)�3(w)dudvdw
)1−p}

dx.

Since 1
p
+ 1

q
= 1, then p

q
+ 1 − p = 0. Therefore ‖

‖

‖

∗
Fc ,

(F1�1, F2�2, F3�3) ∗
Fc ,

(�1, �2, �3)
1
p
−1‖
‖

‖

p

Lp(ℝ+)
≤

1
�
∫
R4+

|Φ(x, u, v, w)|.|F1(u)|p �1(u)|F2(v)|p �2(v)|F3(w)|p �3(w)dudvdwdx. By the assumption Fj ∈ Lp(ℝ+, �j), using Fubini’s

theorem for the right-hand side of the above equality, we obtain
‖

‖

‖

∗
Fc ,

(F1�1, F2�2, F3�3) ∗Fc ,
(�1, �2, �3)

1
p
−1‖
‖

‖

p

Lp(ℝ+)

≤ 1
�

(

∞

∫
0

|Φ(x, u, v, w)|dx
)(

∞

∫
0

|F1(u)|p �1(u)du
)(

∞

∫
0

|F2(v)|p �2(v)dv
)(

∞

∫
0

|F3(w)|p �3(w)dw
)

= 1
�
.�‖F1‖Lp(ℝ+,�1)‖F2‖Lp(ℝ+,�2)‖F3‖Lp(ℝ+,�3).

The theorem is proved.
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Taking �2(x) ≡ 1,∀x ∈ ℝ+, and combining with Theorem 4.3 and (2.3), we arrive at the following corollary.

Corollary 4.4. Let �1 ≡ 1,∀x ∈ ℝ+ and 0 ≤ �2, �3 ∈ L1(ℝ+) such that ∗
Fc ,

(1, �2, �3) is well-defined. Then, for any functions
F1 ∈ Lp(ℝ+), F2 ∈ Lp(ℝ+, �2), F3 ∈ Lp(ℝ+, �3) with p > 1, we have the following estimate

‖ ∗
Fc ,

(F1, F2�2, F3�3)‖Lp(ℝ+)≤ ‖�2‖
1− 1

p

L1(ℝ+)
‖�3‖

1− 1
p

L1(ℝ+)
‖F1‖Lp(ℝ+)‖F2‖Lp(ℝ+,�2)‖F3‖Lp(ℝ+,�3).

Here we consider an illustrative example for the evaluation (4.4) as follows. Choosing �1(u) ≡ 1,∀u ∈ ℝ+ and �2(v) =
e−v, �3(w) = e−2w ∈ L1(ℝ+). Then using the formulas (2.1) and (2.5), together with Fubini’s theorem, we obtain

|( ∗
Fc ,

(1, e−v, e−2w))(x)| ≤ 1
� ∫
R3+

|Φ(x, u, v, w).e−ve−2w|dudvdw

= 1
�

(

∞

∫
0

|Φ(x, u, v, w)| du
)(

∞

∫
0

e−vdv
)(

∞

∫
0

e−2wdw
)

= ‖e−v‖L1(ℝ+)‖e
−2w

‖L1(ℝ+)=
1
2
.

Thus polyconvolution ∗
Fc ,

(1, e−v, e−2w) is well-defined for all functionsF1 ∈ Lp(ℝ+), F2 ∈ Lp(ℝ+, e−v), andF3 ∈ Lp(ℝ+, e−2w)
with p > 1. We obtain the following estimate

‖ ∗
Fc ,

(F1, F2e−v, F3e−2w)‖Lp(ℝ+)≤
1

21−
1
p

‖F1‖Lp(ℝ+)‖F2‖Lp( R+,e−v)‖F3‖Lp(ℝ+,e−2w).

5 SOME APPLICATIONS

The aim of this section is to consider the integral equation of polyconvolution type with the Toeplitz plus Hankel kernels firstly
posed in [31] and integro-differential equation of Barbashin type in [4]. By constructing (Fc ,)−polyconvolutions, we obtain a
necessary and sufficient condition for the solvability and unique explicitLp−solutions (p = 1, 2) respectively of those equations.

