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“ I have no special talents, I am just passionately curious. ”

Albert Einstein

In the following thesis, the wording “we” will be used rather than “I” as the ideas

were discussed with my advisors and fellow researchers.
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Abstract

A Cohesive Distillation Architecture for Neural Language Models

by Jan Philip WAHLE

A recent trend in Natural Language Processing is the exponential growth in Language

Model (LM) size, which prevents research groups without a necessary hardware

infrastructure from taking part in the development process. This study investigates

methods for Knowledge Distillation (KD) to provide efficient alternatives to large-scale

models. In this context, KD means the extraction of information about language

encoded in a Neural Network and Lexical Knowledge Databases.

To test our hypothesis that efficient architectures can gain knowledge from LMs

and extract valuable information from lexical sources, we developed two methods.

First, we present a technique to learn confident probability distribution for Masked

Language Modeling by prediction weighting of multiple teacher networks. Second,

we propose a method for Word Sense Disambiguation (WSD) and lexical KD that is

general enough to be adapted to many LMs.

Our results show that KD with multiple teachers leads to an improved training

convergence. When using our lexical pre-training method, LM characteristics are not

lost, leading to increased performance in Natural Language Understanding (NLU)

tasks over the state-of-the-art while adding no parameters. Moreover, the improved

semantic understanding of our model increased the task performance beyond WSD

and NLU in a real-problem scenario (Plagiarism Detection).

This study suggests that sophisticated trainingmethods and network architectures

can be superior over scaling trainable parameters. On this basis, we suggest the

research area should encourage the development and use of efficient models and

rate impacts resulting from growing LM size equally against task performance.
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Chapter 1

Introduction

This master thesis addresses a recent Natural Language Processing (NLP) problem:

the increasing Language Model (LM) size regarding trainable parameters and com-

putational requirements. Chapter 1 introduces the problem of this current trend in

language modeling (Section 1.1), presents the proposed research objective pursued in

this thesis (Section 1.2), and outlines the remaining chapters (Section 1.3).

1.1 Problem Setting and Motivation

From the first definition of a LM for speech recognition systems in the early 1980s

(Jelinek, 1997), LMs have achieved breakthrough results in many Natural Language

Understanding (NLU) tasks as diverse as text-summarization, sentiment analysis, or

part-of-speech tagging. Since the introduction of the transformer model (Vaswani

et al., 2017), transfer learning approaches with large-scale pre-trained LMs have be-

come a de-facto standard in NLP (Radford et al., 2019; Devlin et al., 2019; Liu et al.,

2019a). In September 2020, Google incorporated the large-scale model BERT (Devlin

et al., 2019) for almost every English query1, and Microsoft exclusively licensed2 the

state-of-the-art model GPT-3 (Brown et al., 2020). While these models show signifi-

cant improvements in downstream tasks, they come at the cost of usually more than

a hundred million parameters. Moreover, it appears further increases in the number

of parameters, computational budgets, and data often lead to better results (Kaplan

et al., 2020).
1https://tinyurl.com/y6573ufm
2https://tinyurl.com/y3m7s8zz

https://tinyurl.com/y6573ufm
https://tinyurl.com/y3m7s8zz


2 Chapter 1. Introduction

FIGURE 1.1: The increase in Language Model size since the release of ELMo (Peters et al.,
2018) with the number of parameters in logarithmic scale and an exponential approximation

of two parameters e0.013x + 3.630.

This trend of high increases in model size raises three major concerns. First,

state-of-the-art models are only reproducible by a small group of organizations and

institutions with access to the necessary hardware. Figure 1.1 emphasizes this aspect,

where nine large institutions and organizations lead the research with their most

impacting models3. LM size increasingly prevents researchers without access to

the necessary hardware infrastructure from exploring models. At the time of writing,

the largest LM contains 175 billion parameters and is only accessible through an

official API (Brown et al., 2020). Even if the models were published, researchers would

need tremendous amounts of resources to run simple inference in a reasonable time.

Second, energy consumption is in linear relation to model size (Schwartz et al., 2019),

while model performance seems to follow a logarithmic relation regarding computing

budgets (Hestness et al., 2017; Kaplan et al., 2020). The non-linear relation of model

performance and energy use makes scaling model size economically and ecologically

questionable. Third, computational andmemory requirements prevent the deployment
3Impact refers to the number of citations to the related research paper.
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of neural LMs on-device and inference in real-time.

Studies show that LMs learn redundant features (Voita et al., 2019; Kovaleva et al.,

2019; Michel et al., 2019), inspiring the research of alternatives by compression, and

Knowledge Distillation (KD) (Sanh et al., 2019; Jiao et al., 2020; Sun et al., 2020b;

Gordon et al., 2020). Model compression focuses on parameter optimizations and

on reducing computational requirements (Tay et al., 2020). KD leverages the ac-

quired knowledge of large LMs into smaller models while reducing their training time

(Romero et al., 2015; Hinton et al., 2015). In this work, we use a compressed model

that uses its parameters efficiently. We propose two methods for KD to extract se-

mantic representations of multiple large LMs and to distill the knowledge of Lexical

Knowledge Databases (LKB). We release the code to reconstruct our experiments and

the pre-trained models. Please refer to Chapter 4 for the corresponding references.

1.2 Research Objective

Motivated by the limitations resulting from large LMs and the trend of further increas-

ing LM size, the following research objective was defined:

Propose, implement, and evaluate a LM training method that distills knowledge

from large-scale models and lexical databases into an efficient model to improve its

semantic representations.

Therefore, we derived the following research tasks:

Task 1 Perform a comprehensive analysis of state-of-the-art LMs, their strengths and

weaknesses, and methods to distill their knowledge.

Task 2 Develop and implement a prototype training architecture to incorporate knowl-

edge of larger models and external sources into an efficient architecture.

Task 3 Evaluate the proposed methods in the tasks of Word Sense Disambiguation

(WSD), Machine-Paraphrased Plagiarism (MPP) detection, and general NLU

tasks.
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1.3 Outline

Chapter 1 introduced the problem of current trends in language modeling (Section 1.1)

and presented the proposed research objective for this thesis (Section 1.2).

Chapter 2 addresses research Task 1 by providing fundamental background knowl-

edge and analyzing related work in the domain of language modeling (Section 2.1),

WSD (Section 2.3.1), and Plagiarism Detection (PD) (Section 2.3.2). Starting with a

definition of LMs, we discuss recent models based on the transformer architecture,

efficient alternatives, and methods for KD.

Chapter 3 is concerned with research Task 2 and presents our developed methods.

We begin presenting a novel approach for KD with multiple large-scale LMs into

an efficient architecture (Section 3.1). Next, we propose a training architecture to

incorporate knowledge from LKB and to perform the task of WSD (Section 3.2). We

close the chapter by showing how transformer models can be applied to PD for

machine-paraphrased text (Section 3.3).

Chapter 4 addresses research Task 3 by testing the models’ generalization against

related publications. We evaluate WSD methods incorporating LKB on five bench-

marks and their generalization on eight NLU datasets (Section 4.2). The final experi-

ment evaluates our architecture in the task of MPP on a recently presented dataset

containing text from research papers, graduation Theses, and encyclopedia articles

(Section 4.3).

Chapter 5 presents the final considerations to this work. Concluding from the

experiments, our methods reduce the amount of computational time and model

parameters by using external knowledge and information encoded in large models

(Section 5.1). We think the presented systems can have a broader impact on other

areas (e.g., Mathematical Information Retrieval) and include more researchers in the

development process of LMs (Section 5.2). Finally, we present research directions for

future work (Section 5.3).
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Chapter 2

Background and Related Work

LMs are a fundamental component of language processing and the main focus of this

thesis. This chapter provides the reader with fundamental background knowledge

(Sections 2.1.1 to 2.1.3) necessary to explore sophisticated LM training architectures

based on transformers (Sections 2.1.5 and 2.1.6). After introducing efficient architec-

tures for LMs (Section 2.1.7), we explore methods to distill the knowledge of a Neural

Network (NN) by comparing three important knowledge concepts (Section 2.2.1).

We review KD methods for transformer LMs (Section 2.2.2) and conclude that multi-

teacher KD and the incorporation of external knowledge appear as promising research

directions. Finally, this chapter presents two applications, the task of WSD (Sec-

tion 2.3.1) and MPP detection (Section 2.3.2).

2.1 Language Models

LMs assign probabilities to parts of unseen text based on prior knowledge of observed

text (Jurafsky and Martin, 2009, Chapter 3). For example, a LM might assign a higher

probability to “a bit of text” than to “aw pit tov tags” because the words in the former

phrase occur more frequently in a text corpus (Hiemstra, 2009).

2.1.1 Fundamentals

One method to estimate a word’s probability in a sentence is by using the relative

count frequency of sentences (Jurafsky and Martin, 2009, Chapter 3). For example,

relative count frequency measures the probability of the word “text” following the

sentence “a bit of”, by counting occurrences of “a bit of text” and relating them to all



6 Chapter 2. Background and Related Work

sentences starting with “a bit of”. Equation (2.1) formalizes the conditional probability

expressed by relative count frequencies (where P is a probability measure and C is a

counting function over the corpus).

P (“text” | “a bit of”) =
C(“a bit of text”)
C(“a bit of”)

(2.1)

While estimating probabilities from word counts works well in many cases, the

corpus size has to be large and unseen variations (e.g., "A bit of fun") have no assigned

probability. Also, modeling the joint probability of a sentence requires estimating all

sentences’ probabilities with the same number of words. The poor generalization re-

sulting from sparse representations with many zero probabilities and a high modeling

complexity inspired more sophisticated methods for modeling the joint probability of

words. Before continuing with these methods, we define a standard set of terms and

symbols.

We represent a string of contiguous characters as a token and an algorithm that

transforms a sequence of characters into tokens as a tokenizer. In this work’s context,

a token represents either a word or a word piece (i.e., a sub-word which, together

with other sub-words, can construct a word). We use the terms token and word

interchangeably. A popular technique for tokenization in the area of LMs (Radford

et al., 2019; Devlin et al., 2019) is the compression algorithm Byte-Pair Encoding

(BPE) (Sennrich et al., 2016) that many tokenizers use, e.g., SentencePiece (Kudo

and Richardson, 2018) or WordPiece (Schuster and Nakajima, 2012). BPE initializes

a set of every character in a corpus to learn efficient merging rules. The algorithm

finds frequent (sub-)words and encodes them efficiently using Huffman coding (Furht,

2006).

We represent a sequence of n words as w1, ..., wn or w≤n (with w<n meaning

w1, ..., wn−1). The joint probability of words in a sequence having a particular value is

P (w1, ..., wn). With this notation, we can model the joint probability of a sequence as

a forward product by using the chain rule (see Equation (2.2)).
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P (w1, ..., wn) = P (w1)P (w2 | w1)P (w3 | w<3)P (wn, w<n) (2.2)

=

n∏
i=1

P (wi | w<i) (2.3)

LMs can be generally divided into Auto Regressive (AR) and Auto Encoding (AE)

models. AR models use the forward product of Equation (2.2), a backward product

or a combination of both (Peters et al., 2018). A backward product is analogous to

the forward one in but with right-to-left context, and the factorization P (w1, ..., wn) =∏1
i=n P (wi|w>i). AEmodels do not perform explicit density estimation but reconstruct

corrupted inputs.

AR language models can gain robustness by applying the memoryless Markov

property (Markov, 1954, Chapter 4) to the conditional probability estimation. A bigram

models words’ probabilities depending to one previous word, i.e., P (wi | w<i) ≈

P (wi | wi−1). Bigrams reduce zero probabilities for unseen text as word pairs can

model a large fraction of possible sentences. For example, when the bigrams “a bit”,

“bit of”, and “of fun” occured in the corupus, the probability P (“a bit of fun”) can be

modeled although this exact phrase never occured. A generalization of bigrams are

n-grams which access n− 1 previous words from the context. Smoothing techniques

for n-grams (Kneser and Ney, 1995; Chen and Goodman, 1996) eliminate the problem

of zero probabilities by reallocating the probability mass of frequent and infrequent

n-grams.

2.1.2 Neural Network Language Models

A profound downside of n-gram LMs is the curse of dimensionality that results from

modeling the joint probability distribution for all possible n-grams over the vocabulary

V , which is the set of all (sub-)words in a corpus. The number of possible n-grams

growswith |V |n, making the number of parameters to represent large vocabularies and

long n-grams infeasibly large. To overcome the curse of dimensionality and to capture

long contexts without zero probabilities, Xu and Rudnicky (2000) first introduced

a feed-forward NN to learn a bigram model and Bengio et al. (2003) used a NN to
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directly approximate each conditional probability distribution from Equation (2.2). The

NN receives context words w<i as inputs, which are transformed from their one-hot

encoding into a continuous feature vector space by a projection matrix C ∈ R|V |×h,

with h being the NNs hidden dimensions to learn each conditional distribution. The

model predicts P (wi | w<i) using the softmax function (Goodfellow et al., 2016,

Chapter 6) and optimizes its weights using negative log-likelihood (corresponding to

the multi-class cross-entropy (Bishop, 2006, Chapter 4)), the Back Propagation (BP)

algorithm (Rumelhart et al., 1986), and Stochastic Gradient Descent (SGD) (Kiefer and

Wolfowitz, 1952).

Bi-products of performing language modeling with NNs are high-level semantic

features produced in hidden layers with increasing abstractions towards the prediction

(Bengio et al., 2013). Hidden representations are often referred to as word embeddings

and used in many NLP tasks (Wang et al., 2019c). Compared to sparse vectors

capturing word frequencies with integers often including many zeros, NN embeddings

are dense as each value is a real number which results in higher modeling capabilities

when the vector size remains equal. Static word embedding methods (Mikolov et al.,

2013a; Pennington et al., 2014; Bojanowski et al., 2017) use a unique fixed vector to

represent a word’s meaning. Context-aware word embedding models (Peters et al.,

2018) encode a word with different dense vectors if the context changes.

2.1.3 Recurrent Neural Network Language Models

Using feed-forward NNs as the conditional probability approximator for languagemod-

eling has two significant drawbacks. First, fully-connected layers expect a fixed-sized

input, making the context size fixed too. Second, feed-forward layers treat inputs as

independent and simultaneous features. However, in practice, the context size of sen-

tences varies, and word order can change sentences’ semantic content. To introduce

higher-level features by capturing longer contextual information and processing vari-

able sized contexts, Mikolov et al. (2011b,a) used Recurrent Neural Networks (RNN)s

(Rumelhart et al., 1986) as function approximators for neural LMs. As traditional RNNs

tend to be less stable due to the vanishing and exploding gradient problem (Hochreiter,
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1991; Bengio et al., 1993, 1994), Long Short-Term Memory (LSTM) networks (Hochre-

iter and Schmidhuber, 1997) gained attention for neural LMs (Sundermeyer et al.,

2012).

An extension to LSTMs are bidirectional LSTMs (Peters et al., 2018; Howard and

Ruder, 2018) which use an additional backward product, analogous to the forward one

in Equation (2.2)with the factorizationP (w1, ..., wn) =
∏1
i=n P (wi|w>i). Other network

architectures include Gated Recurrent Unit (GRU) and Convolutional Neural Network

(CNN). When processing character-level information, word embeddingmodels (Peters

et al., 2018; Ma et al., 2020) sometimes use GRU networks (Cho et al., 2014) to

construct contextual character embeddings serving as inputs to the model. CNNs,

the most used architecture in computer vision tasks (LeCun et al., 2015), mainly

perform classification tasks in NLP, e.g., sentence matching (Hu et al., 2014), topic

categorization (Kalchbrenner et al., 2014), or relation extraction (Nguyen and Grishman,

2015), but are not popular in the language modeling domain (Pham et al., 2016).

