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Abstract

Atoms of confusion, or simply “atoms,” are pieces of code that lead to misunderstanding while being inter-

preted. Previous research has shown that the presence of atoms has an effect on code readability. Aside from

simple misunderstanding in lab setting, atoms of confusion are common and meaningful in open source C and

C++ projects, and are thus removed by bug-fix commits. However, due to syntactical differences between

language paradigms, the prevalence of atoms may vary in projects written in other languages (e.g. Java),

which is yet to be explored. In this study, the first step is taken towards investigating the prevalence of 12

different atoms in the 13 most popular open-source Java projects. The relationship between the presence

of atoms and aspects of code maintainability is also studied. Results show that, atoms are 4.7 time more

prevalent in Java projects compared to open source C/C++ projects based on occurrence per line. For a

total of 1085223 atoms in our corpus, they occur once every 4.8 lines. Some atoms are very obscure (e.g. the

Logic As Control Flow atom which occurs once in 440060 lines). Some atoms are frequently occurring (e.g.

the Infix Operator Precedence atom which occurs once in 6.4 lines). Impact of the presence of atoms on code

maintainability is also explored. Besides, correlation between atoms are investigated. Results indicate that

object oriented metrics contribute less in atom prevalence, whereas fine grained code-metrics have relatively

better association.
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Abstract—Atoms of confusion, or simply “atoms,” are pieces
of code that lead to misunderstanding while being interpreted.
Previous research has shown that the presence of atoms has an
effect on code readability. Aside from simple misunderstanding
in lab setting, atoms of confusion are common and meaningful
in open source C and C++ projects, and are thus removed
by bug-fix commits. However, due to syntactical differences
between language paradigms, the prevalence of atoms may vary
in projects written in other languages (e.g. Java), which is yet
to be explored. In this study, the first step is taken towards
investigating the prevalence of 12 different atoms in the 13 most
popular open-source Java projects. The relationship between the
presence of atoms and aspects of code maintainability is also
studied. Results show that, atoms are 4.7 time more prevalent
in Java projects compared to open source C/C++ projects based
on occurrence per line. For a total of 1085223 atoms in our
corpus, they occur once every 4.8 lines. Some atoms are very
obscure (e.g. the Logic As Control Flow atom which occurs once
in 440060 lines). Some atoms are frequently occurring (e.g. the
Infix Operator Precedence atom which occurs once in 6.4 lines).
Impact of the presence of atoms on code maintainability is also
explored. Besides, correlation between atoms are investigated.
Results indicate that object oriented metrics contribute less
in atom prevalence, whereas fine grained code-metrics have
relatively better association.

Index Terms—refactoring, software maintainability, software
complexity

I. INTRODUCTION

Object Oriented Programming was introduced to promote
designing better human-understandable code. This change in
paradigm came into play as systems built using structured
programming demanded much cognitive effort to understand.
However, despite design-level improvements, it is not free
from code-level complexity. These confusing parts of the code
are termed ‘atoms of confusion’ in literature.

When interpreting such confusing pieces of code, develop-
ers may not always reach the correct conclusions. They may
misinterpret the meaning of code and misjudge the behavior of
the program, leading to errors. This imposes a major threat to
organizing long-term software development, maintenance, and
evolution [1] [2]. To avoid this scenario, code should be written
in such a way that developers can effectively understand and
interpret it.

The term was originally introduced by Gopstein et al. [3] to
detect portions of code in C programs that confuse developers.

Existing literature mainly focused on the effects of these atoms
in C code. The results show that when atoms when present
in code, developers make significantly more mistakes [3]. An
empirical study was done on open-source C projects, showing
that developers are 2.7 to 56 times more likely to make errors
in confusing code snippets [4]. More recent work by Langhout
[5] derived such atoms of confusion relevant to Java code.
However, to the best of our knowledge, no work has been done
to empirically study the prevalence of such atoms in open-
source Java systems. Besides, none of the studies explored
the relationship between atoms and software maintainability.