5.1 On the Toeplitz plus Hankel type integral equation
Following [31], we consider the integral equation of the form

f (x) +

T

∫
0

[

k1(x + y) + k2(x − y)
]

f (y)dy = '(x), 0 ≤ x, y ≤ T , (5.1)

where ' is a given function, f an unknown function andK(x, y) ∶= k1(x+y)+k2(x−y) is the kernel of the equation. Eq. (5.1)
with a Hankel k1(x + y) or Toeplitz k2(x − y) kernel has attracted attention of many authors as they have practical applications
in such diverse fields such as scattering theory, fluid dynamics, linear filtering theory, inverse scattering problems in quantum
mechanics, problems in radiative wave transmission, and further applications in medicine and biology (refer [2, 9, 20]). Eq.
(5.1) has been carefully studied when K(x, y) is a Toeplitz k2(x − y) or Hankel kernel k1(x + y). One notable case is when
K(x, y) = k2(x− y) + k2(x+ y) , i.e. the Toeplitz and Hankel kernels generated by the same function k2 have been investigated
in [16], namely by setting up Eq. (5.1) in the domain I = [0; T ], T > 0 with kernel

K(x, �) =

1

∫
0

[

e−
|x−�|
� + e−

x+�
� r(�)

]

w(�) d�.

In [31], Tsitsiklis and Levy considered Eq. (5.1) with general Toeplitz plus Hankel kernels k1(x+ y) +k2(x− y). This approach
leads to Eq. (5.1) being a generalization of Levinson’s equation considered by Chanda and Sabatier in [9] for kernel case is
Toeplitz function based on the Gelfand-Levitan’ method [14] and the approach by Marchenko [2] for kernel is the Hankel
function. However, the solution of (5.1) in closed-form for general case is still open. Being different from other approaches, our
idea is to reduce the original integral equation to become the linear equation by using the (Fc ,)−polyconvolution. Thus, we
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will obtain the L1-solution with the simultaneous help of the factorization properties and Wiener-Levy theorem [22]. Namely,
for kernels k1(x + y) =

1
√

2�
g(x + y); k2(x − y) =

1
√

2�
g(|x − y|) and choosing ' = ∗

Fc ,
(g, ℎ, �), considering (0, T ) ≡ (0,∞),

then the integral equation with Toeplitz plus Hankel kernel (5.1) can be rewritten in the convolution form

f (x) + (f ∗
Fc
g)(x) = ( ∗

Fc ,
(g, ℎ, �))(x). (5.2)

Theorem 5.1. Suppose that g, ℎ, and � are given functions belonging toL1(ℝ+) and satisfy the condition 1+(Fcg)(y) ≠ 0 for any
y ∈ ℝ+. Then, equation (5.2) has the unique solution in L1(ℝ+) which can be represented in the form f (x) = ( ∗

Fc ,
(l, ℎ, �))(x).

Here l ∈ L1(ℝ+) is defined by (Fcl)(y) =
(Fcg)(y)
1+(Fcg)(y)

. Furthermore, the following L1-norm estimate holds

‖f‖L1(ℝ+)≤ ‖l‖L1(ℝ+)‖ℎ‖L1(ℝ+)‖�‖L1(ℝ+).

Proof. Applying the Fourier cosine transform to both sides of (5.2), we get (Fcf )(y) + Fc(f ∗
Fc
g)(y) = Fc( ∗Fc ,

(g, ℎ, �))(y).
Using the factorization properties (1.4) and (2.3), together with the condition 1 + (Fcg)(y) ≠ 0, ∀y ∈ ℝ+, we obtain

(Fcf )(y)
[

1 + (Fcg)(y)
]

= (Fcg)(y)(ℎ)(y)(�)(y).

This is equivalent to (Fcf )(y) =
(Fcg)(y)
1+(Fcg)(y)

(ℎ)(y)(�)(y). TheWiener-Levy’s Theorem [22] for the Fourier transform says that if
k ∈ L1(ℝ), then 1+(Fk)(y) ≠ 0 for any y ∈ ℝ is a necessary and sufficient condition for the existence of a function belonging
to L1(ℝ) such that (F )(y) = (Fk)(y)

1+(Fk)(y)
. This theorem still holds true for Fourier cosin transform in the L1(ℝ+). Consequently,

by the Wiener-Levy’s Theorem, then 1 + (Fcg)(y) ≠ 0 is a necessary and sufficient condition for the existence of a function
l ∈ L1(ℝ+) such that (Fcl)(y) =

(Fcg)(y)
1+(Fcg)(y)

. This means that (Fcf )(y) = (Fcl)(y)(ℎ)(y)(�)(y) = Fc( ∗Fc ,
(l, ℎ, �))(y).