2.1.4 Attention in Recurrent Neural Networks

When modeling the probability of a word using its context, intuitively, not every sur-

rounding word is relevant. For example, modeling the probability of the word “python”

given a context requires a specific focus on related words such as “snake” or “pro-

gramming language”. This mechanism is a well known cognitive concept studied in

psychology called attention (Anderson, 2015, Chapter 3). Our brain selectively con-

centrates on a specific stimulus to solve a problem while ignoring other perceivable

stimuli. Attention for RNNs and LSTMs originated in sequence-to-sequence models,

where the model generates one word at a time from an input sequence of words

(Bahdanau et al., 2016). Focussing on specific context words while ignoring less

important ones, the attention mechanism uses learnable coefficients (Tran et al.,

2016; Mei et al., 2016).

Although RNNs and LSTMs using attention show superior performance in many

NLP tasks, their recurrent dependence requires a sequential computation of gradients

within its layers from the last word to the first one (Goodfellow et al., 2016, Chapter 10)

(sometimes referred to as Back Propagation Through Time (BPTT)). BPTT prevents
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RNNs and their derivatives to scale with more hardware as sequential parts cannot

be parallelized. Modern neural LMs leverage a variation of attention and feed-forward

NNs that are highly parallelizable and discussed in the following Section.

2.1.5 The Transformer Model

The introduction of the transformer model (Vaswani et al., 2017) for neural machine

translation revolutionized neural language modeling (Radford et al., 2019; Devlin et al.,

2019; Liu et al., 2019a). Transformers are feed-forward NNs using an encoder-decoder

structure. The encoder maps a sequence of token embeddings to a continuous

representation, which is forwarded to the decoder generating an output sequence one

word at a time. As the transformer uses feed-forward layers, it overcomes vanishing

gradient problems that make learning long-term dependencies difficult and allows

for high parallelization, reducing training time. Vaswani et al. (2017) further improve

long-term dependency learning by a novel self-attention mechanism that considers

the connection of every word to every other word in the input sequence.

Encoder and decoder consist of consecutive modules. The output representations

of the final encoder state serve as the input to each decoder module. Each processing

step involves mainly three components: fully-connected layers, residual connections,

and multi-headed self-attention. Fully-connected layers project the embedding space

into a higher dimension to construct more complex features. Residual connections

(He et al., 2015) increase the gradient signal for BP by forwarding the identity of the

previous layer to the next one achieving higher generalization than chain-like networks

(He et al., 2020). The most effective and a well studied architectural component

of transformers (Kitaev et al., 2020; Beltagy et al., 2020) is the scaled dot-product

attention (which we will refer to as self-attention).

Self-attention estimates a probability distribution over word co-relations within a

sequence using softmax. Therefore, the transformer learns three weight matrices,

the Key (K), Query (Q), and Value (V ). Each matrix is a linear transformation of the

word embeddings and has size s× dk , where s is the sequence length, and dk is the

hidden dimension of theK matrix. Self-attention uses the dot product of Q andK as

a similarity measure between word representations. The softmax function applied to
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the dot product of Q and K yields an attention score, i.e., a probability distribution

representing all word-pairs’ influence over the sequence. An additional normalization

term prior to the softmax (
√
dk) reduces large values causing diminishing gradients.

The probability distribution multiplied by V selects word representations in proportion

to word co-relateions (see Equation (2.4)).

Att(Q,K, V ) = softmax
(
QKT

√
h

)
V (2.4)

Compared to RNNs, self-attention and fully-connected layers are large matrices

products and can be highly parallelized. Therefore, transformers are scalable and

train in a fraction of the time compared to RNNs with the same number of floating-

point operations. However, as transformers are feed-forward, they have no time-step

dependence like RNNs and require positional information in the input to encode its

token position. Transformers typically use a combination of sine and cosine functions

of different frequencies added to the token embeddings to represent the word position

in the sequence.

In an attempt to capture different aspects of a language,multi-headed self-attention

stacks multiple self-attention layers in parallel, similar to kernels in a CNN. Multi-

headed self-attention allows the transformer to learn multiple features in each layer.

Both methods are illustrated in Figure 2.1.

FIGURE 2.1: Scaled Dot-Product Attention (left). Multi-Head Attention (right) (Vaswani et al.,
2017).
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Self-attention is an effective method to perform neural machine translation, cre-

ating semantic encoder representations. These high-level representations inspired

many works in the domain of language modeling (Radford et al., 2019; Devlin et al.,

2019; Lan et al., 2019; Brown et al., 2020) and shifted the paradigm of how language

modeling is approached (see Section 2.1.6).

2.1.6 Transformer-Based Language Models

Universal LM fine-tuning (Howard and Ruder, 2018) introduced an inductive transfer

learning paradigm for LMs. Their model first optimizes for the conditional probability

distributions over large corpora to capture general language features (pre-training)

and then learns new tasks with few additional gradient steps on new datasets (fine-

tuning). Pre-training is expensive and typically requires multiple billion tokens but is

performed only once. Fine-tuning is cheaper and processes a fraction of the tokens

used in pre-training. Howard and Ruder (2018) inspired many models to follow the

transfer learning paradigm (Radford et al., 2019; Devlin et al., 2019).

Using the transformer architecture, Bidirectional Encoder Representations from

Transformers (BERT) (Devlin et al., 2019) proposes two pre-training tasks to capture

general language aspects, i.e. Masked Language Modeling (MLM) and Next Sentence

Prediction (NSP). MLM is an AE training method as it reconstructs masked words

within a context. For example, given the sentence “I use the programming language

python”, words are masked at a certain probability using a special token. The sentence

may transform into “I [MASK] the programming [MASK] python” challenging BERT to

reconstruct the masked words using a bidirectional context. NSP predicts whether

two sentences are semantically connected. Multiple studies showed the NSP task

has little influence on BERT’s performance (Lan et al., 2019; Liu et al., 2019a) which

is why we focus on the MLM task in our models (Sections 3.1 and 3.2). For more

information about the NSP task, we suggest the original work of Devlin et al. (2019).

BERT transforms the final representation of the transformer for each masked word

into a probability vector over the vocabulary using softmax and optimizes for the

targets using cross-entropy loss.
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The same way Word Vector Model (W2V) (Mikolov et al., 2013b) inspired many

models in NLP (Bojanowski et al., 2017; Ruas et al., 2019, 2020), BERT echoed in the

literature with recent models as well (Yang et al., 2019; Clark et al., 2020). A Robustly

Optimized BERT Pretraining Approach (RoBERTa) (Liu et al., 2019c) showed additional

training data from, a more extensive vocabulary, and more training steps with larger

batches, further improve BERT’s performance.

XLNet (Yang et al., 2019), an extension of pre-training methods from Transformer-

XL (Dai et al., 2019), aims to take advantage of AE concepts for AR language modeling.

XLNet explores two of BERT’s deficiencies: (1) the corruption of sequences with artifi-

cial [MASK] tokens, which never occur in regular text, and (2) the prediction of masked

words in a single step, assuming independence of words from each other. XLNet

removes [MASK] tokens and maximizes the expected log-likelihood of a sequence

concerning all possible permutations of the factorization order.

ELECTRA (Clark et al., 2020) changes the MLM task of BERT to a generator-

discriminator setup. The model substitutes tokens with artificially generated ones

from a small masked LM and discriminates them in a noise contrastive learning

process (Gutmann and Hyvärinen, 2010). BART (Lewis et al., 2019) pre-trains a bidi-

rectional AE and AR transformer in a joint structure. A two-stage denoising AE first

corrupts the input with an arbitrary function (bidirectional) and uses sequence-to-

sequence to reconstruct the original input (AR).

Other popular examples of AR models include the three versions of the Generative

Pre-trained Transformer (GPT)model, with GPT-3 reaching 175 billion parameters. The

training method of GPT-3 mainly relies on predicting consecutive tokens and a large

carefully pre-processed dataset composed of Common Crawl (CC) web documents1.

The T5 model formulates transfer learning tasks as textual questions and performs

prediction using text generation of a large AR model. In this work, we exclude the

exploration of pure AR models for our models as the targeted downstream tasks do

not require text generation. Instead, we focus on the variation of BERT-related AE

models which are compatible with each other for KD.

Since the introduction of BERT, a growing area of research is concerned with the

question of how to reduce computational requirements and parameter count of LMs
1http://commoncrawl.org/

http://commoncrawl.org/
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without significant performance loss (Tay et al., 2020). DistilBERT (Sanh et al., 2019)

uses the concept of KD (Hinton et al., 2015) with a student-teacher architecture to

extract BERT’s knowledge into a smaller model. Therefore, DistilBERT initializes with

a selection of BERT’s layers and optimizes the negative log-likelihood for soft target

probabilities, i.e., BERT’s logits, with regular introductions of ground truth labels. KD

requires fewer training steps compared to training the model from scratch with only

ground truth targets and converges to smaller validation losses.

A Lite BERT (ALBERT) (Lan et al., 2019) makes BERT more efficient through fac-

torized embedding parameterizations, cross-layer parameter sharing, and Sentece

Order Prediction (SOP). Compared to BERT, RoBERTa, and XLNet which set the hidden

layer size h to the WordPiece Embedding size E, i.e. H = E, ALBERT minimizes

computational requirements for typically large vocabularies V from O(V × H) to

O(V × E + E ×H) with small values for E. ALBERT shares all parameters across

layers to reduce parameter count significantly (10% of BERT’s parameters for the base

model), similar to other strategies for transformers (Dehghani et al., 2018; Bai et al.,

2019). ALBERT proposes SOP, as RoBERTa and XLNet found NSP’s impact unreliable

due to low task difficulty. SOP uses as positive examples two consecutive sentences

from the same document, and as negative examples the same sentences but with

their order swapped making the task more difficult.

The presented transformer-based LMs rely on self-attention, which is the most

computationally expensive layer in the transformer’s NN, growing quadratically con-

cerning the sequence length. As one example of exploring new schemes to calculate

self-attention with the motivation for capturing larger contexts, Longformer (Beltagy

et al., 2020) combines a windowed local-global self-attention scaling linearly with the

sequence length in comparison to other models. Section 2.1.7 introduces a taxonomy

for efficient transformer architectures which are relevant to explore large-scale LM

distillation.

2.1.7 Efficient Transformers

In the first formalization of intelligent machines, Alan Turing described a phenomenon

of Machine Learning (ML) with remarkable precision:
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“[M]achines of this character can behave in a very complicated manner when the

number of units is large.”

Alan Turing (1948) “Intelligent Machines”, page 6

Supporting Turing’s observation, recent studies (Hestness et al., 2017; Kaplan et al.,

2020) predict correlations between model size, dataset size, computational budgets,

and the problem complexity NNs can solve. Figure 2.2 shows these three factors can

accurately predict the test loss of transformer LMs while the model shape and other

hyperparameters are negligible.

FIGURE 2.2: Test loss for transformer languagemodels with varying compute budgets in Peta
Flops (PF), dataset sizes in number of tokens, and parameter counts without embedding

layers from Kaplan et al. (2020).

However, in this work, we show how explicit incorporation of external knowledge

from LKB (Section 3.2) increases the performance of LMs for downstream tasks while

having less computational requirements and an equal dataset size and parameter

count. Similar results for the WSD task are present in the literature (Blevins and

Zettlemoyer, 2020).

The related fields of regularisation and pruning are concerned with the question

of how to reduce model parameters without performance loss. Pruning methods for

LMs show that specific attention heads in the transformer architecture are obsolete,

and removing them yields marginal performance loss (Voita et al., 2019; Michel et al.,

2019). Supporting this hypothesis, KD methods for LMs (Sanh et al., 2019; Wang et al.,

2020) extract knowledge of large-scale models into significantly smaller ones while

keeping most of their performance.
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To distill knowledge into smaller models requires exploring efficient architectures

targeting expensive layers regarding the number of parameters and computational

budgets. For transformer models, the most computationally expensive component is

self-attention. Tay et al. (2020) introduced a taxonomy to divide efficient architectures

optimizing attention into five main categories:

Fixed/Factorized/Random Parameter methods reduce the self-attention matrix by

limiting the field of view to fixed patterns, e.g., local windows and blocks.

Low Rank/Kernel methods approximate the self-attention matrix by assuming a low

rank to decompose it into a smaller dimension. Kernel methods rewrite self-

attention to avoid computing large dot-products explicitly.

Recurrence methods forward multiple sequences through the same model keeping

previous states.

Memory models are extended with side memory modules to store a temporary con-

text for future processing.

Learnable Patterns approximate the access pattern with data-driven approaches,

e.g., clustering methods and hashing functions.

This work constructs a modified version of Longformer (Beltagy et al., 2020) which

uses a combination ofmemory and fixed parameters. We choose Longformer because

it performed superior over seven comparable LMs in our related study (Wahle et al.,

2022b) and uses MLM, making the model compatible with many transformer-based

LMs. We also propose a lexical KD technique that is general enough to be applied to

many different LMs (see Section 3.2).

2.2 Knowledge Distillation

In our first years as children, we learn language mainly from observing other humans

and interacting with them. We expose ourselves to domain experts during education,

whom we call teachers to learn from their knowledge and experiences. In large-scale

LMs the trend is different: novel models learn language patterns from scratch instead
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of leveraging the acquired knowledge of already trained ones. We argue this course

is inefficient and barely adds value to the semantic representations of a LM. Many

novel models train on very similar datasets (see Table 2.1 in Section 2.2.2) with small

performance gain in downstream tasks.

The field of KD uses a similar teacher-student paradigm to the one employed by

humans. When extracting acquired information (knowledge) into a smaller model

(distillation), we call the process Knowledge Distillation. A crucial question in the

domain of KD is how to better represent knowledge in a NN. In the following Section,

we introduce essential knowledge concepts.

2.2.1 Knowledge Concepts

We categorize knowledge concepts using three main categories related to our work:

Logit-Based Knowledge represents information encoded in the final predictions of a

model, including semantic information.

Feature-Based Knowledge exists in the hidden representations of a NN that grow

with abstraction towards the prediction layer.

External Knowledge consists of structured and explicit sources created by humans

to describe concepts.

The different types of knowledge for the transformer architecture are visualized in

Figure 2.3. Other types of knowledge include relation-based (Yim et al., 2017; Lee

et al., 2018) and self-distilled (Hahn and Choi, 2019; Zhang et al., 2019a) knowledge,

which study the relation of features and data to improve representations within the

same network. We exclude these types of knowledge because they typically require

the extracted network to be of the same size as the pre-trained network contradicting

our primary research objective to optimize for a smaller model (see Section 1.2).

Logit-Based Knowledge

The information encoded in the probability distributions of a models’ prediction lay-

ers represents logit-based knowledge. Logit-based KD uses a soft distribution of a
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Logit-Based

Feature-Based

External Knowledge

Data

FIGURE 2.3: Knowledge concepts visualized for the transformer architecture. This figure is an
adaptation from Figure 1 in (Vaswani et al., 2017).

teacher’s prediction layer as the supervision signal for a student (Hinton et al., 2015).

For example, in a mutually exclusive multi-class problem to classify whether a text

describes one of five classes (e.g., Huskey, Eurasian, cat, car, bus), a trained teacher

model assigns a high probability to the actual class (e.g., a Huskey), lower probabili-

ties to similar animals (e.g., the Eurasian), lower but non-zero probabilities to other

animals (e.g., cat), but close to zero probabilities to vehicles (e.g., car, bus). This

semantic understanding dark knowledge and is used to learn semantic features from

the teacher model.