In this study, the first step is taken towards exploring
how the existence of atoms affects software maintainability
in open-source Java projects. 13 most popular open source
Java projects are selected for this purpose, namely Bukkit,
Selenium, Commons-lang, Guava, Tomcat, AcionBarSherlock,
Clojure, Spring Framework, Hadoop, Mockito, Facebook-
Android-SDK, Netty, and ElasticSearch. 12 Java language
specific atoms are considered in this study, which are Infix Op-
erator Precedence, Post Increment Decrement, Pre Increment
Decrement, Constant Variable, Conditional Operator, Arith-
metic as Logic, Logic as Control Flow, Repurposed Variable,
Dead, Unreachable, Repeated, Change of Literal Encoding,
Omitted Curly Braces and Type Conversion. The existence of
these atoms are detected in the selected projects through our
regex-based detection approach. The maintainability metrics
for the projects are calculated using the Understand tool.
Then the correlation between atom types and code metrics
is analyzed.

Analyzing the data, it is found that, atoms occur once every
4.87 lines, for a total of 1085223 atoms in our corpus. Some
atoms are very obscure in Java projects e.g. the Repurposed
Variable atom, while some are frequent e.g. the Infix Operator
Precedence atom. The correlation between maintainability
metrics and presence of atoms is presented and explained.
For example, a strong correlation has been found between
the Omitted Curly Braces atom and the three metrics -
Number of Assignment Expressions, Number of Parenthesized
Expressions, and Number of Comparisons.

The later sections of the paper are organized as follows. Sec-
tion II contains related works, Section III contains background
information, and Section IV describes the methodology. Sec-



TABLE I
ATOMS OF CONFUSIONS CONSIDERED IN THE STUDY

Atom Name Java Code Snippet with Atom of Confusion Java Code Snippet Free of the Confusion
Type Conversion (TC) V1 = (int) 1.99f; V1 = (int) Math.floor(1.99f);
Post-Increment/Decrement (POST-I/D) V1 = V2++; V1 = V2; V2 += 1;
Pre-Increment/Decrement (PRE-I/D) V1 = ++V2; V2 += 1; V1 = V2;
Constant Variables (CV) V1 = V2; V1 = 5;
Conditional Operator (CO) V2 = V1 == 3 ? 2 : 1; if (V1 == 3) { V2 = 2; } else { V2 = 1; }
Arithmetic as Logic (AAL) (V1 - 3) * (V2 - 4) != 0 V1 != 3 && V2 != 4

Logic as Control Flow (LACF) V1 == ++V1>0 —— ++V2 >0; if ( !(V1 + 1 >0) ) { V2 += 1;}
V1 += 1

Repurposed Variables (RV) for(int V1 = 0;...; V1++) {
for(int V2 = 0;...; V1++) {

for (int V1 = 0;...; V1++) {
for (int V2 = 0;...; V2++) {

Dead, Unreachable, Repeated (DR) V1 = 1; V1 = 2; V1 = 2;
Omitted Curly Braces (OCB) if (V1) F1(); F2(); if (V1) { F1(); } F2();
Change of Literal Encoding (CLE) V1 = 013 V1 = Integer.parseInt(”13”, 8)
Infix Operator Precedence (IOP) 2 - 4 / 2 2 - (4 / 2)

tion V presents the evaluation and Section VI presents the
threats to validity. Section VII concludes with future works.

II. RELATED WORKS

The concept of “atoms of confusion” in source code is
relatively new in the research community and a few research
efforts have been done regarding this concern. In the intro-
ductory work by Gopstein et al. [3], they derived 19 atoms of
confusion in C code. Experimentation involving 73 subjects
(university students with at least 3 months of C/C++ expe-
rience) was done to validate the code snippets hypothesized
as confusing. The subjects were presented with similar code
snippets, one containing an atom and the other transformed to
remove the corresponding atom. Statistical significance was
tested based on the evaluation task of interpreting the output
of those code snippets.

Follow-up work from Gopstein et al. [4] shows that the
15 atoms that were proven statistically significant occur in
practice once every 23 lines in open-source C/C++ projects.
They demonstrated the real-world relevance of these selected
atoms of confusion along with their rate of occurrence. Their
study is based on an examination of 14 of the most well-
known and influential C and C++ software projects. Their
study also shows that atoms tend to be removed more in
case of bug-fixing changes rather than other types of changes.
This indicates the relationship of atoms causing confusion and
confusion causing misinterpretation leading to bugs. Numeri-
cally, bug-fixing commits are 1.25 times more likely to remove
atoms than non-bug fixing commits. This extensive study also
shows that in open-source systems atoms are 1.13 times more
commented than non-atom code. Medeiros et al. [6] also
investigated the frequency of occurrences of most of the atoms
and discovered that all expect one occur in the projects studied.
They used a mixed method approach, including repository
mining and developer surveys, to collect data from 50 open-
source C projects. In a similar fashion with previous work
[3], participants perceived the version affected by the atom
of confusion to be more confusing and/or less readable when
presented with both versions of the code snippets.

