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Abstract

In this work, we solve nonlinear systems of ordinary differential equations coupled to noisy forcing, commonly used for models

of neurons such as the Hodgkin-Huxley equation, over a memristor crossbar based computing system. We demonstrate stability

and faithfulness of the distributions even under the effects of nonidealities of the memristors and the system itself. We investigate

the properties of the dynamical systems under quantization faithfulness, varying the level of precision of the fixed point integer

representation and concluding that 24 bits is enough for solution of the Hodgkin-Huxley equations, demonstrating that our

solver can operate with both high precision and achieve speedups with low precision approximate computation.
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Abstract—In this work, we solve nonlinear systems of ordinary
differential equations coupled to noisy forcing, commonly used
for models of neurons such as the Hodgkin-Huxley equation, over
a memristor crossbar based computing system. We demonstrate
stability and faithfulness of the distributions even under the
effects of nonidealities of the memristors and the system itself.
We investigate the properties of the dynamical systems under
quantization faithfulness, varying the level of precision of the
fixed point integer representation and concluding that 24 bits
is enough for solution of the Hodgkin-Huxley equations, demon-
strating that our solver can operate with both high precision and
achieve speedups with low precision approximate computation.

Index Terms—Memristor, Crossbar, Stochasticity, Stochastic
Differential Equation, Vector-Matrix Multiplication, Hodgkin-
Huxley.

I. INTRODUCTION

MEMRISTOR crossbar systems are next-generation com-
puting devices for accelerating vector matrix mul-

tiplication operations. There has also been a recent trend
in stochastic computing using the inherent noise in certain
regimes of operation in memristors [1]. Systems which harness
both the analog and stochastic computing capabilities of mem-
ristors promise to reduce computing time for various kinds of
stochastic problems.

Approximate computing via resistive random access mem-
ory (RRAM) crossbars has recently becoming an area of in-
terest [2], where accuracy of computations is traded for power
efficiency and potentially speed. RRAM crossbars offer matrix
vector multiplication in O(1) time, leading to a great speedup
over conventional algorithms implemented over von Neumann
computing architecture. Stochastic problems are of particular
interest, since they generally require less precise computation
and therefore are amenable to memristor hardware. Markov
Chain Monte Carlo [3] [4] as well as Bayesian neural networks
[5] and stochastic error decoders [6] are examples. Memristors
have variations in their switching behaviour caused by a
natural process, thus the true randomness can be applied to
devices such as random number generators (RNG).

The idea of a stochastic computer was first introduced in
[7], in which numbers are represented by the probability of
bit ”1” appearing in a stream of given binary bits. Normal
mathematical operations can be performed by single logic
gates, which largely reduces the cost of computations. The
essence of such computing methodology is a series of bit-
stream representation that is stochastic and bit-wise indepen-
dent. To generate such a bitstream, random number generators

(RNGs) are added to the computing system as overheads.
Current RNGs are categorized into pseudo-random number
generators, such as linear-feedback shift registers (LFSRs),
and true-random number generators, using time-variant or
multiple threshold structures [8]. One prominent constraint of
directly implementing such RNGs in CMOS is the lack of
true randomness. Devices such as LFSRs are pseudo-random
which means the bitstreams generated have a high possibility
of repeated patterns after a certain period [9].

Given the inherent stochastic switching behaviour of mem-
ristors, recent works such as [10] [11] [8] introduced memris-
tors into their RNG structures. The above architectures have
been benchmarked against the National Institute of Standards
and Technology (NIST) group of tests, and exhibit proven
ability to generate bitstreams that are uniformly distributed
and least likely to overlap [8].

Monte Carlo simulations for stochastic differential equations
are one such kind of stochastic problem. Stochastic differential
equations model many kinds of physical phenomena in the
presence of noise. In order to find the evolution of the
probability distribution of the system, many runs of the system
[12] have to be found because the equations are intractable
by analytic methods. In previous works, we demonstrated
a memristor crossbar system for solving various kinds of
stochastic differential equations. Here, we focus on the simula-
tion of a Hodgkin-Huxley type neuron models, which directly
model the voltage across a section of membrane in a neuron
by considering the flow of ions. In the Hodgkin Huxley
(HH) model, the capacitance of the membrane as well as
the conductance due to gated and passive ion channels are
considered [13]. Simplified models replicate the spiking and
limit cycle behavior of the HH model but do not directly
represent any physical quantities. See Fig 1 for a diagram of
the HH model and its equivalent circuit model.