The logit-based method proposed by (Hinton et al., 2015) mimics a softer version

of a teacher model’s predictions. NNs typically learn classification using a softmax

layer to produce probabilities qi from logits zi with a temperature parameter T as

Equation (2.5) shows.

qi =
exp(zi/T )∑
j exp(zi/T )

(2.5)

Usually, classification tasks set the temperature T to 1. Larger values of T produce
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a softer distribution (i.e., non-maximum logits increase andmaximum logits decrease).

Logit-based KD uses the soft target distribution from the teacher network with T > 1

to estimate a less strict output distribution. When the student model converged to

model the teacher’s soft distribution, T is set back to 1. Additionally, logit-based

methods regularly introduce the ground truth labels, proving to increase the student

model’s performance.

Logit-based KD uses one part of the teacher network information, the final pre-

dictions. However, when working with NNs, all hidden representations are available.

Especially in deep learning, additional supervision signals using hidden representa-

tions improve training stability and reduce training time (Romero et al., 2015; Jiao

et al., 2020).

Feature-Based Knowledge

Hidden representations in NNs encode high-level features that increase in abstraction

with layers closer to the final prediction (Bengio et al., 2013). Feature-based KD uses

these high-level features with regular supervision signals between hidden layers of

the student and teacher model (Romero et al., 2015; Zagoruyko and Komodakis, 2017;

Kim et al., 2018). Thin deep networks (Romero et al., 2015) propose hints, which are

comparisons of hidden features from the student and teacher model using a regres-

sion loss. An extension of thin deep networks related to this work creates supervision

signals using an attention score over features (Zagoruyko and Komodakis, 2017). The

generalization of these attention scores calculates distributions of selectivity patterns

and compares them rather than comparing features directly (Huang and Wang, 2017).

Probabilistic knowledge transfer explores the probability distribution of the data in

the feature space instead of their sample representation (Passalis and Tefas, 2019).

External Knowledge

Different from implicit knowledge found in trained NNs, we can find knowledge in

more explicit external sources, i.e., knowledge acquired and structured by humans to

describe natural phenomena. For example, the Wikidata Knowledge Graph2 contains
2https://www.wikidata.org/

https://www.wikidata.org/
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91million entries describing relations of entities, e.g., humans, architectural structures,

or chemical elements. Knowledge-based methods for WSD commonly explore the

knowledge of LKB. A popular example of a LKB is WordNet (Miller, 1995; Fellbaum,

1998b) which contains, e.g., Part Of Speech (POS) tags for words, word relations, and

glosses3.

External knowledge sources have two significant advantages over knowledge

obtained through NNs. First, they are interpretable by humans in a straight-forward

manner. Second, their knowledge can be used explicitly to optimize learning a specific

aspect of language (e.g., ambiguity). Unsupervised LM pre-training proved to learn

features of a language successfully, but with the cost of typically multiple billion

tokens of optimization. With explicit knowledge from external sources, we show our

models can gain superior semantic understanding while keeping the parameters low.

2.2.2 Language Model Knowledge Distillation

KD has been extensively studied in the NLP domain (Kim and Rush, 2016; Hu et al.,

2018). As the usage of large-scale neural LMs with many parameters increased, KD

gained much importance for the LM research as well.

DistilBERT (Sanh et al., 2019) uses the logit-based KD algorithm described in

(Hinton et al., 2015) to learn soft target probabilities of BERT with the supervised

MLM loss. Additionally, DistilBERT optimizes its embedding output similarities with

the cosine embedding loss yielding similar embeddings to the teacher model. To

transfer prior knowledge of BERT into a smaller model, DistilBERT keeps the weights of

selected layers from the original model. As discussed, the hidden size has to remain

equal between DistilBERT and BERT when initializing BERT’s weights. Therefore,

DistilBERT controls model size through the number of layers. The Patient KD algorithm

proposed by Sun et al. (2019) focuses on learning aggregate representations of the

teacher model, i.e., the [CLS]-token in BERT, rather than masked word soft-targets.

The aggregate encodes the highest semantic information about a sequence and is

typically used for classification tasks.
3Gloss: A brief definition of a word sense.
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TinyBERT (Jiao et al., 2020) combines feature-based and logit-based approaches

to imitate several larger layers into smaller ones (i.e., embedding layer, attention layer,

hidden layer, prediction layer). In addition to pre-training, TinyBERT performs KD at the

fine-tuning step. LadaBERT (Mao et al., 2020) reduces parameters and computational

complexity with Singular Value Decomposition (SVD) over the weight matrices and

uses weight pruning (Han et al., 2015; Blalock et al., 2020). Mao et al. (2020)’s KD

methods are similar to TinyBERT using logit-based and feature-based knowledge.

MobileBERT (Sun et al., 2020b) proposes bottleneck structures which are smaller

alternatives to BERT’s modules and balancing between multi-headed self-attention

and feed-forward layers. To extract knowledge into the new structure, MobileBERT first

trains a modified BERT model, which uses the bottleneck architecture components.

The student then distills knowledge from the modified BERT layer-to-layer. Training

the modified BERT model adds additional training time, and performing layer-to-layer

distillation fixes the number of layers and the teacher and student’s hidden size.

MINILM (Wang et al., 2020) focuses on imitating the multi-headed self-attention

modules of the teacher’s transformer to gain feature-based knowledge. Wang et al.

(2020) show high-level attention layers encode the highest semantic information.

Thus, imitating layers close to the prediction step appears to yield similar performance

with less supervision. Moreover, MINILM uses a teacher assistant (Mirzadeh et al.,

2020), which stabilizes the KD loss when the teacher model is much larger than the

student model. MINILM has no requirement on the hidden size or the number of layers

of the student and does not perform layer-to-layer distillation, making the student

model more flexible.

BERT-of-Theseus (BoT) (Xu et al., 2020) creates small substitutes for BERT’s large

layer modules. The model learns compact substitutes and large modules simulta-

neously in BERT and increasingly replaces large modules with compact ones with

advanced training progress. The smooth transition from large modules to compact

modules results in an interaction of original modules and their compact replacements.

This interaction proves to be superior to starting with many compact layers.

Enhanced Language RepresentatioN with Informative Entities (ERNIE) (Zhang

et al., 2019b) uses entities from the Wikidata Knowledge Graph with a token encoder
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and an entity encoder. The entity encoder uses an aggregation sub-layer to perform

multi-headed self-attention over the tokens and entities, concatenating their resulting

embeddings. The pre-training objective is a denoising Entity Auto-encoder (dEA), which

randomly masks token-entity alignments which the transformer needs to predict all

corresponding entities based on aligned tokens.

The extension of ERNIE, ERNIE 2.0 (Sun et al., 2020a) explores the incorporation

of different pre-training objectives in a multi-task setup using explicit knowledge

or self-supervised labels. Replacing training objectives typically reduces previously

learned features as they are not needed to perform the new task. However, ERNIE

2.0 maintains knowledge aspects by keeping objectives at a small percentage during

training, resulting in semantically richer features. We summarize the most popular

presented transformer-based LMs and provide a comprehensive overview in Table 2.1.

TABLE 2.1: Overview of transformer-based language models. Wikipedia refers to the official
English Wikipedia Dump. The dash symbol "-" indicates that no official information was pro-

vided in the related research paper.

Model Dataset Model

Corpora Size / Tokens Tokens / Epochs Parameters Training Procedure

AlBERT (2019) Books (2015), Wikipedia 13GB / 3.3b 262b / 80 large / xxlarge : 17m / 223m MLM + SOP
BART (2019) Books (2015), Wikipedia 13GB / 3.3b 2.2t (large) base / large : 139m / 406m Denoising Auto Encoder
BERT (2019) Books (2015), Wikipedia 13GB / 3.3b 137b / 40 base / large : 110m / 340m MLM + NSP
ELECTRA (2020) Books (2015), CCa,

ClueWeb 2012-Bb, Gi-
gaword 5 (2012), Wikipedia

158GB / 33b 419b / 12.7 335m Replaced Token Detection

ERNIE (2019b) Wikidata, Wikipedia - / 4.5m - / 1 114m MLM + NSP + dEA
ERNIE 2.0 (2020a) Books (2015), Discov-

ery Data (2019), Reddit,
Wikipedia

19GB / 7.9b 78b / 10 base / large : 110m / 340m Knowledge Masking + Cap-
ital Prediction + Token Doc-
ument Relation + Sentence
Reordering

GPT-2 (2019) Open Web Text (2019) 40GB / 10.2b - / - medium / xl : 345m / 1.6b Left-to-right LM
Longformer (2020) Books (2015), CC-Stories

(2019), Realnews (2019),
Wikipedia

31.6GB / 6.4b 39b / 6 base / large : 149m / 435m MLM

MT-DNN (2019b) GLUE (2019b) 4GB / 25m 123m / 5 base / large : 110m / 340m Multi-Task Finetuning
RoBERTa (2019c) Books (2015), CC-Stories

(2019), CC-Newsc (Sept
2016 - Feb 2019), Open
Web Text (2019), Wikipedia

160GB / 33b 2.2t / 66 base / large : 125m / 360m MLM + large batches + full
sentences + large BPE vo-
cab (50k pieces)

T5 (2020) C4 dataset (2020) 803GB / 165b 34b / 0.2 T5-large / T11 : 770m / 11b fill-in-the-blank prediction
XLNet (2019) Books (2015), CCa,

ClueWeb 2012-Bb, Gi-
gaword 5 (2012), Wikipedia

158GB / 32b 2.2t / 66 base / large : 110m / 340m Permutational LM

a http://commoncrawl.org/ b https://lemurproject.org/clueweb12/ c http://commoncrawl.org/2016/10/news-dataset-available/

This thesis shows the combination of logits and high-level features can extract

knowledge into an efficient transformer architecture. Using external knowledge from

LKB, our model gains semantic understanding beneficial for many NLU tasks.

http://commoncrawl.org/
https://lemurproject.org/clueweb12/
http://commoncrawl.org/2016/10/news-dataset-available/
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2.2.3 Multi-Teacher Knowledge Distillation

Different models provide individual knowledge aspects to perform tasks. The no free

lunch theorem states, there exists no single model that is best suited for all possible

scenarios and data sets (Ho and Pepyne, 2002). Instead, different LM architectures

are experts in specific language characteristics.

Hinton et al. (2015) showed that ensembles of expert models are superior to a

single generalized model. However, ensembles increase the cost of training and

inference as they use multiple models simultaneously. To combine the knowledge of

many experts, multi-teacher KD combines the response from many teachers as the

supervision signal (e.g., averaging the soft-targets (Hinton et al., 2015)).

Tarvainen and Valpola (2017) average the teacher parameters instead of predic-

tions and use a consistency loss between teacher’s and student’s predictions. The

model keeps a moving average of label predictions on each training example and

penalizes predictions inconsistent with the average. You et al. (2017) extend learning

soft-targets to features using a triplet loss by increasing the dissimilarity in feature

representation between different examples and vice-versa.

In the domain of LMs, some publications explore multi-task KD (Liu et al., 2019a),

i.e., learning multiple tasks simultaneously to achieve more general representations,

but ignore multi-teacher concepts. We see a gap in the literature to apply multi-teacher

KD to large-scale LMs.

In this work, we transfer the concept of multi-teacher KD to large-scale LMs to gain

their knowledge aspects. Our method weights the soft-target distribution of multiple

teachers focusing on models with the highest prediction confidence.

2.3 Applications

To validate a LMcaptures the characteristics of language, it needs to produce semantic

representations beneficial for many NLU tasks. NLU benchmarks (Wang et al., 2019b;

Sarlin et al., 2020) include a wide range of tasks and cover individual aspects of the

target language, e.g., polysemy or text similarity.
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In particular, WSD is a difficult task to perform. Navigli (2009) showed F1 scores

above 80% are difficult to surpass as the inter-annotator agreement (i.e., the per-

centage of words tagged with the same sense by two or more human annotators) is

67% to 80% for fine-grained, WordNet-style sense inventories. Polysemy frequently

occurs in natural language, making it a crucial task to accomplish for any NLP system.

Furthermore, WSD appears to be sensitive to changes in the LM architecture and

training scheme (Wahle et al., 2021b) which makes it a suitable task to validate our

proposed methods against different LM architectures.

Another interesting application for LMs lies in the domain of MPP detection

(Foltýnek et al., 2020b; Wahle et al., 2022b). Academic plagiarism has become a

pressing problem in our society. We know of more than 30 cases of academic plagia-

rism in Germany, including former minister of defense Karl-Theodor zu Guttenberg4.

Modern plagiarists use machine-paraphrasing tools, which typically remain unde-

tected by PD systems using word-based or character-based text comparisons with

an indexed corpus (Foltýnek et al., 2019). Real-world forms of plagiarism require de-

tecting re-constructed and replaced parts of the text with probably unknown sources

(e.g., Theses material).

2.3.1 Word Sense Disambiguation

WSD seeks to determine the meaning of words given a context and is a fundamental

challenge in NLP (Navigli and Ponzetto, 2012). For example, the sentence “I like java”

is ambiguous as “java” can refer to the programming language, an island, or coffee5.

In knowledge-based methods (Camacho-Collados et al., 2015), LKB (e.g., WordNet

(Fellbaum, 1998b), ConceptNet (Liu and Singh, 2004), BabelNet (Navigli and Ponzetto,

2012)) are used as a taxonomy to help categorize the relationship between words and

their meaning. While unsupervised techniques (Chaplot and Salakhutdinov, 2018) do

not rely on annotated data to perform disambiguation, supervised-based ones (Pasini

and Navigli, 2020) explore human-labeled or automatically generated annotations.

NN-basedmodels (Bengio et al., 2003;Mikolov et al., 2013b; Bojanowski et al., 2017)

have gained much attention in the NLP community, mainly because of their success
4https://guttenplag.wikia.org/de/wiki/GuttenPlag_Wiki
5according to the LKB BabelNet 4.0 https://babelnet.org/

https://guttenplag.wikia.org/de/wiki/GuttenPlag_Wiki
https://babelnet.org/
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to capture latent semantic content and superior performance in tasks, such as word

similarity (Neelakantan et al., 2014), text classification (Ruas et al., 2020), and topic

categorization (Pilehvar et al., 2017). Ruas et al. (2019) combine WordNet (Fellbaum,

1998b) and W2V (Mikolov et al., 2013b) to represent word senses in fixed-sized length

vectors. Their Most-Suitable Sense Annotation (MSSA) algorithm combines the vector

representation for each word in WordNet’s glosses using a general pre-trained word

embeddings model. MSSA averages the word representations in a context sliding

window to select the meaning of a word with the highest similarity within its adjacent

neighbors. However, the technique does not explore the benefits of transfer learning

between different tasks. Likewise, this thesis considers the glosses in WordNet but

relies on the LM do identify the correct sense of a word given its context with an

end-to-end approach.

Using a large-scale LM, GlossBERT (with their best performing method Sent-CLS-

WS) (Huang et al., 2019) uses WordNet’s glosses to fine-tune BERT for the WSD task.

GlossBERT classifies a marked word in a sentence into one of its possible definitions.

For each word sense of an ambiguous word, GlossBERT creates a pair of the context

and a gloss using the BERT tokenizer. Their method inserts two supervision signals:

first, highlighting ambiguous tokens with two unique tokens, and second, repeating the

ambiguous tokens with the gloss definition. Du et al. (2019) fine-tune BERT similarly

with the encoder and a classifier but without additional supervision.

KnowBERT (Peters et al., 2019) incorporates LKB into BERT (e.g., WordNet) with

a Knowledge Attention and Recontextualization (KAR) mechanism. The KAR com-

ponent uses mention-spans to retrieve entity embeddings from a LKB, update the

mention-span embeddings with the linked information and recontextualize the entity

embeddings with altered multi-head attention. Their multi-head self-attention is modi-

fied so a word-piece can attend to all entity embeddings in the context. Peters et al.