Langhout et al. [5] derived atoms relevant to Java code and
found that participants are 2.7 to 56 times more likely to make
errors in code snippets with atoms of confusion. Participants
perceived the version affected by the atom of confusion to be
more confusing and/or less readable when presented with both
versions of the code snippets. Atoms specific to C/C++ syntax
were avoided in this study. However, no new atom specific
to Java syntax or Object Oriented paradigm were introduced.
Bogachenkova et al. [7] looked into the possible cause-and-
effect relationship between atoms of confusion and confusion
in code reviews. They also investigated how those atoms of
confusion evolve over the course of pull requests.

Although work has been done to identify atoms of confusion
for different languages, to the best of obtained knowledge,
none of the studies demonstrate the evolution of software
containing atoms. There has been no direct investigation
into the relationship between atoms of confusion and code
maintainability.

III. BACKGROUND

Based on the origin source, ‘confusion’ is defined as -
“what happens when a person and a machine read the same
piece of code, yet come to different conclusions about its
output”. Atoms of confusion are the smallest possible patterns
of misinterpretable source code. The presence of atoms makes
the code more confusing and leads to more mistakes. Gopstein
et al. [3] first observed these patterns in source code. They
noticed that failure in notable software bug examples is
caused by “single, well-contained, programming errors as at
the syntactic or semantic level, rather than the algorithmic
or system-levels of the project”. They defined these minimal
portions of code as “atoms of confusion,” or “atoms”. Castor
[8] expanded this definition by formalizing atoms as precisely
identifiable and likely to cause confusion, which is replaceable
by a functionally equivalent code pattern that is indivisible and
less likely to cause confusion.

In this study, 12 types of atom specific to the Java Lan-
guage is considered which are Infix Operator Precedence, Post
Increment Decrement, Pre Increment Decrement, Constant
Variable, Conditional Operator, Arithmetic as Logic, Logic



as Control Flow, Repurposed Variable, Dead, Unreachable,
Repeated, Change of Literal Encoding, Omitted Curly Braces
and Type Conversion. The atoms along with their respective
‘free of confusion’ counter parts are presented in Table I.

CK metrics [9] are used as code level metrics in this
study. The metrics are Coupling Between Objects (CBO),
Depth Inheritance Tree (DIT), Response for a Class (RFC),
Weight Method Class (WMC), Lines of code (LOC), Lack
of Cohesion of Methods (LCOM), Number of Static Invo-
cations (NOSI), Number of Methods (nMethod), Number of
Comparison Expression (nComparison), Number of Loops
(nLoop), Number of Parethesized Expression (nParenthesized-
Exps), Number of Assignments (nAssignments) and Number
of Static Fields (nStaticFields).

IV. METHODOLOGY

This study aims to investigate how the presence of atoms in
code is related with software maintainability. To achieve this
goal, the presence of atoms in the subject systems is detected
through an regex-based approach. The maintainability metrics
for the subject systems are calculated using the Understand
tool. Finally, the relationship between atoms and maintain-
ability metrics is explored. An overview of the steps in this
empirical study can be depicted from Fig. 1.

A. Detecting Atoms

In this study, atoms are detected using a regex-based ap-
proach. As different atoms have different syntax, the logic for
detecting each of the distinct atom was also different. The
detection methods for each of the 12 atoms considered in this
study are described in detail below.

1) Infix Operator Precedence: To check the existence of
this atom, the total number of occurrences of mathematical
operators (+, -, *, /) in the statement was counted. This number
is referred to as (numop). The total number of occurrences of
parenthesis pairs (’()’) is also calculated. This number will be
referred as numpar. Now, if numop is even and numpar is less
than numop/2 in any statement, the statement is detected as
the infix operator precedence atom. Again, if numop is odd
and numpar is less than numop/2 + 1 in any statement, the
statement is also detected as the infix operator precedence
atom.