II. BACKGROUND

Dynamical system models for biological neurons have a
long history in both biology and computing. The Hodgkin-
Huxley neuron [14], whose dynamical equation is given in eqn.
4. Simplified models exist that capture many of the dynamical
behaviors such as the Fitzhugh-Nagumo model, which we will
demonstrate our solver is able to reproduce.

Modelling of stochastic effects can be obtained by adding
noise terms to certain equations in the system. Injection of
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Fig. 1. (a) A Hodgkin-Huxley type model is based off of a phenomenological description of the flow of ions across a section of cell membrane. The different
types of transport across the cell membrane can be modelled as circuit components, such as resistors, voltage gated resistors, and current sources. The cell
membrane itself is modelled as a capacitor. This leads to a differential equation that models the system. (b) Brief description of hardware design from previous
paper. The hardware represents the summation in 1 dimension of the ODE and 1 bit slice. The bit sliced inputs can be input serially and the outputs stored
in order to determine the next Xi

s, or multiple crossbars could be for parallel operation.

certain kinds of stochastic behavior can be be obtained by only
including stochastic terms in some of the equations, leading to
variation in spike times but preservation of the overall shape
of the trajectory. The differential equation for the neuron with
additive noise can be modelled as a stochastic differential
equation, which we will briefly review.

Stochastic differential equations can be considered in two
ways: the Ito sense or the Stratonovich sense. Our solver
hardware is designed to solve equations formulated in the Ito
sense. A general Ito stochastic differential equation is written
as

dX = µ(X, t)dt+ σ(X, t)dW (1)

where dW is the derivative of brownian motion. The function
µ is the deterministic term and σ is the noise term, which
varies the spectral content of the noise. The Euler-Maruyama
method is a first order method for solving Ito SDEs, and is
written as

X(t+∆t)−X(t) = µ(X, t)∆t+ σ(X, t)∆W. (2)

∆W has a variance equal to the timestep size dt. This
solver converges with accuracy O(∆t) in the weak sense (the
expected value of the moments converge to the true solution
with this order) and O(∆t1/2) in the strong sense (where the
probability density must converge to the true solution).

III. SOLUTION

We use the hardware architecture proposed in Figure 1. The
system uses both software and hardware components which
divide the computational workload. The software component

computes the deterministic functions in the differential equa-
tion. The hardware generates the gaussian random numbers
and performs the summation for the iterations of the solver.

The gaussian random number generator was described in a
previous paper [15], and uses the Wallace method to mix an
initial pool of numbers drawn from a gaussian distribution. The
matrices that mix the numbers are implemented on crossbars,
resulting in fast generation of gaussian random numbers. The
software component of the system uses the standard Box-
Muller transform to generate the inital pool. The hardware
iteratively solves the stochastic differential equation by feeding
the current estimate of the solution path into the coefficient
matrix and updating the next component of the path succes-
sively. The hardware takes advantage of precision extension to
increase the accuracy of the calculations. The timeseries is also
process sliced into sections, where the integral is sliced into
groups eight time steps long. The hardware is modelled using
a custom memristor crossbar model [Github link removed for
anonymity]. We implement bit slicing and gaussian random
number generation on top using the matrix multiplication
simulation. The bit slicing technique uses a fixed point integer
representation of inputs. We specify the number of integer
bits and fraction bits to use, the sum of which is the total
number of bits for the representation. This is equivalent to
setting the scale of the representation to 2fraction bits. Specific
problems require different amounts of precision, and we will
investigate the effects of the fixed point representation on the
FitzHugh-Nagumo dynamics.

The memristors were modelled as resistors with set linear
resistance levels between 500Ω and 10kΩ. The line resistance
was modelled as 20Ω, and the input and output resistances
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Fig. 3. The bifurcation of the behavior of the neuron due to the parameter b.
At 1.3, there is strong spiking behavior. At 1.5, there is a decaying oscillation.

were 1kΩ. The ADCs were modelled with 3 bits in accordance
with the operation of the memristors as binary bits in an 8 by
8 crossbar array.

When solving the Hodgkin Huxley system of equations,
constraints are imposed on the m, n, and h variables, which
represent probabilities. To constrain these variables, we add a
digital comparator to our design (Figure 1) which compares
the bitstream to the maximum and minimum values allowed
to the problem. In our Hodgkin-Huxley model, we impose set
boundary conditions where any value of n, m, or h above 1
or below 0 are set to 1 or 0, respectively.