(2019) best-performing model, i.e., KnowBERT combining Wikipedia and WordNet

(KnowBERT-W+W), achieves better results than both BERT models (base and large).

However, KnowBERT-W+W adds over 400 million parameters compared to BERTbase

and is 32% slower. Other approaches combining BERT and WordNet for the WSD task,

but less related to our contributions, are also discussed in the literature (Vial et al.,
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2019).

Blevins and Zettlemoyer (2020) propose Bi-Encoder Model (BEM), a model to

encode a target word with its surrounding context and the gloss of each sense in

separate encoders. Their two encoders are learned simultaneously from the WSD

objective. Extended WSD Incorporating Sense Embeddings and Relations (EWISER)

(Bevilacqua and Navigli, 2020), an extension of (Kumar et al., 2019) uses different word

embeddings as input to include semantic relations (e.g., hypernym) in their structure.

Language Model Makes Sense (LMMS) (Loureiro and Jorge, 2019) combines k−NN

using the Most Frequent Sense (MFS) in WordNet with BERT embeddings. Gated

Linear Unit (GLU) (Hadiwinoto et al., 2019) integrates contextualized word representa-

tions in WSD. The previous techniques enhance semantic representations via context,

external knowledge, or MFS, but do not explore generalization to other NLP tasks.

The methods proposed in this thesis do not require recurrent embeddings ad-

justments from the LKB nor use word-piece attention, resulting in less overhead to

the system. We show by choosing the best-suited model for WSD and adjusting the

training procedure, our methods outperform preceding techniques inWSD and obtains

the highest score in 7 out of 9 NLU tasks.

2.3.2 Machine-Paraphrased Plagiarism Detection

Plagiarism is a severe form of academic misconduct and a pressing problem for

educational and research institutions, publishers, and funding agencies (Foltýnek

et al., 2019). To counteract plagiarism, many institutions employ PD systems. These

tools reliably identify duplicated text yet are significantly less effective for paraphrases,

translations, and other concealed forms of plagiarism (Meuschke and Gipp, 2013;

Foltýnek et al., 2020a).

Studies (Rogerson and McCarthy, 2017; Prentice and Kinden, 2018) show an alarm-

ing proportion of students employs online paraphrasing tools (often referred to as text

spinning tools) to disguise text taken from other sources. These tools are expected

to employ NN approaches to change a text, e.g., replacing words with potential syn-

onyms (Zhang et al., 2014). Zhang et al. (2014) presented a tool intended to perform

Search Engine Optimization (Madera et al., 2014) by inflating a website’s PageRank.
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The idea is to use the promoted page’s content to create bogus links to an advertised

website. Paraphrasing tools serve to alter the content, such that search engines do

not recognize the fraudulent websites as duplicates and consider them to calculate

the PageRank of the promoted site.

In academia, paraphrasing tools help to mask plagiarism, facilitate collusion, and

help ghostwriters with producing work that appears original. Paraphrasing tools

severely threaten text-matching software effectiveness, which is a crucial support tool

for ensuring academic integrity. The academic integrity community calls for technical

solutions to identify the machine-paraphrased text as one measure to counteract

paraphrasing tools (Rogerson and McCarthy, 2017). The International Journal for

Educational Integrity recently devoted a special issue6 to this topic.

To contribute to the solution for academic integrity, we devise an automated ap-

proach that reliably distinguishes human-written from machine-paraphrased text and

provide the solution as a free and open-source web application. A recent short paper

(Foltýnek et al., 2020b) reports on our fellow researchers’ preliminary experiments

using one paraphrasing tool and a Wikipedia corpus. In this thesis, we analyze two

new collections created from research papers on arXiv7 and graduation Theses of

English as a second language students. Additionally, we explore a second paraphras-

ing tool for generating obfuscated samples and eight neural language models based

on the transformer architecture in all datasets. The recent neural language models

surpass all preliminary ML techniques in every test set. Compared with two plagiarism

detections systems, Turnitin8, which has the largest market share, and PlagScan9

which is one of the best-performing systems (Foltýnek et al., 2020a), neural language

models detect short paragraphs of machine-paraphrased text with higher confidence.

6https://edintegrity.biomedcentral.com/mbp
7https://arxiv.org
8https://www.turnitin.com/
9https://www.plagscan.com/

https://edintegrity.biomedcentral.com/mbp
https://arxiv.org
https://www.turnitin.com/
https://www.plagscan.com/
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Chapter 3

Methodology

The main objective of this thesis is to explore KD using different knowledge sources.

This chapter presents amethod to distill knowledge from large-scale LMs (Section 3.1)

into an efficient model and two methods to distill knowledge from lexical databases

(Section 3.2). We introduce a general framework to perform WSD with a variety of

LMs relying on the transformer architecture and show how their improved semantic

understanding can be applied to other NLU tasks (Section 3.2). Finally, we present

two new data collections to evaluate MPP detection and explore two paraphrasing

tools for generating obfuscated samples. We extend the application of ML techniques

using word embeddings and propose a system to detect MPP with transformer LMs

(Section 3.3).

3.1 Knowledge Distillation with Multiple Language Models

KD mainly explores the logits and features of a single LM with varying student model

sizes (see Section 2.2.2). This work aims to combine the individual knowledge of

multiple teacher models with a new prediction weighting approach. The goal of our

KD technique is to provide a method for training a small model that incorporates the

knowledge of multiple large models and thus, can be used by the community as a

replacement for its expensive counterparts. We provide an overview of our method in

Figure 3.1.
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FIGURE 3.1: Overview of the multi-teacher KD method.

3.1.1 Student Architecture and Initialization

Multi-teacher KD requires the student model’s training to be compatible with many

teachers’ training approaches. LMs often use pre-training objectives similar to MLM

(see Table 2.1) and output a probability distribution over a standardized sub-word

vocabulary for each corrupted token. Furthermore, the student model is smaller than

its teachers and needs to use its parameters efficiently.

We initialize the student with the base configuration of Longformer (Beltagy et al.,

2020) as the training architecture is compatible with many other transformers (e.g.,

BERT, ALBERT, RoBERTa), while using an efficient method to calculate attention.

Furthermore, Longformer performed superior over other architectures in our related

experiments (Wahle et al., 2022b),.

To control the student’s trainable parameters, we reduce the number of layers to 6

and retain all remaining configurations of the basemodel. Following Sanh et al. (2019),

we decrease layer count rather than model width or attention head size to initialize

pre-trained layers from the basemodel. We keep the prediction layer of Longformerbase

and remove every second layer towards the network’s input while keeping all weight

matrices. We name the resulting model Longformermini.

3.1.2 Distillation Method

The student network gains knowledge about the target language in two ways. First, it

mimics the soft probability distribution of masked tokens using a custom weighted
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average. Second, we use the last high-level hidden features of each teacher as studies

(Wang et al., 2020; Jiao et al., 2020) proved it to be superior over single logit feedbacks.

We propose a logit-based supervision signal weighting the probability of each

teacher network by confidence. Teachers with a high probability for the correct class

receive a larger proportion in the averaged target distribution, while low probabilities

lead to a smaller proportion. We use the Kullback-Leibler (KL) divergence (Kullback

and Leibler, 1951) to compare the classification distribution vector of the i-th teacher

model ŷi and the groud truth label vector y to weight confident and unconfident

predictors with high and low proportions in the target distribution respectively (see

Equation (3.1)).

ytarget =
n∑
i=0

KL(ŷi||y)ŷi (3.1)

=
n∑
i=1

ŷi

m∑
j=1

log

(
ŷi,j
yj

)
(3.2)

The student uses the weighted prediction distribution ytarget together with regular

introductions of the ground truth label y as targets for the students LM objective

(Hinton et al., 2015). The model learns features of one layer prior to the prediction

using the Mean Squared Error (MSE) loss (Sammut and Webb, 2010). Algorithm 1

details the procedure, where the forward function obtains the predictions of a model

with given inputs, and maskfunction replaces words with mask tokens at a certain

probability (see Section 3.1.4 for hyperparameter details).

As our modified version of the Longformer model is smaller than large-scale LM

teacher candidates and uses a local windowed and global attention scheme that

is different from self-attention, we add no supervision signal for attention layers.

Although Wang et al. (2020) showed their feature approximation method overcomes

changes in model size by using a teacher assistant, the feature approximator for

our method must not only learn a function to map multiple attention layers into a

single one but also map self-attention to local and global attention. We presume the

approximated target function of attention scores would include larger amounts of

noise than distilling the same attention structure, impacting the training convergence.
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Algorithm 1: Multi-Teacher KD algorithm for LMs
Data: Training DataD ∼ X × Y,X ⊂ N represents the input words as indexes

of the vocabulary V . Y ⊂ N represents the target masked words as
indexes of the vocabulary V .

Input: Teachers T = (t1, ...tn). Student s. Ground truth update step l.
for (x, y) ∈ D; k = 1 to |D| do

x̃← maskfunction(x)
ŷstudent = forward(s, x̃)
for ti ∈ T do

ŷi ← forward(ti, x̃)

ytarget ← ytarget + ŷi
∑m

i=0 log
(
ŷi,j
yj

)
if k mod l = 0 then

l←CE(ŷstudent, y)
else

l←CE(ŷstudent, ytarget) + MSE(ĥstudent, htarget)
backward(l)
optimizer.step()

Logit-based and feature-based knowledge in the final layers are not bound to

the attention scheme or model size used and do not require a feature approximator.

Furthermore, our presented method appears more accessible, as the interpretation of

prediction probability distributions is intuitive.

3.1.3 Training and Testing Datasets

Transformer models typically perform training using a combination of Wikipedia

articles and books as Table 2.1 emphasizes. Although recent studies show an increase

in dataset size (from ≈10 times (Liu et al., 2019c) up to ≈80 times (Raffel et al.,

2020)) and model size improves performance, we consider the small gain on average

as ineffective. Instead, we construct a compact dataset composed of the official

Wikipedia dump from October 20201 and the Books Corpus (Zhu et al., 2015) as a

cheaper alternative covering long and short documents from different domains. The

English Wikipedia contains ≈6.2m articles with ≈3.7 billion words and an average of

about 600 words per article. The Books Corpus contains ≈11k books with ≈1b words,

with ≈90k words per book on average. We pre-process all documents with the official

BERT tokenizer ync split 20% of documents from Wikipedia and books at random as

the validation dataset. We provide more details about the full benchmark in Table 3.1.
1https://en.wikipedia.org/wiki/Wikipedia:Database_download

https://en.wikipedia.org/wiki/Wikipedia:Database_download
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TABLE 3.1: Overview of the multi-teacher KD training corpus.

Dataset Documents Words Words per Doc. Vocab. Mean Words per Sent.

Wikipedia (Oct. 2020) 6.16m 3.69b 599 550.01k 11
Books Corpus (2015) 11.04k 984.85m 89.22k 1.31m 13

3.1.4 Setup

Our rationale for choosing teachers was to explore models that cover different training

architectures but are compatible with our students’ pre-training objectives. Student

compatibility requires the teacher to a output probability distribution for corrupted

tokens and to use the same vocabulary. We choose BERT (Devlin et al., 2019) as a well-

researched baselinemodel, ALBERT (Lan et al., 2019) because of its increased training

capacity using shared parameters, and BART (Lewis et al., 2019) due to its different

denoising training approach combined with AR language modeling. Furthermore, the

three teacher models trained on similar datasets to ours (see Table 2.1), which we

assume increases the probability of creating meaningful predictions than models

exploring other domains, not including Wikipedia or Books.

We applied best practices for model pre-training proposed by Liu et al. (2019c),

using a large batch size of 256 examples with gradient accumulation and dynamic

masking. The remaining configuration details are as follows: a sequence length of

512 tokens, the AdamW optimizer with a learning rate of 2 × 10−5, β1 = 0.9, β2 =

0.999, ε = 1e − 8, the temperature T = 2.5, a masking probability of 0.15, a ground

truth update step of l = 100, and PyTorch’s native automated mixed-precision format.

The experiments use 8 NVIDIA Tesla V100 Graphical Processing Unit (GPU)s with

16GB memory per card.

3.1.5 Implementation Details

Emphasizing the problem of model size, a single base-sized LM (e.g., BERTbase, L =

12, H = 768, A = 12) together with the student model barely fits into the GPU memory

of a high-end NVIDIA Tesla V100 GPU with 16GB memory and mixed half-precision.

When considering multiple teacher models and potentially larger models for future

experiments, we need to construct a synchronous parallel setup for training in two

ways.
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Model Parallelism

Instead of processing teacher and student models on the same GPU, our method

dedicates a single processing unit to each model. At each training step, we replicate

the input sample once per unit, and each model processes a forward pass. We

gather the final predictions in a shared memory pool and process the loss calculation,

backward pass, and update rule on the student’s side as it uses less memory and

computation resources due to its optimized attention scheme and small model size.

Data Parallelism

To further scale training to multiple GPUs yielding larger batch sizes with improved

training time and convergence (Liu et al., 2019c), we parallelize the model set up by

replicating each model on a second GPU and average their gradients in each step. To

decrease training time, we pinned the unallocated memory of each GPU and loaded

new training samples asynchronously while the GPU processed the current sample.

3.2 Incorporating Lexical Knowledge into language Models

Humans use many explicit sources to gain knowledge about concepts, e.g., a lexicon

describes different natural phenomena in an organized way. Knowledge-based meth-

ods for WSD use semantic information to determine word senses. In the following,

we present a method using the knowledge about word senses in LKB to improve the

semantic understanding of LMs. Our method addresses research Task 2, increasing

semantic understanding and boosting task performance (see Section 4.2). We provide

an overview of the method using the lexical database WordNet (Miller, 1995; Fellbaum,

1998a) and the annotated SemCor dataset (Miller et al., 1993) in Figure 3.2.

Current state-of-the-art methods in WSD focus primarily on the WSD domain

without using the knowledge about ambiguous words for other NLP tasks (see Sec-

tion 2.3.1). We suggest incorporating two objectives into the training of WSD to

maintain LM capabilities while learning the disambiguation of words. Thus, the model

obtains superior representations that benefit other tasks and domains as most bench-

marks include a high fraction of polysemous words (see Appendix A).
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FIGURE 3.2: Overview of the WSD method.

Our literature analysis showed related works in the domain of WSD using neural

LMs are typically based on BERT (see Section 2.3.1). BERT is a strong baseline, but

recent studies show the model has not reached its full capacity; its training scheme

still offers opportunities for improvement (Liu et al., 2019c). We introduce a method

to perform WSD with arbitrary LMs and explore architectural changes to increase our

model’s performance (Section 3.2.2).

Furthermore, related WSD methods (Huang et al., 2019) use a sequential binary

prediction head which requires n forward passes with the model for one ambiguous

word (with n candidate word senses). Withmodels containingmultiple hundredmillion

parameters, sequential processing becomes a bottleneck. We form the prediction step

from sequential binary classification to parallel multi-classification to construct amore

natural prediction head as previous literature showed (Kågebäck and Salomonsson,

2016).

3.2.1 Training and Testing Datasets

We use the SemCor 3.0 (Miller et al., 1993) dataset as the training corpus for all

WSD experiments. SemCor 3.0 is one of the largest manually annotated datasets

with approximately 226k word sense annotations from WordNet (Miller, 1995) for

all open-class parts-of-speech. Each sentence in SemCor has multiple word anno-

tations, and each word annotation consists of one or more sense annotations. The

SemCor 3.0 corpus is well studied in the WSD literature (Huang et al., 2019; Peters

et al., 2019). We validated LMs trained on SemCor 3.0 withRaganato et al. (2017)’s

evaluation framework, a set of five standardized test sets: Senseval-2 (Edmonds and
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Cotton, 2001), Senseval-3 (Snyder and Palmer, 2004), SemEval-2007 (Strapparava and

Mihalcea, 2007), SemEval-2013 (Navigli et al., 2013), and SemEval-2015 (Moro and

Navigli, 2015). We provide a detailed overview of these datasets in Table 3.2.