For example, in the statements result = (2/4)-(2*3)-9 and
result = (2/4)-(2*3)-(9/3), atom Infix Operator Precedence is
not present. Whereas, in result = (2/4)-(2*3)-9+3, atom Infix
Operator Precedence is present.

2) Post Increment Decrement: A statement is taken and
white spaces are removed. The existence of ‘=’ is checked in
the statement. If the statement contains a ‘=’, does not contain
any ’==’ and ends with ‘++’, it is split considering ‘=’ as a
separator. Following the split, everything on the left hand side
of the = is referred to as LHS. Similarly, everything on the
right side of the = sign is referred to as RHS. The ‘++’ is
removed from the RHS and the new RHS (RHS’) is compared
with the LHS. If the LHS and RHS’ does not match, it can
be determined that the statement contains the Post Increment

Decrement atom. For example, the statementa = b++ is such
an atom, while a = a++ is not.

3) Pre Increment Decrement: A statement is taken and
white spaces are removed. The existence of ‘=’ is checked
in the statement. If the statement contains a ‘=’, does not
contain any ‘==’ and ends with ‘++’, it is split considering
‘=’ as a separator. Everything on the left hand side of the
= after splitting is referred to as LHS. Likewise, everything
on the right side of the = is referred to as RHS. The ‘++’ is
removed from the RHS and the new RHS (RHS’) is compared
wih the LHS. If the LHS and RHS’ does not match, it can
be determined that the statement contains the Pre Increment
Decrement atom. For example, the statementa = ++b is such
an atom, while a = ++a is not.

4) Constant Variable: A statement is taken, white spaces
are removed from it and the existence of ‘=’ is checked in
the statement. If ‘=’ is found in the statement, it is checked
whether any kind of arithmetic operation is taking place there.
This must be checked because if an arithmetic operation
occurs, such as V1 = V2 + 3, the statement will not fall under
the Constant Variable atom. If no mathematical operators (+,
-, *, /) are found in the string, it is possible to conclude that
no arithmetic operation is taking place in that statement. Then
the statement is split considering ‘=’ as a separator. The RHS
is taken and regex is used to determine whether it is a variable
name or a literal. If the RHS is recognized as a variable name,
the statement is identified as having the Constant Variable
atom.

For example, in the statement V1 = V2, the RHS will be V2,
which is a variable name. As a result, the statement is classified
as a Constant Variable atom. In case of the statements V1 = 5
and V1 = “some string”, the RHS is 5 and “some string”,
respectively. Both of the RHSs are literals. Therefore, the
statements does not fall under the category of the Constant
Variable atom.

5) Conditional Operator: To identify the existence of this
atom, regex is used. The presence of both ‘?’ and ‘:’ is
identified in the statement first. If found, the statement is
considered as an Conditional Operator atom.

V2 = V1 == 3 ? 2 : 1; is an example of Conditional
Operator atom, as both ‘?’ and ‘:’ are present here. Whereas
if (V1 == 3) V2 = 2; else V2 = 1; is the confusion free
version of this statement.

6) Arithmetic as Logic: To find this type of atom, the
presence of both mathematical and relational operators in
the same statement is looked for. If found, the statement is
considered to contain the atom in concern.

For example, (V1 - 3) * (V2 - 4) != 0 is an example of
arithmetic as logic atom. This contains both mathematical and
relational operators. On the other hand, if (V1 != 3) (V2 !=
4) is the confusion free version of it as it does not contain
mathematical and relational operators together in the same
statement.

7) Logic as Control Flow: To detect these kind of atoms,
the presence of both mathematical and logical operators in
the same statement is looked for. If found, the statement is



Fig. 1. Study Overview

considered to contain the atom in concern. V1 == ++V1 > 0
|| ++V2 > 0; is an example of this kind of atom as it contains
both mathematical and logical operators in it.

8) Repurposed Variable: To detect this type of atom,
search was conducted first to look for nested for loops. Then,
it was checked whether the iterator initialized in the first loop
control statement, instead of its respective initialized iterator, is
incremented in the second loop control statement. If yes, then
the existence of a Repurposed Variable atom is confirmed. An
example of such kind of atom and its confusion free version
can be found in Table I.

9) Dead, Unreachable, Repeated: To detect this atom,
pairs of consecutive statements are taken first. Each of the
statements in the pair is split considering = as separator. The
left hand sides of the = in both of the statements are compared.
If they match, the existence of Dead, Unreachable, Repeated
atom is confirmed.