IV. APPLICATIONS

A. FitzHugh-Nagumo Neuron

Here we demonstrate integration of the FitzHugh-Nagumo
model of a neuron, a simplified version of the Hodgkin Huxley
neuron. The model is a generalized version of the Van-der-Pol
oscillator. This 2-D system is modified with noise [16] [17] in
one of the dimensions, leading to differences in spike timing.
The equation is as follows:

{
v̇ = v − v3/3− w +RI + noise
ẇ = v/τ + a/τ − bw/τ

(3)

For the noise term we use noise = σdW where σ is a constant.
To verify the effectiveness of our hardware for simulating
this system of stochastic differential equations, we observe the
spreading of spike timing differences due to the noise, which
increase with the length of the integration. The neuron was run
with the parameters R = 1, I = 0.5, a = 0.7, b = 0.8, and
T = 12.5, and the mean dynamics are verified to have spiking
behavior. The simulator used 24 fractional bits and 4 integer
bits with a process slice of 8 time steps. Each memristor was
used as a binary weight.

We compare the interspike interval distribution (ISI) to
the same model solved on a regular computer. The plots of
the spike timing distribution are shown in Figure 2(c). The
computer was used to simulate the Fitzhugh-Nagumo neuron
with the same parameters as the hardware. A slight bias is
introduced between the hardware and software, with the spike
timing being smaller on average than the hardware solver. The
shape of the distribution is unaffected, as both are qualitatively
unimodal with a leftward skew.

Our solver also allows us to probe the dynamics in the
neighborhood of a bifurcation. The FitzHugh-Nagumo neuron
undergoes a Hopf bifurcation in the b-parameter [18], the effect
on the dynamics we show in Figure 2(d). We turn off the noise
and observe the bifurcation of the behavior of the neuron due
to the parameter b over the range of 1.3 to 1.5. The neuron
does not spike for values above roughly 1.45.

B. Hodgkin-Huxley Neuron

As discussed above, the Hodgkin-Huxley neuron models the
flow of ions in a giant squid axon. The equation is an effective



16
14

12

10

t

V

Noiseless dynamics with di�erent fractional precision

t t

V

n,
 m

, h
n,

 m
, h

V

Phase Portrait

Noisy Subunit Dynamics Noisy Voltage Dynamics

n
m
h

n
m
h

Fig. 4. (a) The phase portrait of the state variables vs. the voltage. (b) The dynamics suffer when the amount of fractional precision used in the solver drops.
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model of the ion dynamics, since it does not directly model
the ion kinetics. The equation for the voltage is

V̇ = − 1

Cm
(I(t) + gKm

3h(V − VK)

+ gNan
4(V − VNa)

+ gl(V + Vl))

with auxiliary state variables
ṅ = αn(Vm)(1− n)− βn(Vm)n+ noise
ṁ = αm(Vm)(1−m)− βm(Vm)m+ noise
ḣ = αh(Vm)(1− h)− βh(Vm)h+ noise

(4)

which are constrained by the dynamics (without noise) to be
between 0 and 1. The Hodgkin Huxley equations with this
type of noise are referred to as having subunit noise [13].
In this case we add white noise, but other noise spectra are
possible and lead to different dynamics [19]. In the presence
of noise, the derivatives cannot be guaranteed to be negative
when the state variable is 1 and positive when the state variable
is 0. When the state dynamics pass outside of the bounds the
equation becomes unstable. We put clamps on these variables
to prevent this. An alternative would be to attempt to take the
time step again with a different realization of the noise in until
an acceptable step is found.

We investigate the effect of our integer approximation
scheme on the dynamics of the Hodgkin Huxley Neuron.

Since the voltage variable never goes below -256V, 8 bits are
sufficient for the integer portion. We then vary the number of
fractional bits and observe the effect of the solved dynamics.
The dynamics of the Hodgkin Huxley suffer noticeably below
14 bits. Going from 14 to 16 bits reduces the time to the
first spike slightly. Reducing the number of bits allows for a
trade-off between speed and accuracy, up to a point.

V. CONCLUSION

We have demonstrated that our hardware is capable of solv-
ing with very high precision nonlinear and possible stochastic
neuron models. In solving the Fitzhugh-Nagumo and Hodgkin
Huxley models with arbitrary precision, we have demonstrated
the utility of in memory resistive RAM computational systems
for problems requiring tight tolerances. We also demonstrate
how we can reduce the precision by changing our bit slic-
ing for less fractional bits. When neuron models were first
introduced, their dynamics were solved via analog computing
using discrete circuit components. With the advent of digital
computers, densely integrated transistors represented the func-
tions and constants in the differential equations [12]. Here we
demonstrate the utility of modern hybrid analog and digital
computing for accelerating solvers for nonlinear stochastic
differential equations.
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