TABLE 3.2: SemCor training corpus details: general statistics (left) and class distribution for
binary classification of word senses (right).

Dataset POS Tags Class dist.

Noun Verb Adj. Adv. Total Pos. Neg.

SemCor 87k 88.3k 31.7k 18.9k 226k 226.5k 1.79m
SE2 1k 517 445 254 2.3k 2.4k 14.2k
SE3 900 588 350 12 1.8k 1.8k 15.3k
SE7 159 296 0 0 455 459 4.5k
SE13 1.6k 0 0 0 1.6k 1.6k 9.7k
SE15 531 251 160 80 1k 1.2k 6.5k

To validate our proposed methods achieve high performance in WSD while using

the acquired knowledge for other NLP tasks, we used the General Language Under-

standing Evaluation (GLUE) benchmark. GLUE (Wang et al., 2019b) is a collection of

eight language understanding tasks widely used in the language modeling domain

(Devlin et al., 2019; Lan et al., 2019; Liu et al., 2019c) to validate transfer learning

capabilities of language models. All GLUE tasks are single sentence or sentence pair

classification, except STS-B, which is a regression task. All classification tasks are

binary classification except for MNLI, which has three classes.

3.2.2 Language Model Gloss Classifiction (LMGC)

With Language Model Gloss Classificaiton (LMGC), we propose a model-independent

end-to-end WSD approach to classifying ambiguous words from sentences into one

of WordNet’s glosses. This approach enables applying different LMs for WSD. LMGC

addresses a problem resulting from imbalanced examples by using the focal loss

function (Lin et al., 2017), a state-of-the-art method to avoid accumulated gradients

from negative examples. By choosing the most suitable model for WSD from eight

different LMs, we show superior performance over BERT (Section 3.2.3).

In the LMGC task we pair (i) a sentence containing a polysemous target word

with (ii) a prospective gloss definition from a lexical database (e.g., WordNet) for
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this word. Let W = (w1, . . . , wn) be a word sequence of a sentence, where wi is a

polysemous word. WordNet provides Si = {s1, . . . , sm} possible senses for word wi

with corresponding glosses Gi = {g1, . . . , gm}, which are also individual sentences.

We build an annotated corpus using WordNet glosses to perform LMGC. For a

sentenceW , each polysemous word wi points to correct WordNet senses S̃i ⊂ Si. We

retrieve the gloss candidatesGi for each synset of the word to create |Gi| pairs of the

sentenceW and glosses gj , with gj ∈ Gi. If gj corresponds to the desired meaning

of our polysemous target word wi (which is the case if sj ∈ S̃i), we classify the pair

as a positive example, otherwise as negative. As the number of correct senses for a

polysemous word is much smaller than the total number of senses, labels are often

imbalanced (see Section 3.2.1).

The input sequence used in LMGC follows the same configuration as in its under-

lying transformer. Each input sequence starts with the aggregate token (e.g., [CLS]

for BERT), followed by a sentence and a gloss definition. The sentence and gloss are

separated with a unique separator token and tokenized using WordPiece (Schuster

and Nakajima, 2012).

To perform the classification, Du et al. (2019) used the token embeddings of

polysemous words. However, Huang et al. (2019) showed the classification on top of

the aggregate representation improves the results in WSD. Therefore, we obtain the

final hidden representation of the aggregate token, namely C ∈ RH ; whereH is the

embedding size. We apply a weight matrixWLMGC ∈ RH×2 transforming C (together

with a bias BLMGC ∈ R2) into a binary space and calculate the probability to whether

the gloss is appropriate for the ambiguity in context as Equation (3.3) shows.

p = softmax(C W T
BGP +BBGP ) (3.3)

To optimize the model for learning whether a gloss is correct for the annotated

ambiguous word, Huang et al. (2019) and Du et al. (2019) used the standard cross-

entropy loss function (Equation (3.4)).
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Context / Masked Context

[CLS] Tok 1 Tok N [SEP] Tok 1 Tok M... ...

... ...

BERT

... ...

BGP Mask LM Mask LM

[CLS] Tok 1 Tok N [SEP] Tok 1 Tok M

Gloss / Masked Gloss

FIGURE 3.3: Language Model Gloss Classificaiton with MLM (LMGC-M) forwards context-
gloss pairs and itsmasked versions through a LM (e.g., BERT) to performaweakly supervised

binary classification LMGC and MLM.

CE(p, y) =


− log(p) if y = 1

1− log(1− p) otherwise
(3.4)

The class imbalance resulting from correct word senses in relation to candidates

hinder the cross-entropy loss during training (see Table 3.2). Easily classified negatives

comprise parts of the loss, which obstructs the gradient direction. Thus, we propose

to apply a weighted loss function, a popular approach to mitigate the class imbalance

in object detection from camera images (Ren et al., 2016; Redmon et al., 2016). The

focal loss (Lin et al., 2017) (Equation (3.5)) reshapes the cross-entropy loss function,

giving less weight to easy examples and forces the training to focus on challenging

polysemous words.

FL(p, y) =


−(1− p)γ log(p) if y = 1

−(1 + p)γ log(1− p) otherwise
(3.5)

We add additional supervision to the input sequence according to Huang et al.

(2019) with two signals: (1) highlighting the ambiguous tokens with two special tokens

and (2) adding the polysemous word before the gloss.
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3.2.3 Language Model Gloss Classification with MLM (LMGC-M)

Pre-trained models serve as a valuable feature extractor that can be optimized to

new task-specific objectives in a straight-forward manner (Radford et al., 2019; Devlin

et al., 2019). However, optimizing a specific task disregard previously learned LM

capabilities (see Section 4.2). The WSD task is special, as we can assume when

a LM is capable of disambiguation, its ability to perform well on other tasks may

increase. For this reason, we aim to keep language modeling features while learning

WSD. Transfer learning between language modeling and WSD increases the likelihood

of understanding polysemous words in other related tasks, improving the overall

performance. In Appendix A, we discuss the correlation between WSD and other NLU

tasks concerning the number of polysemous words.

The task-specific objective of LMGC is to predict whether the appended gloss

explains the correct meaning of a word in a sentence. The corresponding objective

function is the focal loss function between the network’s prediction and the ground

truth label as Equation (3.5) shows. In LMGC-M, we perform a parallel forward pass

through transformer LM with similar sentence-gloss pairs. The first pass uses the

original pair of a context sentence and gloss and applies a weight matrix to the final

aggregate embedding resulting in binary classification. In the second pass, we replace

words in the sentence and gloss with a mask token, a random token, or the same

token with equal probabilities with the same configuration as Devlin et al. (2019). The

LMGC-M procedure is exemplified in Figure 3.3.

We sum the two objectives, i.e. the task-specific WSD focal loss and the MLM

cross-entropy loss, to obtain the final loss function L1 described in Equation (3.6)

L1(ŷ, y) = FL(ŷ, y) +
m∑
k=1

CE(ŷ(mask)k , y
(mask)
k ) (3.6)

wherem is the number of masked words, ỹj ∈ {0, 1}V is the one-hot encoding for

a masked word wj , and p̃j ∈ RV is the probability vector for wj .
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3.2.4 Setup

We initialized all models using the base configuration of its underlying transformer

(e.g., XLNetbase, L = 12, H = 768, A = 12). Both our methods have 2 ∗H + 2 more

parameters than their baseline (e.g., LMGC (BERT) has≈ 110M parameters) but equal

or fewer parameters compared to relatedmethods (e.g., GlossBERT, KnowBERTW+W).

For each polysemous word, we retrieved all possible gloss definitions fromWordNet to

create sentence-gloss inputs. We increased the hidden dropout probability to p = 0.2

as we observed overfitting for most models. FollowingDevlin et al. (2019), we used a

batch size of 32 sequences, the AdamW optimizer (α = 2× 10−5, ε = 10−5), trained

three epochs, and chose the best model according to validation loss. We applied the

same hyperparameter configuration for all models used in both the SemCor and GLUE

benchmarks.

To reduce training time to ≈ 1
3 compared to the approach of (Huang et al., 2019),

we reduce the sequence length of all models from 512 to 1602 as the computational

cost of transformers grows quadratic with the sequence length. We treat the class

imbalance of positive and negative examples (Table3.2) with focal loss (Lin et al.,

2017) (γ = 2, α = 0.25). Our experiments use one NVIDIA Tesla V100 GPU with 16GB

memory for training and two GPUs for evaluation (NVIDIA Tesla V100 and NVIDIA

TESLA T4) using the official scorer fromRaganato et al. (2017)3 and Hugginface4

considering the best results from each evaluation.

We create sentence-gloss inputs by retrieving WordNet’s gloss definitions of pol-

ysemous words corresponding to the annotated synsets. For LMGC and LMGC-M

(Section 3.2.2), we used 8 candidate glosses in the training procedure as a trade-off

between memory requirements and model accuracy, as the mean number of synsets

for polysemous words in SemCor is approximately 8.94 (Table 3.2). If the number of

glosseswas smaller than 8, we zero-padded the remaining sequences and disregarded

them in the final softmax activation. If the number of glosses exceeded 8 and the

word in question had one synset annotation, we randomly chose 9 glosses from the

set of possible glosses, including the correct one. If the annotation marked multiple
299.8% of the dataset’s examples contain less than 160 tokens; we truncate the remaining se-

quences to this limit.
3http://lcl.uniroma1.it/wsdeval/
4https://tinyurl.com/y4rdkjop

http://lcl.uniroma1.it/wsdeval/
https://tinyurl.com/y4rdkjop
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glosses as correct, we sampled multiple times from the set of possible glosses to

include each sense once in our training procedure. At inference time, we extended 8

to the number of glosses of each example. LMGC and LMGC-M calculate the argmax

along with the senses of the softmax activation from Equation (3.3) to predict the

correct sense.

To validate that our model is capable of performing WSD, while still mastering

other tasks, we fine-tuned them on GLUE. Therefore, we removed the weight matrices

and bias introduced by the heads of each method (i.e.,WLMGC andWLMGC−M ) and

represented the input sequence with the final hidden vector C ∈ RH corresponding to

the [CLS]-token as the aggregate representation. For all tasks, except for STS-B, we

transformed the embedding into a classification vector applying a new weight matrix

W ∈ RK×H ; where K is the number of labels. For STS-B, we applied a new weight

matrix V ∈ R1×H transforming the aggregate representation into a single regression

value. We trained on each GLUE task for three epochs with 100 warm-up steps and the

same remaining parameters, e.g., learning rate, optimizer, batch size as in SemCor.

3.3 Machine-Paraphrased Plagiarism Detection

The MPP detection methods presented in the following extend our fellow researchers

previous study (Foltýnek et al., 2020b) with two new data sources (arXiv and Theses),

an additionalmachine-paraphrase tool (SpinnerChief5) and eight state-of-the-art neural

language models based on the transformers against our best-performing KD method.

We show the general setup of our study in Figure 3.4.

We first perform preliminary experiments with machine learning approaches

(e.g., Singular Value Decomposition (SVM), Logistic Regression (LR)) to identify the

strongest baselines among the paraphrase tools and data sources. Next, we carry

out the best performing techniques to be compared to the ones relying on the trans-

former architecture, which we believe represent the last advancements in NLP. We

describe the paraphrasing tools, datasets, word embedding models, machine learning

classifiers, and neural language models used in our experiments in the following

sections.
5http://www.spinnerchief.com/

http://www.spinnerchief.com/
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Paragraphs

SpinnerChief-DF

Paraphrasing

Wikipedia/arXiv/Theses

Original:

Unusual social development becomes  apparent early in childhood.

Spun:
Strange social advancement becomes  evident early in youth.

SpinnerChief-IF

Classification

ML Classifier
Embeddings

Neural Language Models
SpinBot

SVM

Naïve Bayes

LR

Word2Vec

Doc2Vec

GloVe

fastText

BERT

ALBERT

RoBERTa

DistilBERT

XLNet

Longformer

BART

ELECTRA

Tools

FIGURE 3.4: Overview of the MPP detection methods.

This comprehensive study aims to evaluate neural language models against the

best-performing KD method (research Task 3) and to provide a free service that dis-

tinguishes human-written from the machine-paraphrased text while being insensitive

to the topic, the type of documents, and the paraphrasing tool used. We analyze

paragraphs instead of entire documents as it represents a more realistic detection

task (Rogerson and McCarthy, 2017; Weber-Wulff, 2019).

3.3.1 Paraphrasing Tools

We employ two commercial paraphrasing services (SpinBot6 and SpinnerChief5) to

obfuscate samples in our training and test sets. We use SpinBot to generate the

training and test sets, and SpinnerChief only generates test sets for two reasons.

First, SpinnerChief is a paid service making paraphrasing on large datasets expensive.

Second, we want to provide a realistic scenario where unseen test cases probably

employed a different paraphrasing tool.

SpinnerChief allows specifying the ratio of words it tries to change. We experi-

mented with two configurations: the default frequency - attempting to change every

fourth word (SpinnerChief-DF) and increasing frequency - attempting to change ev-

ery second word (SpinnerChief-IF). We found the average ratio of replaced words
6https://spinbot.com

https://spinbot.com
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is 20.38% for SpinBot, 12.58% for SpinnerChief-DF, and 19.37% for SpinnerChief-IF

when analyzing the paraphrased samples. Thus, the actual frequency with which

SpinnerChief replaces words is much lower than its settings suggest. The SpinBot

API offers no options to influence the paraphrased text.

3.3.2 Training and Testing Datasets

Most paraphrasing tools are paid services, which prevents large-scale experimentation.

The financial costs and effort required for obtaining and incorporating tool-specific

training data would be immense. Therefore, we employed transfer learning, i.e., used

pre-trained word embedding models, trained the classifiers in our study on samples

paraphrased using SpinBot, and tested whether the classification approach can also

identify SpinnerChief’s paraphrased text.

We reused the paragraph training set of our initial study (Foltýnek et al., 2020b) as

the training set. We paraphrased all 4,012 featured articles from the English Wikipedia

using SpinBot. We chose featured Wikipedia articles because they objectively cover a

wide range of topics in great breadth and depth7. Approximately 0.1% of all Wikipedia

articles carry the label featured article. To receive this label, senior Wikipedia editors

must confirm the superior quality of the article. Featured articles typically have many

authors and revisions. Thus, they are written in high-quality English and unlikely to be

biased towards the authors’ writing style.

The training set comprises of ≈200.8k paragraphs (≈98.3k original, ≈102.5k

paraphrased) extracted from ≈8k Wikipedia articles. We split each Wikipedia article

into paragraphs and discarded those with fewer than three sentences, as our earlier

findings showed that such paragraphs often represent titles or irrelevant information

(Foltýnek et al., 2020b).