For example, for the consecutive statement pair (‘V1 = 1;’,
‘V1 = 2’;), the left hand sides after splitting them both consid-
ering = as separator are ‘V1’ and ‘V1’, respectively.Therefore,
this snippet is considered as the Dead, Unreachable, Repeated
atom.

10) Change of Literal Encoding: To detect atom of this
category, each statement was taken and the white spaces were
removed. For example, the statement V1 = 013 was converted
to V1=013. Then it was checked whether their is any = in
the statement. If any = exist, the statement is split considering
‘=’ as the separator. The right hand side of the statement is
taken. Using regex, it is checked that whether the right hand
side starts with a 0 and whether its length is more than 1.
The length of the RHS indicates whether it is an atom or
simply that a value assignment is taking place there. If both
the condition applies, that is, if such a statement was found
where the term right to an ‘=’ having a length greater than 1
starts with a 0, that statement was identified as an Change of
Literal Encoding atom.

For example, in case of the statement V1 = 013, 013 is the
right hand side when split considering ‘=’ as the separator. 013
starts with a 0 and has a length greater than 1. Therefore, the
statement V1 = 013 contains the Change of Literal Encoding
atom. On the other hand, the statement V1 = 0 is not an atom.
Though 0 starts with a 0, it does not have a length greater

than 1. Therefore, the statement V1 = 0 does not contain the
Change of Literal Encoding atom. System.out.println (“ The
output is V1 = 013”); is another example that contains the
Change of Literal Encoding atom.

11) Omitted Curly Braces: A statement is taken and
existence of one of the keywords ‘if’, ‘while’, ‘for’ is checked
in that statement. If found, the existence of curly brace (‘{’)
is checked next. If no curly brace is found, the statement can
be concluded to contain the Omitted Curly Brace atom.

For example, the statement if (v1) f1(); f2(); contains an if
block. However, as there are no curly braces, it may become
confusing for the developer whether f2() falls under the if
block. Therefore, this is an example of the Omitted Curly
Braces atom. On the other hand, the statement if (v1) f1();
f2(); clearly separates the if block from the consecutive portion
f2() and shows that f2() does not fall under the if block.
Therefore, this is a confusion free version of the previous
example containing the Omitted Curly Braces atom.

12) Type Conversion: To detect this atom, the existence
of ‘(int)’/‘(double)’/‘(float)’ is checked in a statement. If one
of these keywords exists, it is checked if ‘Math.floor’ or
‘Math.ceil’ is present in that statement. If not found, the
statement is determined to be containing the Type Conversion
atom.

For example, in the statement v1 = (int) 1.99f;, the presence
of keyword (int) indicates that a type conversion is taking
place here. However, as there is no ‘Math.floor’ or ‘Math.ceil’
here, this may lead to confusion. Therefore, this is an example
of the Type Conversion atom. On the other hand, v1 = (int)
Math.ceil(1.99f);, v1 = (int) Math.floor(1.99f); are examples
of the confusion free version of the Type Conversion atom.
Type conversion is taking place in these statements and the
presence of ‘Math.floor’ and ‘Math.ceil’ does not leave any
confusion for the developers regarding the actual output.

B. Generating Code Metrics

Calculation of code level metric is necessary to analyse rela-
tionship of code and atom evolution. CK metrics are selected
as they include the most popular metrics to evaluate class-
level Object Oriented Systems [9]. Release tag information
obtained from each project’s repository is used to checkout
to each release state. Afterwards, file/class wise code metrics



Fig. 2. The rate of individual atoms per KLOC across all projects

are generated for each release. Adding up metric values for
the files, the release level metric score is calculated. A dataset
of CK code metrics per release is generated for each of the
subject systems.

C. Determining Metric Relationship

Similar to code metric generation, atom occurrences of each
revision is calculated per file. Afterwards, the file-level occur-
rences are added to get project-level atom occurrences per
revision. Both code metrics and atom counts were normalized
using the project size in kLOC to tackle any confounding effect
due to size. The two evolution data is used to find correlation
between types of atoms and code metrics.