Therefore f (x) = ( ∗
Fc ,

(l, ℎ, �))(x) almost everywhere for any x ∈ ℝ+. Moreover, since l, ℎ, � are functions belonging to
the L1(ℝ+), by Theorem 2.2, we deduce that f (x) ∈ L1(ℝ+). Applying the inequality (2.4), we obtain norm estimation of the
solution on L1 space as follows ‖f‖L1(ℝ+)≤ ‖l‖L1(ℝ+)‖ℎ‖L1(ℝ+)‖�‖L1(ℝ+).

Remark 5.2. Let p, q, r, s > 1 be real numbers such that 1∕p + 1∕q + 1∕r = 2 + 1∕s. Applying the evaluation (4.9), for any
functions f ∈ Ls(ℝ+),l ∈ Lp(ℝ+), ℎ ∈ Lq(ℝ+, (w+)x)q−1) and � ∈ Lr(ℝ+, (v+x)r−1), we get the following solution estimate

‖f‖Ls(ℝ+)≤ w(1−q)∕qv(1−r)∕r‖l‖Lp(ℝ+)‖ℎ‖Lq(ℝ+,(w+x)q−1‖�‖Lr(ℝ+,(v+x)r−1 .

Furthermore , without loss of generality, it can be assumed that ℎ = ℎ1�, and � = �1� with �, � ∈ L1(ℝ+) such that polyconvo-
lution ∗

Fc ,
(1, �, �) is well-defined. By using Corollary 4.4, ∀f ∈ Lp(ℝ+), l ∈ L1(ℝ+) ∩Lp(ℝ+), ℎ1 ∈ L1(ℝ+, �) ∩Lp(ℝ+, �),

and ∀�1 ∈ L1(ℝ+, �) ∩ Lp(ℝ+, �) with p > 1, we get an estimate of the boundedness in weighted Lp spaces for solution of the
equation (5.2) as follows

‖f‖Lp(ℝ+)≤ ‖�‖
1− 1

p

L1(ℝ+)
‖�‖

1− 1
p

L1(ℝ+)
‖l‖Lp(ℝ+)‖ℎ1‖Lp(ℝ+,�)‖�1‖Lp(ℝ+,�).

To illustrate for Theorem 5.1 and Remark 5.2, we consider the following example.

Example 5.1. Let g(x) =
√

�
2
e−x, ℎ(x) = 1

2

√

�
2
e−2x and �(x) = 1

3

√

�
2
e−3x. It is easy to check that g, ℎ, � are functions

belonging to L1(ℝ+). According to [6], formula 1.4.1, page 14, we have Fc(
√

�
2
e−x) = 1

1+y2
, then 1 + (Fcg)(y) = 1 +

1
1+y2

≠ 0.

This implies that g(x) actually satisfies the condition of Theorem 5.1. Furthermore, we have (Fcl)(y) =
(Fcg)(y)
1+(Fcg)(y)

= 1
2+y2

, then

l(x) =
√

�
2
e−

√

2x belongs to L1(ℝ+). Therefore, the solution Eq. (5.2) belongs to L1(ℝ+) and is represented in the following

form f (x) =
(

∗
Fc ,

(
√

�
2
e−

√

2t,
√

�

2
√

2
e−2t,

√

�

3
√

2
e−3t)

)

(x). And we obtain the norm estimate in L1 of the solution as follows

‖f‖L1(ℝ+)≤
‖

‖

‖

√

�
2
e−

√

2t‖
‖

‖L1(ℝ+)
‖

‖

‖

√

�

2
√

2
e−2t‖‖

‖L1(ℝ+)
‖

‖

‖

√

�

3
√

2
e−3t‖‖

‖L1(ℝ+)
=

�
√

�

134
√

2
.
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On the other hand, ℎ(x) = 1
2

√

�
2
e−2x = 1

2

√

�
2
e−x.e−x and �(x) = 1

3

√

�
2
e−3x = 1

3

√

�
2
e−2x.e−x. So we choose ℎ1 =

1
2

√

�
2
e−x and

�1 =
1
3

√

�
2
e−2x with � = � = e−x ∈ L1(ℝ+). Using formulas (2.1), (2.5) we obtain

( ∗
Fc ,

(1, �, �))(x) = ( ∗
Fc ,

(1, e−t, e−t))(x) ∶= 1
� ∫
R3+

Φ(x, u, v, w)e−ve−wdudvdw

= 1
�

(

∞

∫
0

Φ(x, u, v, w)du
)(

∞

∫
0

e−vdv
)(

∞

∫
0

e−wdw
)

= 1
�
.�‖e−v‖L1(ℝ+)‖e

−w
‖L1(ℝ+)= 1.