Our study uses three test sets that we created from preprints of research papers

on arXiv, graduation Theses, and Wikipedia articles. Table 3.3 summarizes the test

sets. For generating the arXiv test set, we randomly selected 944 documents from

the no problems category of the arXiv project8. The Wikipedia test set is identical to

the one in our preliminary study (Foltýnek et al., 2020b). The paragraphs in the test
7https://en.wikipedia.org/wiki/Wikipedia:Content_assessment
8https://kwarc.info/projects/arXMLiv/

https://en.wikipedia.org/wiki/Wikipedia:Content_assessment
https://kwarc.info/projects/arXMLiv/
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set were generated analogously to the training set. The Theses test set comprises

the paragraphs in 50 randomly selected graduation Theses of English as a second

language students at the Mendel University in Brno, Czech Republic. The Theses are

from a wide range of disciplines, e.g., economics, agronomy, forestry, and computer

science, and cover all academic levels (i.e., B.Sc., M.Sc., and Ph.D.). Unlike the arXiv

and Wikipedia documents, the Theses were only available as PDF files, thus having to

be converted to plain text. We removed all content before the introduction section

of each thesis, the bibliography, and all appendices because these parts of the PDF

tended to produce content without valuable semantic information.

TABLE 3.3: Overview of the MPP test sets.

No. of paragraphs arXiv Theses Wikipedia
Original Paraphrased Original Paraphrased Original Paraphrased

SpinBot 20.97k 20.87k 5.23k 3.46k 39.26k 40.73k
SpinnerChief-DF 20.97k 21.72k 2.38k 2.94k 39.26k 39.7k
SpinnerChief-IF 20.97k 21.67k 2.38k 2.94k 39.26k 39.62k

3.3.3 Word Embedding Models

Table 3.4 summarizes the word embedding models used in our experiments: Global

Vectors (GloVe)9 (Pennington et al., 2014), W2V10 (Mikolov et al., 2013b), fastText

(FT)11(FT-rw and FT-sw) (Bojanowski et al., 2017), and Paragraph Vector Model (D2V)

(Le and Mikolov, 2014) which was trained from scratch. Following the hyperparameter

recommendations of Lau and Baldwin (2016) for general-purpose applications, D2V

uses uses a distributed bag-of-words training, a window size of 15 words, a minimum

count of five words, trained word-vectors in skip-gram fashion, averaged word vectors,

and 30 epochs. All word embedding models have 300 dimensions. Parameters we

do not explicitly mention correspond to the default values in the gensim API12.

Our rationale for choosing the pre-trained word embedding models was to explore

the most prominent techniques regarding their suitability for the plagiarism detection
9https://nlp.stanford.edu/projects/glove/

10https://code.google.com/archive/p/word2vec/
11https://fasttext.cc/docs/en/english-vectors.html
12https://radimrehurek.com/gensim/models/doc2vec.html

https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/
https://fasttext.cc/docs/en/english-vectors.html
https://radimrehurek.com/gensim/models/doc2vec.html
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task. GloVe (Pennington et al., 2014) builds a co-occurrence matrix of the words in a

corpus and explores the ratio of the word probabilities in a text to derive its semantic

vectors as a count-based model. W2V (Mikolov et al., 2013b) training tries to predict

either a word given its context (cbow) or the context given the word (skip-gram).

Even though GloVe and W2V are routinely applied for numerous NLP tasks (Con-

neau et al., 2017; Ruas et al., 2019, 2020), they do not consider two important linguistic

characteristics: word ordering and sub-wording. To explore these characteristics, we

also included FT (Bojanowski et al., 2017) and D2V (Le and Mikolov, 2014). FT builds

its word representation by extending the skip-grammodel with the sum of the n-grams

of its constituent sub-word vectors. For the D2V model, two training options exist

– named distributed memory (pv-dm) and distributed bag-of-words (pv-dbow). The

former is akin to W2V’s cbow, while the latter is related to skip-gram. Both options

introduce a new paragraph-id vector that is updated for each context window on every

timestamp. The paragraph-id vector seeks to capture the semantics of the embedded

object. We chose a pv-dbow over pv-dm model because of its results in semantic

similarity tasks (Lau and Baldwin, 2016).

TABLE 3.4: Word embedding models for the MPP detection experiments.

Algorithm Main Characteristics Training Corpus

GloVe Word-word co-occurrence matrix Wikipedia Dump 2014 + Gigaword 5
W2V Continuous Bag-of-Words Google News
pv-dbow Distributed Bag-of-Words Wikipedia Dump 2010
fastText-rw Skip-gram without sub-words Wikipedia Dump 2017 + UMBC
fastText-sw Skip-gram with sub-words Wikipedia Dump 2017 + UMBC

In our experiments, we represent each text as the average of its constituent word

vectors by applying the word embedding models in Table 3.4. All models, except

for D2V, yield a vector representation for each word. In D2V, the embedded tokens

represent the entire text. Thus, a match between a text not part of the external training

corpus and the pre-trained D2V model is unlikely. Inferring the vector representations

for unseen texts requires an additional training step with specific parameter tuning.

For all texts in our test sets, we performed this extra step using the following hyper-

parameters for the gensim API: α = 10−4, αmin = 10−6, and 300 epochs (Lau and
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Baldwin, 2016). The resulting pv-dbow embedding model requires at least 7 GB of

memory, compared to 1-3 GB required for other word embedding models. The higher

memory consumption of pv-dbow can make it unsuitable for some use cases.

3.3.4 Machine Learning Classifiers

After applying the pre-trained models to our training and test sets, we forward the

embeddings to three machine learning classifiers: LR, SVM, and Naïve Bayes (NB).

We use multiple classifiers to explore the stability of the word embedding models

concerning each classifier’s characteristics. We employ a grid-search approach for

finding the optimal parameter values for each classifier asSection 3.3.4 shows.

TABLE 3.5: Grid-search parameter for ML classifiers considering the scikit-learn13package in
Python.

Classifier Parameter Range

Logistic
Regression

solver newton-cg, lbfgs, sag, saga
maximum iteration 500, 1000, 1500
multi-class ovr, multinomial
tolerance 0.01, 0.001, 0.0001, 0.00001

Support
Vector
Machine

kernel linear, radial bases function, polynomial
gamma 0.01, 0.001, 0.0001, 0.0001
polynomial degree 1, 2, 3, 4, 5, 6, 7, 8, 9
C 1, 10, 100

3.3.5 Neural Language Models

We use the following neural language models based on the Transfomer architecture in

our experiments: BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019a), ALBERT (Lan

et al., 2019), DistilBERT (Sanh et al., 2019), ELECTRA (Clark et al., 2020), BART (Lewis

et al., 2019), XLNet (Yang et al., 2019), and Longformer (Beltagy et al., 2020). Our

rationale for choosing these models was two-fold. First, we explore models closely

related or based on BERT, either by improving it through additional training time

and data (RoBERTa) or compressing the architecture with minimal performance loss

(DistilBERT, ALBERT). Second, we used contrasting models to BERT, that although
13https://scikit-learn.org

https://scikit-learn.org
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relying on the transformer architecture, significantly change the training objective

(XLNet), the underlying attention mechanism (Longformer), or employ a discriminative

learning approach (ELECTRA, BART).

To distinguish between a paraphrased and human-written paragraph, a randomly

initialized linear layer on top of the model’s embedding of the [CLS]-token performs

binary classification with cross-entropy loss. For all models, we use the base version

and the official pre-trained weights with the following configurations: a sequence

length of 512 tokens, an accumulated batch size of 32, the Adam optimizer with

a learning rate of α = 2 × 10−5, β1 = 0.9, β2 = 0.999, ε = 10−8, and PyTorch’s

native automated mixed-precision format. Using a common sequence length of

512 tokens allows for a fair comparison between models without losing important

context information14. In Section 4.3.1 we provide more details about these models

characteristics.

1499.35% of the dataset’s text can be described entirely with less than 512 tokens.
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Chapter 4

Evaluation

This chapter evaluates our presented KD methods in the tasks of language model-

ing, WSD, NLU, and PD with a total of 20 tasks. First, we provide evidence that our

weighted multi-teacher KD reduces pre-training time and obtains superior validation

performance over large-scale teachers when the dataset size and computational

budget remains equal between the models (Section 4.1).

Next, we evaluate methods to incorporate lexical knowledge into LMs on five WSD

benchmarks, and eight NLU tasks (Section 4.2). We show LMGC obtains superior

performance in the WSD task over related work when using XLNet as the backbone

network while keeping the same number of parameters. When transferred to NLU

tasks, LMGC-M performs superior on average over BERT, validating its improved

semantic representations. The code1, and pre-trained models2 to reconstruct our

experiments are publicly available.

Finally, we apply our lexical KD models to the task of MPP detection. We compare

our method to eight neural LMs and three ML techniques using word-embeddings on

encyclopedia articles, student Theses, and research papers (Section 4.3). We show

ML methods are superior over a human baseline and accurately predict plagiarism

when the data source and paraphrasing tool changes. Compared to two popular PD

systems, neural language models detect plagiarism on new sources more accurately,

which makes them a suitable extension to PD systems. We release the data3, code4,

and pre-trained models2 of our study, as well as a web-based demonstration system5.
1https://github.com/jpwahle/word-sense-disambiguation
2https://huggingface.co/models?search=jpwahle
3https://doi.org/10.5281/zenodo.3608000
4https://https://github.com/jpwahle/iconf22-paraphrase
5http://purl.org/spindetector

https://github.com/jpwahle/word-sense-disambiguation
https://huggingface.co/models?search=jpwahle
https://doi.org/10.5281/zenodo.3608000
https://https://github.com/jpwahle/iconf22-paraphrase
http://purl.org/spindetector
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4.1 Language Modeling

When evaluating a LMs capability ofmodeling the probability ofwords, Perplexity (PPL)

(Jelinek et al., 1977) is a widely used measure (Jurafsky and Martin, 2009, Chapter 3).

PPL is the inverse probability normalized by the number of words in the test corpus

as Equation (4.1) shows.

PPL(w1, ..., wn) = P (w1, ..., wn)
1
n (4.1)

= n

√
1∏n

i=1 P (wi | w<i)
(4.2)

To calculate PPL, the LM needs to assign conditional probabilities to consecutive

tokens. As masked LMs predict the probability of tokens for corrupted sequences

rather than succeeding tokens, the PPL is not well defined. However, when using the

cross-entropy loss for MLM, Equation (4.3) shows that perplexity is proportional to

the cross-entropy loss by an exponential function.

CE(w1, ..., wn) = −
1

n
log(P (w1, ..., wn)) (4.3)

PPL(w1, ..., wn) = eCE(w1,...,wn) (4.4)

Weuse cross-entropy tomeasure a relative gain in languagemodeling performance

during training between the student and teacher models. Therefore, we use the

validation loss—which is the cross-entropy for token predictions— to obtain ameasure

proportional to the inverse probability. This measure provides us with evidence about

the language modeling capabilities of the model over the validation corpus.

Another robust way to compare LMs is the validation on general NLU tasks. We

evaluate the methods proposed in Section 3.2 in the task of WSD and on a variety of

NLU tasks. Due to the computational requirements of large-scale models, we leave

their investigation for future work.
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FIGURE 4.1: Validation loss by the number of training steps for student (Longformermini) and
teacher (BERT, ALBERT, BART) models. The loss is a smoothed version of the accumulated

cross-entropy of MLM.

4.1.1 Results and Discussion

Figure 4.1 reports the validation cross-entropy loss on the ground truth targets for

the student model (Longformermini) and each teacher model (BERT, ALBERT, BART)

over the number of training steps. Each training step equals 256× 512 tokens. Each

teacher model curve shows the validation loss for training with the official training

procedure and randomly initialized weights.

Our first observation is that the student model Longformermini initially converges

faster than its larger counterparts. We hypothesize the initialization of layers with pre-

trained ones increases the convergence rate compared to randomly initialized weights.

Furthermore, the weighted target distribution includes highly confident predictions

of the pre-trained teachers. As we use similar datasets to the ones used to train

the teacher models, we assume confident predictions are also accurate with high

probability.

The validation loss of all teachers behaves similarly, with BERTperformingmarginally

better than ALBERT. BART’s validation loss converges slower than the other models

which we suppose results from BART being a combination of AE and AR models
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resulting in more training time to converge to both objectives. We assume different

levels of noise in the validation loss at different training steps per model appear due

to randomly shuffling the training data leading to batches that sometimes do not

represent the data distribution well.

At later training steps (starting at step≈6000), the studentmodel (Longformermini)

is still slightly superior over its teachers, but its advantage in validation loss decreased,

supporting our hypothesis about improvements by weight initializations. However,

we can interpret the decrease in learning steepness in two ways. First, the student

might already have captured a large proportion of the knowledge encoded in the

teachers and reached its capacity. Considering the continuation of training, we expect

to observe overfitting by a slow change in the curve’s direction. Second, the advantage

of Longformermini’s layer initialization does not impact the training convergencemuch

in advanced training steps (step ≈6000) and its learning steepness converges to the

teacher models.

4.1.2 Limitations

Although the Longformermini reduced its validation loss faster than its teachermodels,

we must consider more experiments to conclude its converged model performs better

in language modeling than its teachers. These extending experiments must include

converging Longformermini regarding its validation loss and testing the resulting

model on NLU benchmarks against its teachers and other KD methods.

We aim to converge the model in future experiments and test its generalization

on NLU benchmarks to provide an efficient replacement for large models to the

community. In the following, we focus on more promising KD methods using lexical

sources that are cheaper to train and prove high performance in WSD, NLU, and PD

as the total computational budgets for this thesis are limited.
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4.2 Word Sense Disambiguation and Natural Language Under-

standing

We evaluate our proposed lexical KD methods on two large scale benchmarks, namely

SemCor 3.0 (Miller et al., 1993) and the General Language Understanding Evaluation

(GLUE) (Wang et al., 2019b). Comparing LMGC and LMGC-M with state-of-the-art

systems, we provide an analysis and discussions of experimental results and point

out possible limitations of the presented methods.

4.2.1 Results & Discussion

Table 4.1 reports the results of applying LMGC to different transformer models. Our

rationale for choosing the models was two-fold. First, we explore models closely

related to or based on BERT. Either the chosen models improve BERT through addi-

tional training time and data (RoBERTa), or compress the architecture with minimal

performance loss using parameter optimizations or KD (ALBERT, DistilBERT). Second,

we chose models that significantly change the training objective (XLNet) or employ

a discriminative learning approach (ELECTRA, BART). In Table 4.3, we compare our

techniques to other contributions in WSD. We report all results of SemCor according

to Raganato et al. (2017).

TABLE 4.1: SemCor test results (F1) of LMGC for base transformermodels. Bold font indicates
the best results.

System SE7 SE2 SE3 SE13 SE15 All

BERT (2019) 71.9 77.8 74.6 76.5 79.7 76.6
RoBERTa (2019c) 69.2 77.5 73.8 77.2 79.7 76.3
DistilBERT (2019) 66.2 74.9 70.7 74.6 77.1 73.5
ALBERT (2019) 71.4 75.9 73.9 76.8 78.7 75.7
BART (2019) 67.2 77.6 73.1 77.5 79.7 76.1
XLNet (2019) 72.5 78.5 75.6 79.1 80.1 77.2
ELECTRA (2020) 62.0 71.5 67.0 73.9 76.0 70.9

RoBERTa shows inferior F1 than the baseline model BERT although it uses more

data and training time. DistilBERT and ALBERT perform worse than BERT, which

we expected given that they use significantly fewer parameters. However, ALBERT



54 Chapter 4. Evaluation

achieves good results with only ≈ 10% of BERT’s parameters. ELECTRA and BART re-

sults show themodels’ denoising approach is not suitable for our WSD setup. Besides,

BART achieves similar performance as BERT but uses 26% more parameters. XLNet

continually performs better than BERT on all evaluation sets while using almost the

same number of parameters. Therefore we selected XLNet for our models’ variation.

TABLE 4.2: Classification results (F1) of twomodel sized of BERT (base and large) on the three
largest SemCor evaluation sets.