V. EVALUATION

A. Subject Selection

The subject systems written in Java were selected based
on their popularity on GitHub, following previous work [10].
Thirteen projects were ranked using GitHub Stars and number
of contributors from the GHTorrent dataset1, namely Bukkit,
Selenium, Commons-lang, Guava, Tomcat, AcionBarSherlock,
Clojure, Spring Framework, Hadoop, Mockito, Facebook-
Android-SDK, Netty, and ElasticSearch. The selected projects
have maturity of more than 10 years and 226.5 releases
on average. Furthermore, the systems being open-source, the
coding style is not biased towards any individual contributor.
The release tags obtained from the repositories are used to
obtain release-wise file level atom distribution as well as code
metric. The file-level metrics are merged to obtain the release-
level metric distribution, which acts as the main dataset for
analysis.

B. Prevalence of atoms

1) How frequently do atoms occur in Java projects?:
According to our findings, atoms of confusion appear more
frequently in Java projects. Atoms appeared at a rate of 20.53%
in our corpus of 13 large and significant open-source Java
projects, implying that one in every 4.87 lines in our corpus
contains an atom of confusion. In total, over 1085200 atoms
of confusion is discovered, with up to 349617 and 256491
per project in larger code bases like Hadoop and Elasticsearch
respectively.

1http://ghtorrent.org/msr14.html

By definition, each type of confusion atom has its own syn-
tax and semantics. The method of causing misunderstanding
in the readers also varies depending on the type of atom. As a
result, the prevalence of each pattern was examined separately.
Figure 1 depicts the rates of occurrence of individual atoms
per KLOC. It has been discovered that the most frequently
occurring atom is the Infix Operator Precedence. This is
because the software engineering community discourages the
use of ‘unnecessary’ parentheses. Furthermore, IDEs and code
formatting tools offer runtime suggestions to remove “unnec-
essary” parentheses. As a result, the Infix Operator Precedence
atom prevails in the code, making the code confusing to
developers. It is also found that the Constant Variable atom is
the second most frequent atom occurring in open source Java
projects. However, the reason behind this is unclear.

The least frequent atom of confusion is the repurposed
variable atom. This is obvious because at the beginning of the
loop condition. It is highly unlikely that they would initialize
one iterator while incrementing or decrementing another. The
logic as control flow atom is the second least common one.
This is also very obvious, as developers tend to use this kind
of complex syntax less often.

The key takeaway from our analysis is that, atoms are 4.7
times more prevalent in Java projects compared to C/C++
projects studies in literature [4]. They occur once every 4.87
lines, for a total of 1085223 atoms in our corpus. Some atoms
are very obscure in Java projects e.g. the Logic As Control
Flow atom that occurs once in 440060 lines. They can also be
frequently occurring e.g. the Infix Operator Precedence atom
that occurs once in 6.4 lines.

2) Do atoms occur at different rates in different projects?:
From our analysis, it is seen that atoms occur at different rates
in different projects. Figure 3 depicts the overall rate at which
atoms appear in the projects chosen as the subject of this study.
It is found that Bukkit has the most atoms proportional to its
size, while Guava has nearly one-third of atoms compared to
Bukkit.

Figure 4 shows the rate of individual atoms in each project.
The rates are calculated by first identifying the project with
the highest usage and then normalizing the data from each
project against that maximum. Each column in the heatmap
depicts an individual project compared to the entire corpus.
The column for each project ranks the atoms based on lowest
to highest occurrence. Each row depicts the atom usage from
project to project.

3) Do some atoms occur consistently more than others?:
Friedman’s test2 is employed to determine whether there is at
least one atom always occurring more than any other atom.
The application scenario of Friedman’s test can be illustrated
from the classical example - “N wine judges each rate K
different wines. Are any of the K wines ranked consistently
higher or lower than the others?”. The normalized occur-
rences per atom for all 13 projects are grouped to perform the
Friedman’s test. The null hypothesis is that the occurrence of

2https://en.wikipedia.org/wiki/Friedman test



TABLE II
POSTHOC FRIEDMAN NEMENYI TEST FOR ALL ATOM CATEGORIES. BOLD VALUES INDICATING STATISTICAL SIGNIFICANCE USING P-VALUE OF 0.05