Hence polyconvolution ∗
Fc ,

(1, e−t, e−t) is well-defined with the given functions �, �. And we have an estimate of theLp-solution
of the Eq. (5.2) based on Remark 5.2 as follows

‖f‖Lp(ℝ+) ≤
(

‖e−x‖
1− 1

p

L1(ℝ+)

)2
‖

‖

‖

√

�
2
e−

√

2x‖
‖

‖Lp(ℝ+,e−x)
‖

‖

‖

√

�

3
√

2
e−2x‖‖

‖Lp(ℝ+,e−x)
=
�
√

�
24

{

1
√

2p(p + 1)(2p + 1)

}
1
p

.

5.2 On linear integro-differential equations of Barbashin type
The subsection is concerned with integro-differential equation of the form

)f (t, s)
)t

= c(t, s)f (t, s) +

b

∫
a

K(t, s, �)f (t, s)d� + g(t, s). (5.3)

Here c ∶ J ×[a, b]→ ℝ, K ∶ J ×[a, b]×[a, b]→ ℝ, and mapping g ∶ J ×[a, b]→ ℝ are given functions, where J is a bounded
or unbounded interval, the function f is unknown. The equation (5.3) was first studied by E.A. Barbashin [5] and his pupils. For
this reason, this is nowadays called integro-differential equation of Barbashin type or simply the Barbashin equation. Eq. (5.3) has
been applied to many fields such as mathematical physics, radiation propagation, mathematical biology and transport problems,
e.g., more details refer [4]. One of the characteristics of Barbashin equation is that studying solvability of the equation is heavily
dependent on the kernelK(t, s, �) of the equation. In many cases, we can reduce Eq. (5.3) to the form of an ordinary differential
equation and use the Cauchy integral operator or evolution operator to study it when the kernel does not depend on t. An example

is the stationary integro-differential equation of Barbashin type )f (t, s)∕)t = c(s)f (t, s) +
b
∫
a
K(s, �)f (t, �)d� + g(t, s) i.e. the

kernel K does not depend on t. In some other cases, we need to use the partial integral operator to study this equation (see [4]).
However, in the general case ofK(t, s, �) as an arbitrary kernel, the problem of finding a solution for Barbashin equation remains
open. On the other hand, if we view A as the operator defined by A ∶= )∕)t − c(t, s), where  is the identity operator, then
Eq. (5.3) is written in the following form

f (t, s) =

b

∫
a

K(t, s, �)f (t, s)d� + g(t, s). (5.4)

To give a necessary and sufficient condition for the solvability and unique explicit L2−solutions of Eq. (5.4), first we need some
following auxiliary lemmas.

Lemma 5.3. Let ' be a function belonging to L2(ℝ+) and satisfy (1 + y2)|(Fc')(y)| bounded ∀y > 0. For all f ∈ L2(ℝ+), we
have the following assertion

Fc
[

D(f ∗
Fc
')(t)

]

(y) = (1 + y2)(Fcf )(y)(Fc')(y), (5.5)

where D is the second order differential operator having the form D =
(

I − d2

dt2

)

and (∗
Fc
) is determined by (1.3).

Proof. The argument is similar to that in the proof of Lemma3.2, it means if there are f (y), yf (y), y2f (y) ∈ L2(ℝ+), then
(Fcf )(t),

d
dt
(Fcf )(t),

d2

dt2
(Fcf )(t) ∈ L2(ℝ+). Moreover d2

dt2
(Fcf )(t) = Fc(−y2f (y))(t) belongs to L2(ℝ+), implying that

(

1 − d2

dt2
)[

(Fcf )(y)
]

(t) = Fc
[

(1 + y2)f (y)
]

(t).
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On the other hand, we know that for all functions f, ' ∈ L2(ℝ+), then (f ∗
Fc
')(x) = Fc

[

(Fcf )(y)(Fc')(y)
]

(see [3]). Since

f ∈ L2(ℝ) then (Fcf ) ∈ L2(ℝ), together with assuming (1+y2)|(Fc')(y)| is bounded ∀y > 0, we deduce that (1+y2)|(Fc')(y)|
is a bounded function on ℝ. Therefore (1 + y2)(Fc')(y)(Fcf )(y) ∈ L2(ℝ+). From the foregoing, we obtain

(

1 − d2

dt2
)

(f ∗
Fc
')(t) =

(

1 − d2

dt2
)

Fc
[

(Fcf )(y)(Fc')(y)
]

(t) = Fc
[

(1 + y2)(Fcf )(y)(Fc')(y)
]

(t) ∈ L2(ℝ+).