System SE2 SE13 All

BERTbase 2019 77.78 76.52 76.59
BERTlarge 2019 78.26 76.46 76.67

We did not consider larger models than the base configuration as our experiments

showed a difference of 0.08% in F1 between BERTbase and BERTlarge (see Table 4.2) for

the SemCor datasets, which is in line with Blevins and Zettlemoyer (2020)’s findings.

Thus, we consider the base configuration as sufficient for our experiments.

Table 4.3 shows an overall improvement when comparing LMGC to related ap-

proaches. LMGC (BERT) generally outperforms Du et al. (2019)’s baseline approach

(BERTWSD) and KBERT-W+W, which has four times the number of parameters. We

outperform GlossBERT in all test sets by using an optimal transformer (XLNet) and

adjustments in the training procedure LMGC-M. We exclude EWISER (Bevilacqua

and Navigli, 2020) which explores additional knowledge other than gloss definitions

TABLE 4.3: Classification results (F1) on the SemCor test sets compared to state-of-the-art
techniques. Bold font indicates the best results.

System SE7 SE2 SE3 SE13 SE15 All

CAN (2018) - 72.2 70.2 69.1 72.2 70.9
HCAN (2018) - 72.8 70.3 68.5 72.8 71.1
LMMSBERT (2019) 68.1 76.3 75.6 75.1 77.0 75.4
GLU (2019) 68.1 75.5 73.6 71.1 76.2 74.1
GlossBERT (2019) 72.5 77.7 75.2 76.1 80.4 77.0
BERTWSD (2019) - 76.4 74.9 76.3 78.3 76.3
KBERT-W+W (2019) - - - - - 75.1
LMGC (BERT) 71.9 77.8 74.6 76.5 79.7 76.6
LMGC-M (BERT) 72.9 78.2 75.5 76.3 79.5 77.0
LMGC XLNet 72.5 78.5 75.6 79.1 80.1 77.2
LMGC-M XLNet 73.0 79.1 75.9 79.0 80.3 77.5
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(e.g., knowledge graphs). We leave for future work the investigation of BEM (Blevins

and Zettlemoyer, 2020), a recently published bi-encoder with separate encoders for

context and gloss.

TABLE 4.4: Test results, scored by theGLUE evaluation benchmark. As in BERT, we exclude the
problematic WNLI set. We report F1-score for QQP and MRPC, Spearman Correlations (SC)
for STS-B,MatthewsCorrelations (MC) for CoLA, andAccuracy (ACC) for the other tasks (with
matched/mismatched accuracy for MNLI). Bold face indicates the best result per dataset.

System
Classification Semantic Similarity Natural Language Inference Average

CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE -
(mc) (acc) (F1) (sc) (F1) m/mm(acc) (acc) (acc) -

BERTbase 52.1 93.5 88.9 85.8 71.2 84.6/83.4 90.5 66.4 79.6
GlossBERT 32.8 90.4 75.2 90.4 68.5 81.3/80 83.6 47.3 70.7
LMGC (BERT) 31.1 89.2 81.9 89.2 87.4 81.4/80.3 85.4 60.2 74.5
LMGC-M (BERT) 55.0 94.2 87.1 88.1 90.8 85.3/84.2 90.1 69.7 82.5

We evaluate our suspicion that WSD training allows language models to achieve

higher generalization. Hence, we fine-tune the weights from our converged models

in general language tasks from GLUE (Wang et al., 2019b). Table 4.4 shows the

results of our proposed methods against the previously best-performing model in

WSD (GlossBERT (Huang et al., 2019)), and the official BERTbase model on the GLUE

datasets. LMGC-M achieves a 2.9% increase in performance on average over BERT.

Although LMGC and GlossBERT perform well in WSD, they cannot maintain good

performance on other GLUE tasks. Still, LMGC performs better than GlossBERT,

which we assume is due to its improved loss function regarding negative examples.

LMGC-M outperforms BERT on most tasks and is certainly comparable to the others.

Therefore, we conclude the incorporation of MLM adds value from WSD into natural

language understanding. We exclude XLNet from the comparison to show that the

additional performance is attributable to our method, not to the improvement of

XLNet over BERT. In this work, we did not compare LMGC and LMGC-M to the other

WSD methods performing worse than Huang et al. (2019) in the WSD task (Table 4.3)

because reconstructing their models is computationally expensive.
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4.2.2 Limitations

LMGC-M optimizes two objectives simultaneously, which is more expensive than

LMGC. However, LMGC-M has the same number of parameters as LMGC during

testing, resulting in approximately the same inference time.

Furthermore, we seek to investigate the impact of each component of our pre-

sented methods (e.g., weak supervision signals, parallel predictions, short sequence

lengths) by extending the ablation. We leave this study to future work as it requires

experimenting with the models with many of their variations.

4.3 Machine-Paraphrased Plagiarism Detection

We evaluate the effectiveness of the classification approaches in identifying machine-

paraphrased text with three experiments. Section 4.3.1 presents the results of applying

word embedding models with machine learning classifiers and neural language mod-

els to text from Wikipedia, arXiv, and Theses modified with two paraphrasing tools

(SpinBot, SpinnerChief). Sections 4.3.2 and 4.3.3 establish two baselines for the

results of the automated classification approaches by indicating how well human ex-

perts and two text-matching systems identify machine-paraphrased text, respectively.

4.3.1 Automated Classification

Tables 4.5 to 4.7 show the micro-averaged F1 scores (F1-Micro) for identifying para-

phrased paragraphs using SpinBot and SpinnerChief (DF and IF), for machine learning

and transformer-based techniques. We show the best performing combination of

embedding and classifiers in the row of the test set name for the machine learning

approaches. We use the top-ranked results (Tables 4.5 and 4.6) as a baseline against

the transformer-based ones in Table 4.7.

Machine Learning Results for SpinBot

GloVe in combination with SVM achieved the best classification performance for all

test sets (Table 4.5). The combination of W2V and SVM performed nearly as good as

GloVe+SVM for all test sets. For Theses and Wikipedia, the performance difference
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between GloVe+SVM and W2V+SVM was less than 2%, but for arXiv the difference

was considerably higher with 6.66%. All word embedding models achieve their best

results for Wikipedia test cases. This result corresponds to our expectation, since all

pre-trained word embedding models, except for W2V, use Wikipedia dumps as part of

their training corpora.

TABLE 4.5: Classification results (F1-Micro) for SpinBot. Bold face indicates the best score
for each combination of dataset and classifier configuration. The highest scores for each

classifier are repeated in the dataset name row.

GloVe W2V D2V FT-rw FT-sw

arXiv 86.46 79.80 72.40 78.40 74.14

LR 76.53 74.82 69.42 75.08 65.92
SVM 86.46 79.80 72.40 76.31 74.15
NB 79.17 74.23 57.99 78.40 64.96

Theses 83.51 81.94 61.92 72.75 64.78

LR 68.55 72.89 59.97 69.17 64.03
SVM 83.51 81.94 61.92 72.75 64.78
NB 75.22 74.18 42.30 72.11 61.99

Wikipedia 89.55 87.27 83.04 86.15 82.57

LR 80.89 84.50 81.08 85.13 78.97
SVM 89.55 87.27 83.04 86.15 82.57
NB 69.68 69.84 58.88 70.05 64.47

While all classification approaches performed worse for Theses, the drop in per-

formance was smaller than we expected. The F1-Micro score of the best approach

for Theses (GloVe+SVM) is 6.04% lower than for Wikipedia and 3.09% lower than for

arXiv. All embedding models, except for W2V, perform worse for Theses than for arXiv.

This finding suggests writing quality in student Theses mildly affects the detection of

machine-paraphrased text.

Although D2V seeks to mitigate the shortcomings of its predecessor W2V, such

as word order and variable-length encoding, W2V surpassed D2V for all test sets. One

reason for this observation can be the comparably short length of the paragraphs we

consider. Lau and Baldwin (2016) found D2V’s performance decreases for short doc-

uments. The results for paragraphs in Table 4.5 and for documents in our preliminary

study (Foltýnek et al., 2020b), where D2V was the best-performing approach, agree

with this finding.

When considering FT in Table 4.5, we observe the same behavior as for W2V and
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D2V. In theory, the pre-trained FT-sw model is supposed to capture the nuances of the

words inner components, i.e., sub-word embeddings. Therefore, we expected a better

performance of FT-sw compared to FT-rw, which encodes whole words. However,

FT-rw and simpler models, i.e., GloVe and W2V, performed better than FT-sw for all

test sets. These results are interesting as both FT-rw and FT-sw have been trained

using the same corpus.

Machine Learning Results for SpinnerChief

For test cases using SpinnerChief, we observed a decrease in the classification per-

formance compared to classifying SpinBot test cases. We expected this decrease as

SpinnerChief was not used to train thesemodels. The average decrease in the F1-Micro

scores was approximately 17% when using SpinnerChief’s default setting of attempt-

ing to replace every fourth word (Table 4.6) and approximately 13% for increasing the

frequency of attempted word replacements to every other word (Table 4.6).

TABLE 4.6: Classification results (F1-Micro) for SpinnerChief. DF - default frequency - attempt-
ing to change every fourth word IF - increased frequency - attempting to change every second
word. Bold face indicates the best score for each combination of dataset, and classifier con-

figuration. The highest scores for each classifier are repeated in the dataset name row.

SpinnerChief-DF SpinnerChief-IF

GloVe W2V D2V FT-rw FT-sw GloVe W2V D2V FT-rw FT-sw

arXiv 58.48 59.78 56.46 57.42 59.72 64.34 65.89 59.27 63.70 63.66

LR 52.14 55.43 56.46 57.42 58.64 54.92 59.61 59.07 61.74 61.57
SVM 58.42 57.65 56.43 56.43 59.72 64.12 62.77 59.27 62.97 63.66
NB 58.48 59.78 51.58 51.58 55.21 64.34 65.89 52.21 63.70 59.33

Theses 52.63 53.60 59.09 53.08 57.25 58.57 58.24 63.15 59.13 61.27

LR 48.42 53.60 59.09 52.51 55.63 52.08 57.94 62.88 59.13 60.65
SVM 52.63 51.54 59.00 53.08 57.25 58.57 57.78 63.15 58.12 61.27
NB 50.90 53.32 54.94 52.78 46.99 55.62 58.24 55.09 57.19 50.13

Wikipedia 57.86 60.30 55.99 59.19 59.62 64.16 66.83 60.94 65.35 66.41

LR 52.97 55.90 55.64 56.40 59.62 55.68 61.32 60.16 62.51 66.41
SVM 57.09 57.48 55.99 57.15 58.72 64.16 64.56 60.94 63.61 64.81
NB 57.86 60.30 51.64 59.19 57.29 63.46 66.83 52.64 65.35 62.06
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SpinnerChief’s settings for a stronger obfuscation of text (SpinnerChief-IF) in-

creased the success rate with which the automated classification approaches iden-

tified the paraphrases. On average, SpinnerChief-DF replaced 12.58% and Spinner-

Chief-IF 19.37% of the words in the text (see Section 3.3.1). The 6.79% increase in the

number of replaced words for SpinnerChief-IF increased the average F1-Micro score

of the classification approaches by 5.56%. This correlation suggests the classifica-

tion approaches can recognize most of the characteristic word replacements of the

studied paraphrasing tools.

The word choice and grammatical errors typical for texts of English as a second

language students decreased the classification performance less than we had ex-

pected. The SpinBot Theses test set’s highest scores were≈6% lower than the highest

scores for SpinBot overall. For SpinnerChief, the difference between the highest scores

for Theses and overall was ≈2%.

Furthermore, text-matching software and our classification approaches have com-

plementary strengths regarding the detection of machine-paraphrased plagiarism.

Text-matching software, such as Turnitin, is currently the de-facto standard technical

support tool for identifying plagiarism. However, since these tools search for identical

text matches, their detection effectiveness decreases when the number of replaced

words increases (Weber-Wulff, 2019). Including additional scans with the proposed

classification approaches, as part of the detection process of text-matching software,

could alleviate current systems’ weaknesses.

Nevertheless, the F1-Micro scores for SpinnerChief-IF test cases were, on average,

13% lower for SpinBot cases, although these cases exhibit a similar ratio of replaced

words (see Table 4.6). As for the SpinBot test cases, all approaches performed

best for Wikipedia test cases and worst for Theses. However, the performance

differences were smaller for the SpinnerChief test sets than for SpinBot test sets.

For all SpinnerChief test sets, the lowest F1-Micro scores are at most 6.5% below the

highest scores for the test set, and the runner-ups are generally within an interval of

2% of the best scores for the test sets.

Our transfer learning approach likely caused the drop in the classification perfor-

mance and the overall leveling of the F1-Micro scores for SpinnerChief test cases.
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TABLE 4.7: Classification results (F1-Micro) for SpinBot and SpinnerChief (DF and IF) using.
The first block shows the best results from machine learning methods. The second block
is composed of transformer-based optimization techniques, the third of new architectural or
training approaches, and the fourth of our best-performing lexical KD method. The highest

scores are in Bold face.

Techniques SpinBot SpinnerChief-DF SpinnerChief-IF

arXiv Theses Wiki arXiv Theses Wiki arXiv Theses Wiki
Baseline 86.46a 83.51a 89.55a 59.78b 59.09c 60.30b 65.89b 63.15d 66.83b

BERT 99.44 94.72 99.85 50.74 50.42 43.00 64.59 63.59 57.45
ALBERT 98.91 96.77 99.54 66.88 47.92 50.43 75.57 56.75 59.61
DistilBERT 99.32 96.61 99.42 38.37 45.07 37.05 47.25 51.44 46.81
RoBERTa 99.05 97.34 99.85 57.10 47.40 48.03 66.00 58.24 58.94
ELECTRA 99.20 96.85 99.41 43.83 44.95 56.30 60.77 63.11 75.92
BART 99.58 99.66 99.86 69.38 53.39 48.62 76.07 63.57 58.34
XLNet 99.65 98.33 99.48 69.90 53.06 50.51 80.56 71.75 61.83
Longformer 99.38 99.81 99.87 76.44 70.15 63.03 78.34 74.82 67.11
LMGC-M (XLNet) 99.48 98.86 99.90 72.13 61.32 55.75 82.32 75.23 61.23
a GloVe+SVM b W2V+NB c D2V+LR d D2V+SVM

As explained in Section 3.3, we seek to provide a system with high generalization

for different document collections and paraphrasing tools. Therefore, we used the

machine-paraphrased text samples of SpinBot and applied the pre-trained word em-

bedding models from Table 3.4 to extract the vector representations. We then used

these vectors as features for the machine learning classifiers for both Spinbot and

SpinnerChief test sets.

Considering the results combining machine learning techniques and word embed-

ding features, for SpinBot (Table 4.5) and SpinnerChief (Table 4.6), we selected the top

ranked ones to compose our Baseline in the Transformer experiments on Table 4.7.

Results for Transformer-based Architectures

The SpinBot test cases show all transformer models outperformed machine learning

counterparts by significant margins, 16.1% for Theses, and 13.27% on average for all

three data sources (Table 4.7). Our findings show all neural languagemodels captured

SpinBot’s intrinsic paraphrasing method almost entirely. We stop the training for each

model after one epoch to avoid overfitting to the paraphrasing method.

Longformer achieved the best performance on the SpinnerChief-DF test bench-

mark, increasing the F1-Micro score over machine learning baselines by up to 16.66%

for arXiv pre-prints, and 10.15% on average for all three data sources. Longformer’s
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architecture is designed to capture short and long dependencies with two main at-

tention mechanisms: a sliding window and global attention. We assume the model

generalizes well even when we decrease the word frequency with which words change

to capture long dependencies better. However, comparing the results of SpinnerChief-

DF in Table 4.7, we see a substantial drop in the F1 score for all approaches in relation

to SpinBot and SpinnerChief-IF. Our hypothesis is the ratio of changing words of the

paraphrased tools strongly affects our models.