AND (*) INDICATING SIGNIFICANCE AFTER BONFERRONI CORRECTION

Atom Types TC POST-I/D PRE-I/D CV CO AAL LACF RV DR OCB CLE IOP
TC 1
POST-I/D 0.643 1
PRE-I/D 0.433 0.9 1
CV 0.127 0.001* 0.001* 1
CO 0.9 0.027 0.008 0.9 1
AAL 0.626 0.9 0.9 0.001* 0.025 1
LACF 0.071 0.9 0.9 0.001* 0.001* 0.9 1
RV 0.032 0.9 0.9 0.001* 0.001* 0.9 0.9 1
DR 0.452 0.001* 0.001* 0.9 0.9 0.001* 0.001* 0.001* 1
OCB 0.9 0.136 0.055 0.626 0.9 0.127 0.003* 0.001* 0.9 1
CLE 0.9 0.591 0.375 0.157 0.9 0.574 0.055 0.025 0.506 0.9 1
IOP 0.009 0.001* 0.001* 0.9 0.452 0.001* 0.001* 0.001* 0.9 0.146 0.012 1

TABLE III
CORRELATION BETWEEN ATOM TYPES AND CODE METRICS. BOLD VALUES INDICATING MODERATE OR STRONG ASSOCIATION

Code Metric/
Atom Type CBO DIT RFC WMC LOC LCOM NOSI nMethod nCompa-

rison nLoop nParenthe-
sizedExps

nAssign-
ments

nStatic-
Fields

TC -0.39 -0.30 -0.37 0.15 0.08 0.42 0.04 -0.18 0.25 0.47 0.27 0.19 0.08
POST-I/D -0.36 -0.33 -0.24 0.23 -0.18 0.12 0.13 -0.35 0.42 0.40 0.43 0.36 0.43
PRE-I/D -0.25 -0.23 -0.21 0.05 -0.00 0.08 0.29 -0.15 0.19 0.08 0.04 0.09 -0.05

CV -0.60 -0.61 -0.42 0.51 0.05 0.09 -0.12 -0.45 0.71 0.48 0.52 0.57 0.65
CO 0.05 -0.07 -0.04 0.20 0.12 0.08 0.12 0.02 0.18 0.14 0.18 0.25 0.01

AAL 0.28 0.22 0.12 0.16 0.01 -0.21 -0.24 0.29 -0.11 0.18 -0.07 -0.18 -0.21
LACF 0.07 -0.01 0.09 0.11 -0.04 -0.05 0.02 -0.00 0.05 0.02 0.03 0.04 0.01

RV 0.05 -0.03 0.01 -0.01 -0.01 -0.09 -0.08 -0.07 0.08 0.19 0.06 0.00 -0.06
DR -0.58 -0.58 -0.46 0.25 -0.03 0.31 0.62 -0.49 0.69 0.35 0.42 0.68 0.63

OCB -0.36 -0.24 -0.44 0.56 -0.17 0.35 0.50 -0.24 0.64 0.42 0.66 0.70 0.20
CLE -0.45 -0.26 -0.57 0.55 -0.09 0.31 0.08 0.06 0.34 0.35 0.49 0.25 0.27
IOP -0.15 0.18 -0.22 0.39 -0.30 0.01 -0.03 0.46 -0.08 -0.31 -0.02 -0.26 -0.16

Fig. 3. The rate of atoms in each project

each type of atom is not consistently different among projects.
A test statistic=135.261 and p-value=1.49e-23 is yielded for
this test. Therefore, rejecting the null hypothesis indicating
statistically the existence of atoms consistently occurring
more. Moreover, posthoc Friedman-Nemenyi test is employed

Fig. 4. The rate of individual atoms per LOC across all projects

to further evaluate every pair of categories. In this pair-
wise test the null hypothesis is that the two categories occur
similarly in open-source projects. The statistical significant
is evaluated after applying the Bonferroni correction [11] to
counteract the multiple comparisons problem3. In this process
the target significance level of 0.05 is divided by 12 (number of
statistical tests performed). The corrected level of significance
is now 0.004167.

TABLE II shows the pair-wise statistical p-values of the
posthoc Friedman-Nemenyi test. The bold cells indicate pairs

3https://en.wikipedia.org/wiki/Multiple comparisons problem



rejecting the null hypothesis using a p-value of 0.05 whereas
‘*’ indicates the pairs that are significantly different even with
Bonferroni corrected p-value. For example, the null hypothesis
is rejected to confirm that Constant Variable always consis-
tently occur more than Post Increment/Decrement, Pre Incre-
ment/Decrement, Arithmatic As Logic, Logic As Control Flow,
and Repurposed Variable. Even if Infix Operator Precedence
is seen to occur much more in open source (based on Fig. 2),
it is also statistically validated from TABLE II. However, Infix
Operator Precedence does not always consistently occur more
than other types of atom.