Furthermore, Fc ∶ L2(ℝ+) ↔ L2(ℝ+) is an isometric isomorphism transformation, so the expression (5.5) is directly deduced.

Now, by putting operator Af (t, s) ∶= D(f ∗
Fc
')(t) and choosing the kernel as K(t, s, �) = −1

�
∫
R2+

Φ(t, s, �, w) �(�)�(w)d�dw,

∀t > 0, and considering (a, b) = (0,∞), then Eq. (5.4) can be rewritten in the following form

D(f ∗
Fc
')(t) + ( ∗

Fc ,
(f, �, �))(t) = g(t), t > 0. (5.6)

Here (f ∗
Fc
') and ∗

Fc ,
(f, �, �) are determined by (1.3); (2.1) respectively, and f is the unknown function needed to find.

Theorem 5.4. Let g belong to L2(ℝ+) and ' ∈ L2(ℝ+) such that (1 + y2)|(Fc')(y)| is bounded ∀y > 0. Suppose that �, � ∈
L1(ℝ+) are given functions and satisfy (1 + y2)(Fc')(y) + (�)(y)(�)(y) ≠ 0 for any y ∈ ℝ+. Then equation (5.6) has the
unique solution in L2(ℝ+).

Proof. Applying the Fourier cosine transform to both sides of (5.6), we get

Fc
[

D(f ∗
Fc
')(t)

]

(y) + Fc
[

( ∗
Fc ,

(f, �, �))(t)
]

(y) = (Fcg)(y), ∀y > 0.

Inferred from using the factorization property (2.3) and equality (5.5), we obtain

(Fcf )(y)
[

(1 + y2)(Fc')(y) + (�)(y)(�)(y)
]

= (Fcg)(y).

On the left-hand side of the above equality, since �, � belong to the L1(ℝ+) then (�)(y) and (�)(y) are finite. Together with
condition of theorem as (1 + y2)|(Fc')(y)| < ∞, we deduce that 0 ≠ (1 + y2)(Fc')(y) + (�)(y)(�)(y) is a bounded function
on ℝ+. Moreover, for all g ∈ L2(ℝ+) then (Fcg) ∈ L2(ℝ+). Hence

(Fcf )(y) = (Fcg)(y)∕[(1 + y2)(Fc')(y) + (�)(y)(�)(y)] ∈ L2(ℝ+),

implying that solution f of the Eq. (5.6) belongs toL2(ℝ+). Based on the inverse Fourier cosine transform,we represent explicitly

the solution in the following form f (t) =
√

2
�

∞
∫
0

(Fcg)(y)
(1+y2)(Fc')(y)+(�)(y)(�)(y)

cos(ty)dy almost everywhere onℝ+ (see [24, 27]).

To illustrate for Theorem 5.4, we consider the following example.

Example 5.2. Let g(x) = '(x) =
√

�
2
e−x ∈ L2(ℝ+), then we have Fc

(

√

�
2
e−x

)

= 1
1+y2

, implying that (1 + y2)|(Fc')(y)| = 1
is bounded ∀y > 0. Now, we choose � = e−x, � = xe−x ∈ L1(ℝ+). According to the formulas 4.5.1, page 143 and 4.5.2, page
144 in [6], we obtain (e−x) = 1

1+y
and (xe−x) = 1

(1+y)2
finite. Therefore

(Fcf )(y) =
Fc
(

√

�
2
e−x

)

(1 + y2)Fc
(

√

�
2

)

e−x + (e−x)(xe−x)
=

(1 + y)3
[

(1 + y)3 + 1
]

(1 + y2)
∈ L2(ℝ+).