C. Correlation with Maintainability

Previous studies have shown that, atoms have a negative
impact on the readability of code. In this study, how the
presence of atoms in code and the maintainability aspects
of code correlate is explored. For this purpose, the prepared
dataset containing the atom and code metric distribution per
revision is used. The normalized values are used to determine
the association of each code metric with different categories
of atoms. TABLE III lists the correlation coefficient between
each atom type and CK code metric. The atom types and
code metric names are abbreviated due to space constraints.
The descriptions can be obtained from TABLE I and public
availability [9] respectively. The pairs of categories that have
moderate to high correlation (positive or negative) are made
bold in TABLE III. This table depicts that there is a strong
correlation between Omitted Curly Braces with Number of As-
signment Expressions, Number of Parenthesized Expressions,
and Number of Comparisons. This finding is straightforward
as developers often use one line conditional sentences to
assign values to variables or call certain methods. Therefore
the increase in the number of comparisons and assignment
operations cause an increase in Omitted Curly Braces. Con-
stant Variable atom is positively correlated with Number
of Comparisons and Number of Static Fields. The intuition
behind this relationship is that static fields are supposed to
be constant intentionally and developers usually assign values
based on comparison outcome. Constant Variable is negatively
correlated with Coupling Between Objects and Depth of Inher-
itance Tree. This relationship can be hypothesised to hold as
when coupling increases much of the responsibility if deferred
to other classes, needing less constant variables. On the other
hand, on increased inheritance depth, less variables need to be
defined explicitly as inherited attributes are used frequently.

Initially proposed atoms of confusion was introduced to
expose ambiguities in C/C++ projects, more generically, struc-
tured programming languages. Recently, atoms relevant to Java
were proposed. However, Java being an Object Oriented lan-
guage, contains code not only confusing on a structural level
rather involving Object Oriented specific patterns for example,
Polymorphism or Liskov Substitution Principal. TABLE III
shows that atoms of confusion are more associated with
structural metrics like Number of Comparison, Assignment,
etc. rather than Object Oriented metrics such as complexity
(WMC), cohesion(LCOM), etc. Confusing code is prevalent

in open-source Java systems, however there is lack of proper
definition of atoms in case of Object Oriented paradigm.

VI. THREATS TO VALIDITY

1) Threats to External Validity: The presence of the twelve
Java specific atoms initially proposed by Gopstein et al. [3]
is investigated in this study. The 13 most popular open-source
Java projects have been chosen as the subject of the study.
However, there could be more Java-specific atoms of confusion
that haven’t been proposed or defined in the literature and thus
are not covered by us.

2) Threats to Internal Validity: In this study, it is inves-
tigated whether the presence of atoms has any effect on
code maintainability. The relationship between the presence
of atoms and code maintainability has been investigated for
this purpose. There may have been other factors involved that
impacted the maintainability aspects of the code. We may not
have been able to completely eliminate their influence.

3) Threats to Construct Validity: The detection method
is carefully constructed based on existing literature. Twelve
distinct types of atoms were identified based on their definition
and distinct syntax. The Understand tool, which is widely
used in the literature, was used to measure the maintainability
metrics.

4) Threats to Content Validity: The content of our atom
detection and maintainability measurement methods covers all
relevant parts of the subject they aim to measure, i.e. twelve
types of atoms and maintainability metrics, respectively. Irrel-
evant aspects were not included in the measurement method.

VII. CONCLUSION AND FUTURE WORKS

Atoms or atoms of confusion are the smallest possible
patterns of source code that can be misinterpreted. Previous
studies showed that, presence of these atoms affects the read-
ability of code and makes the code more error-prone. However,
those findings were based on C and C++ projects. In this study,
the prevalence of atoms is investigated on open-source Java
projects. This is the first step towards exploring atoms in Java
projects. Different atoms are detected using relevant regex-
based methods in this study. The relation between the presence
of atoms and maintainability metrics are also explored and
explained.

The future agenda includes investigating more Java-specific
atoms of confusion that haven’t been proposed or defined in
the literature yet. Experimentation also need to be done taking
both ‘projects containing atoms’ and ‘projects without atoms’
into consideration.
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