This means that equation (5.6) has a unique solution in L2(ℝ+) and is represented as

f (t) =
√

2
�

∞

∫
0

(1 + y)3

(1 + y2)
[

(1 + y)3 + 1
] cos(ty)dy,

with t > 0. And we get an estimate |f (t)| ≤
√

2
�
Arc tan y||

|

∞

0
=
√

�
2
.
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For the case if we put operatorf (t, s) ∶= D( ∗
Fc ,

(f, �, �))(t) and choose the kernel asK(t, s, �) = −1
√

2�

[

ℎ(t+s)+ℎ(|t−s|)
]

.
Then Eq. (5.4) becomes a type of Barbashin equation with Toeplitz plus Hankel kernels as follows

D( ∗
Fc ,

(f, �, �))(t) + 1
√

2�

∞

∫
0

[

ℎ(t + s) + ℎ(|t − s|)
]

f (s)d(s) = g(t), t > 0, (5.7)

Theorem 5.5. Let g, ℎ ∈ L2(ℝ+) be given functions, and �, � ∈ L1(ℝ+) such that (1+y2) |(�)(y)(�)(y)| is bounded ∀y > 0,
and satisfies the codition

(Fcg)(y)∕
[

(1 + y2)(�)(y)(�)(y) + (Fcℎ)(y)
]

∈ L2(ℝ+). (5.8)

Then equation (5.7) has the unique solution in L2(ℝ+).

We need the following Lemma.

Lemma 5.6. If �, � ∈ L1(ℝ+) such that (1 + y2)|(�)(y)(�)(y)| is a bounded function. Then for all f ∈ L2(ℝ+), we have

Fc
[

D( ∗
Fc ,

(f, �, �))(t)
]

(y) = (1 + y2)(Fcf )(y)(�)(y)(�)(y), ∀y > 0, (5.9)

where D is the second order differential operator having the form D =
(

I − d2

dt2

)

and (Fc ,)−polyconvolution is determined
by (2.1). The proof of this Lemma is similar to that done with Lemma 5.3.

Proof. of Theorem 5.5.
Following the definition of generalized convolution (1.3), we convert (5.7) becoming D( ∗

Fc ,
(f, �, �))(t) + (f ∗

Fc
ℎ)(t) = g(t),

t > 0. Applying the Fourier cosine transform to both sides of this equation, we have

Fc
[

D( ∗
Fc ,

(f, �, �))(t)
]

(y) + Fc(f ∗
Fc
ℎ)(t) = (Fcg)(y), ∀y > 0.

Using (5.9) and factorization property (1.4), we obtain

(Fcf )(y)
[

(1 + y2)(�)(y)(�)(y) + (Fcℎ)(y)
]

= (Fcg)(y).

This means that (Fcg)(y)∕
[

(1 + y2)(�)(y)(�)(y) + (Fcℎ)(y)
]

= (Fcf )(y) belongs to L2(ℝ+) due to condition (5.8). Therefore,
the solution f of Eq. (5.7) belongs to L2(ℝ+). Through the inverse of Fourier cosine transform, we can rewrite explicitly the

solution as follows f (t) =
√

2
�

∞
∫
0

(Fcg)(y)
(1+y2)(�)(y)(�)(y)+(Fcℎ)(y)

cos(ty)dy almost everywhere on ℝ+ (see [24, 27]).

To illustrate for Theorem 5.5, we consider the following example.

Example 5.3. We choose �(x) = �(x) = e−x ∈ L1(ℝ+) and let g(x) = ℎ(x) =
√

�
2
e−x ∈ L2(ℝ+). Hence, we have (e−x)(y) =

1
1+y

and Fc
(

√

�
2
e−x

)

= 1
1+y2

. Then (1 + y2)|(e−x)(y)(e−x)(y)| = 1+y2

(1+y)2
≤ 1, implying that �, � satisfy the bounded condition.

We have

(Fcf )(y) =
Fc
(

√

�
2
e−x

)

(y)

(1 + y2)(e−x)(y)(e−x)(y) + Fc
(

√

�
2
e−x

)

(y)
=

(1 + y)2

(1 + y2)2 + (1 + y)2
∈ L2(ℝ+),

this proves that the given functions actually satisfy condition (5.8). Then the Eq. (5.7) has a unique solution in L2(ℝ+) and

expressed by f (t) =
√

2
�

∞
∫
0

(1+y)2

(1+y2)2+(1+y)2
cos(ty)dy with t > 0, and we get the evaluation |f (t)| ≤ 2

√

2
�
Arc tan y||

|

∞

0
=
√

2�.

5.3 On differential equation
The Theorem 4.1 in [19], Chapter 4, page 224, gives a closed-form solution of the Cauchy-type problem.

{

(

D�
a+f

)

(x) − �f (x) = Φ(x), (a < x ≤ b; � > 0; � ∈ ℝ)
(

D�−k
a+ f

)

(a+) = bk,
(

bk ∈ ℝ; k = 1,⋯ , n = −[−�]
)

,
(5.10)
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where Φ(x) ∈ C [a, b], (0 ≤  < 1) with the Riemann-Liouville fractional derivative
(

D�
a+f

)

(x) of order � > 0 are given by
(

D�
a+f

)

(x) ∶= 1
Γ(n−�)

(

dn

dxn

)

{ x
∫
a

f (t)
(x−t)�−n+1

dt
}

, (n = [�] + 1; x > a). In this part, we consider the closed-form solutions of a

narrow class of differential equations instead of the equation in the problem (5.10) by choosing � = −1 and substituting operator
(

D�
a+f

)

by D
(

∗
Fc ,

(f, �, �)
)

where D is the second-order differential operator. Then, the equation in Cauchy-type problem
(5.10) can be rewritten

f (x) + (T�,�f )(x) = g(x), x > 0, (5.11)
where T�,� is defined by (3.2).

Theorem 5.7. Let g ∈ L2(ℝ+). Suppose that �, � are functions belonging toA (ℝ+) (see Definition 2.4), such that the condition
0 ≠ 1 + (1 + y2)(�)(y)(�)(y) < ∞. Then the Eq. (5.11) has a unique solution in L2(ℝ+) which can be presented in the form

f (x) =
√

2
�

∞
∫
0

(Fcg)(y)
1+(1+y2)(�)(y)(�)(y)

cos(xy)dy, x > 0.

Proof. Based on (3.2), Eq. (5.11) is converted into the following form f (x)+
(

1− d2

dx2
)

( ∗
Fc ,

(f, �, �))(x) = g(x), x > 0.Applying
the Fourier cosine (Fc) transform to both sides of the above equation, we obtain

(Fcf )(y) + Fc
[(

1 − d2

dx2
)

( ∗
Fc ,

(f, �, �))(x)
]

(y) = (Fcg)(y), y > 0.

Using formula (3.8), we obtain (Fcf )(y) + (1 + y2)(Fcf )(y)(�)(y)(�)(y) = (Fcg)(y). This is equivalent to (Fcf )(y) =
(Fcg)(y)

1+(1+y2)(�)(y)(�)(y)
because the denominator of expression is non-zero under the condition of theorem. Since g ∈ L2(ℝ+) then

(Fcg) ∈ L2(ℝ+). From the assumption 1 + (1 + y2)(�)(y)(�)(y) is finite, we deduce that 1
1+(1+y2)(�)(y)(�)(y)

is a bounded
function. This yields

(Fcg)(y).
1

1 + (1 + y2)(�)(y)(�)(y)
∈ L2(ℝ+),

implying that (Fcf )(y) ∈ L2(ℝ+) and f belongs to L2(ℝ+) almost everywhere [24, 27]. According to the inverse formula of
Fourier cosine transform, we get the solution in the explicit form as the conclusion of the theorem.

We will end the article with an example illustrating the Theorem 5.7.

Example 5.4. Let �(x) = eix, �(x) = e−ix and g(x) =
√

2
�
K0(x), where K0(y) =

∞
∫
0

1
√

1+x2
cos(xy)dx is the Bessel function of

the second kind. Following the formula 1.2.17, page 9 in [6], we obtain (eix)(y) = 1
y−i

and (e−ix)(y) = 1
y+i

are finite, hence

e±ix ∈ A (ℝ+) and 1 + (1 + y2)(eix)(y)(e−ix)(y) = 2. On the other hand,
∞
∫
0
|g(x)|2dx = �

2
, then g(x) =

√

2
�
K0(x) belongs to

L2(ℝ+) and (Fcg) =
1

√

1+y2
. Thus, the functions given above completely satisfy the conditions of Theorem 5.7 and we conclude

that, Eq. (5.11) has a unique solution in L2(ℝ+) in the following form f (x) = 1
√

2�
K0(x) ∈ L2(ℝ+).
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