When we increase SpinnerChief paraphrasing frequency to the same one as in

SpinBot, most architectures significantly improve baseline performance. This observa-

tion is consistent with the discussion and results from machine learning experiments

(see Tables 4.5 and 4.6). XLNet, Longformer, and ELECTRA achieve the highest results

with an improvement of 14.67%, 11.67%, and 9.09% in F1-score for arXiv, Theses, and

Wikipedia, respectively. As ELECTRA was pre-trained using a Wikipedia Dump and the

Books Corpus (Zhu et al., 2015), we assume it captured semantic aspects of Wikipedia

articles as well. Additionally to Wikipedia, Longformer and XLNet also trained on other

larger datasets, e.g., Gigaword 5 (Napoles et al., 2012), CC Stories (Trinh and Le, 2019),

and Realnews (Zellers et al., 2019), which are seen more frequently during training. In

return, Longformer and XLNet seem to capture unseen semantic structures better

(e.g., arXiv and Theses) due to their high diversity in the training data.

When using XLNet as the backbone network for our best performing method

(LMGC-M) in WSD and NLU, we observe slight performance gains on average over

XLNet. In the SpinnerChief-IF test case, we surpass the highest results for arXiv and

Theses texts by 1.13%. LMGC-M generalizes well on the unknown spinning pattern,

which is in line with our previous experiments in NLU (Section 4.2). Considering the

results of Longformer, we think it is a strong candidate for the backbone network in

future versions of LMGC-M.

The high compression rate of DistilBERT with a two-fold reduction in the number of

parameters showed a significant decrease in accuracy over BERT in all SpinnerChief

test cases. Although we expected a slight decline in F1, the results exceeded our

predictions. DistilBERT only performs 2.5% worse than BERT on the GLUE (Wang et al.,

2019b) dataset, but it drops by 10.63% F1-Micro on average on the SpinnerChief test
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cases, producing results comparable to random guessing. This result intrigued us

how our converged Longformermini model would perform in the task of PD which

we aim to address in future work. ALBERT’s parameter reduction techniques (e.g.,

factorized embedding parametrization, parameter sharing) seem to be more robust

and outperform BERT with a 4.56% increase on average on SpinnerChief test cases.

RoBERTa performs slightly better than BERT, with an improvement of 0.99% on

average. As RoBERTa uses more parameters than most other BERT-related models

and has exceptionally high computational requirements for pre-training, we rate this

advance as negligible. In most SpinnerChief test cases, the BERT-based approaches

performed comparably to the machine learning baselines. Models that are strongly

related to BERT are not performing as well on the paraphrase detection task asmodels

that significantly change the attention scheme or training objective.

Given the evidence at hand, spun words’ frequency is a strong indicator of our

models’ performance. However, since the spinning method of SpinBot and Spinner-

Chief (DF and IF) is unknown and could be different for each case, we can interpret the

findings in two ways. First, the models may capture spinning frequency intrinsically

and increase their attention to more words, which would mean the methods can better

detect highly spun paragraphs. Second, the spinning method in SpinnerChief-IF can

be akin to the one used in SpinBot.

At a higher level, the techniques proposing different training architectures per-

formed better than those based on hyperparameter optimization from BERT. We

believe the windowed local-global self-attention scheme used in Longformer allowed

the model to generalize better between different paraphrasing tools. In 8 out of 9

scenarios, Longformer was either the best or second-best model overall. Also, for

almost all cases, the neural language approaches surpassed the machine learning

ones, providing an attractive solution for the paraphrased detection problem. Conclud-

ing, we can see the results on SpinnerChief-DF as a lower bound for unseen spinning

methods, even if the frequency of word replacements is drastically changed.
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4.3.2 Human Baseline

To complement our earlier study (Foltýnek et al., 2020b), we conducted a user survey

with excerpts from ten randomly selected Wikipedia articles. We paraphrased three

excerpts using SpinerChief-DF and SpinnerChief-IF and kept four excerpts unaltered.

Using QuizMaker6, we prepared a web-based quiz showing the ten excerpts one

at a time and asked the participants to vote whether the text had been machine-

paraphrased. We shared the quiz via e-mail and a Facebook group with researchers

from the academic integrity community. We obtained 32 responses. The accuracy

of the participants ranged between 20% and 100%, with an average of 65.59%. Thus,

the F1-Micro score of the average human examiner matched the average of the best

scores for SpinnerChie-IF test sets (65.29%). Some participants pointed out some

excerpts’ irregularities, e.g., lowercase letters in acronyms, helped them identify the

excerpts as paraphrased. For SpinBot, which we evaluated in our preliminary study,

73 participants answered the survey with an accuracy between 40% and 100% (avg.

78.40%) (Foltýnek et al., 2020b).

Our experiments show that experienced educators who read carefully and expect

to encounter machine-paraphrased text could achieve accuracy between 80% and

100%. However, even in this setting, the average accuracy was below 80% for SpinBot

and below 70% for SpinnerChief. We expect the efficacy will be lower in realistic

scenarios, when readers focus less on spotting machine-paraphrased text.

4.3.3 Text-matching Software Baseline

To quantify the benefit of our automated classification over text-matching software,

we tested how accurately current text-matching tools identify paraphrased text. We

used two systems - Turnitin7, which has the largest market share, and PlagScan8 -

one of the best-performing systems according to a test conducted by the European

Network for Academic Integrity (Foltýnek et al., 2020a). We created 160 documents

to simulate patch-writing - 2x40 from Wikipedia, 40 from arXiv, and 40 from Theses.

Each document contains 20 randomly chosen paragraphs. Each set of 40 documents
6https://www.quiz-maker.com/
7https://www.turnitin.com/
8https://www.plagscan.com/

https://www.quiz-maker.com/
https://www.turnitin.com/
https://www.plagscan.com/
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contains 10x4 files. The first dimension captures the paragraph length in sentences

(varying from 1 to 10), and the second dimension represents the spinning tool (original,

SpinBot, SpinnerChief-DF, and SpinnerChief-IF).

To ensure the text matching-software test is objective and comparable across the

data sets, we used solely the overall percentages of text-match reported by a system.

In most cases, systems correctly identified the right source. However, in many cases,

there were also false positives caused by randommatches, which means the systems’

actual success is slightly lower than reported in the tables.

The results (see Table 4.8) show PlagScan struggles in the scenario of patch-

writing. Even though the PD tool indexes Wikipedia and identifies plagiarism of the

whole documents (Foltýnek et al., 2020a), the average text match reported for patch-

written documents was 63%. Spinning with SpinBot and SpinnerChief-IF reliably

prevented PlagScan from detection. For SpinBot, the average reported percentage of

text-match was only 1%, and for SpinnerChief-IF 3%. In the case of SpinnerChief-DF

PlagScan managed to identify 19% of plagiarism, which is caused by less portion

of altered words. Nonetheless, considering the ground truth for all documents of

100%, we can conclude that patch-writing combined with spinning successfully avoids

detection by PlagScan.

TABLE 4.8: Classification results (text-match in %) of two Plagiarism Detection systems: Tur-
nitin and PlagScan.

Turnitin PlagScan

arXiv Theses Wikipedia arXiv Theses Wikipedia

Original 84.0 5.4 98.7 44.6 22.3 65.0
SpinBot 7.0 1.1 30.2 0.0 0.1 0.5
SpinnerChief-DF 58.5 4.0 74.5 9.2 12.0 19.1
SpinnerChief-IF 38.8 1.2 50.1 1.8 0.5 3.1

As shown in Table 4.8, Turnitin performed better on patch-written documents than

PlagScan. For Wikipedia, Turnitin reported 100% text-match in almost all cases. Also,

the text-match reported for spun documents was much higher than for PlagScan —

31% for SpinBot, 74% for SpinnerChief-DF, and 50% for SpinnerChief-IF. Nonetheless,

text-spinning prevents Turnitin from identifying a significant portion of plagiarism.

Whereas Turnitin copes better with patch-writing, it does not index as many Theses
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as PlagScan.

For both systems, we observe longer fragments lead to higher identification rates.

This result corresponds without classification, which also yielded higher accuracy for

longer passages.

This experiment extended our previous tests (Foltýnek et al., 2020b), in which

the documents contained unaltered fragments interspersed with three paraphrased

ones. Turnitin identified all unaltered fragments and one of the machine-paraphrased

fragments. Of the other two machine-paraphrased fragments, Turnitin incorrectly

credited one to another source and missed the other. These results were in line with

the findings of Rogerson and McCarthy (2017), who used two paraphrasing tools

to obfuscate a paragraph from a prior publication. When Turnitin received original

paragraphs as inputs, the system found a 100% match with the source. However,

for the two machine-paraphrased versions of the paragraph, Turnitin computed a

similarity score of zero.

From these experiments, we conclude if plagiarists copy a few paragraphs and

employ a paraphrasing tool to obfuscate their misconduct by spinning, the similarity is

often below the text-matching tool’s threshold, thus causing the plagiarism to remain

undetected. Classification of machine-paraphrased text may be a useful complement

of standard text-matching, which can alert userswhen there is a suspicion of deliberate

obfuscation of plagiarism.

4.3.4 Limitations

ML techniques can supplement text-matching software to detect plagiarism from

unknown sources and in cases where spun paragraphs do not achieve the PD system’s

threshold. However, the presented classification techniques provide a classification

score with no intuitive interpretation (e.g., similarity to a document, similarity in writing

style to an author). Therefore, positive classifications require additional manual

validation of the affected paragraphs to avoid misleading plagiarism allegations

resulting from false positives.
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Chapter 5

Final Considerations

This thesis addressed the problem of increasing LM size, which we see as a risk

to the research field. Large model sizes hinder research groups, without access to

necessary hardware infrastructures, from experimenting with custom pre-trained mod-

els. Furthermore, an increased model size leads to increases in energy consumption

and makes on-device deployment difficult. Our presented methods counteract these

problems with an efficient architecture, gaining multiple teachers’ knowledge and

leveraging lexical knowledge sources. This chapter presents the final considerations

to this thesis. Starting with a conclusion of the experiments (Section 5.1), we state

a broader impact of our research contributions (Section 5.2). Finally, we outline our

future work in the domains of KD, WSD, and PD (Section 5.3).

5.1 Conclusion

We introduced a method to perform KD using the knowledge of four large-scale LMs.

Our method weights predictions of each teacher by confidence and uses them as

targets for our efficient architecture (Longformermini). During training, the student

model achieved faster convergence in language modeling than its larger counterparts,

although using fewer parameters. However, the experiments conducted in this work

did not provide conclusive answers yet. Thus we focussed on lexical KD solutions,

which appeared more promising.

We proposed twomethods to performWSD (LMGC and LMGC-M) with eight neural

LMs. Our methods distill knowledge from LKB which proved to be beneficial for NLU

tasks (e.g., text-similarity). LMGC and LMGC-M perform WSD by combining neural
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LMswith lexical resources fromWordNet. We exceeded state-of-the-artWSDmethods

on five representative datasets (+0.5%) and improved the performance over BERT in

general language understanding tasks (+1.1%). We release the code1, and pre-trained

models2 to reconstruct our experiments.

The MPP detection experiments reported in this thesis extended a preliminary

study (Foltýnek et al., 2020b) by analyzing two new collections (arXiv, Theses), a

new paraphrasing tool (SpinnerChief), and eight neural language models based on

the transformer architecture against our best-performing method (LMGC-M). We

selected training and test sets reflecting documents particularly relevant for the

plagiarism detection use case. The arXiv collection represents scientific papers

written by expert researchers. Graduation Theses of non-native English speakers

provide writing samples of authors whose style varies considerably. Wikipedia articles

represent collaboratively authored documents for many topics and one of the sources

from which students plagiarize most frequently. The classification approaches we

devised are robust to identifying machine-paraphrased text, which educators face

regularly. To support practitioners and facilitate an extension of the research on this

important task, the data3, code4, and pre-trained models2 of our study, as well as the

web-based demonstration system are openly available5.

5.2 Broader Impact

Our work focussed on distilling the knowledge of transformer language models and

lexical resources to increase semantic representations. We see a potential positive

impact with our methods to increase the accessibility for research purposes. Our

model contributes to creating high-performing models at no additional hardware

overhead, which benefits small research groups. Furthermore, as we have shown,

Longformermini uses an efficient attention scheme and a lower number of parameters

than other LMs, resulting in less computational expenses when using the trained

model. These computational expenses can translate into greenhouse gas emissions
1https://github.com/jpwahle-word-sense-disambiguation/wsd
2https://huggingface.co/models?search=jpwahle
3https://doi.org/10.5281/zenodo.3608000
4https://github.com/jpwahle/iconf22-paraphrase
5http://purl.org/spindetector

https://github.com/jpwahle-word-sense-disambiguation/wsd
https://huggingface.co/models?search=jpwahle
https://doi.org/10.5281/zenodo.3608000
https://github.com/jpwahle/iconf22-paraphrase
http://purl.org/spindetector
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(Strubell et al., 2019) which would reduce when organizations and institutions use

Longformermini for deployment.

The lexical KD methods presented in this thesis successfully gained semantic

understanding about polysemous words, which transferred to tasks beyond WSD.

We think polysemy resolution will become crucial to broader domains such as the

processing of mathematical formulas. Mathematical documents communicate their

information in an ambiguous, context-dependent, and non-formal language (Greiner-

Petter et al., 2019). For example, one equation might have a possibly infinite amount

of equations with identical meaning. Our methods could disambiguate mathemati-

cal equations for information retrieval applications using external knowledge (e.g.,

using a comprehensive typology for mathematical notations, similar to WordNet for

polysemous words).

We think the LM research field focusses more on improving task performance

than questioning model size and computational expenses. Therefore researchers

using smaller models may, at first, not be competitive against large models running

on large hardware infrastructures. We believe with more publications about efficient

LMs and the impact of large-scale models; researchers will weight these effects as

important as task performance. Aside from this concern, we see no negative ethical

or societal impacts of our work beyond what also applies to other core components

of LMs.

5.3 Future Work

We aim to extend our multi-teacher KD experiments with converging Longformermini’s

training fully. We think the converged student model could achieve comparable

performance to its teachers and other KD techniques on general NLU tasks. The

GLUE benchmarks is a logical choice as it allows us to compare the model to our

lexical KD methods.

With an increasing amount of transformer-based language models proposed in

short amounts of time, the choice for KD teachers grows too. This thesis chose

teachers by training objective, vocabulary, and the datasets used for training. We

expected prediction accuracy to be high when the datasets were similar as teacher
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models already trained on similar data. However, another perspective would be to use

teachers trained on very different datasets to capture knowledge from many domains.

This experiment may ask for a higher penalty for unconfident predictions than we

used in our method as some teachers might not produce meaningful predictions.

Our future work in the domain of WSD will include testing generalization on the

WiC (Pilehvar and Camacho-Collados, 2019) and SuperGLUE (Wang et al., 2019a)

datasets. Furthermore, we want to test discriminative fine-tuning (Howard and Ruder,

2018) against our parallel approach, i.e., whether training MLM on the LKB first, and

subsequently optimizing for WSD yields the same effect as LMGC-M.

The lexical KDmethods usemultiple components to increase themodel’s semantic

understanding. In the future, we seek to investigate which components of ourmethods

are the most impacting by performing a more detailed ablation study. We conducted

preliminary experiments with other knowledge bases (e.g., Wikidata) but leave for

future work to incorporate knowledge from these sources.

We intend to extend the experimental results fromWSD experiments to NLU bench-

marks using the trained LMGC and LMGC-M models with XLNet. Although LMGC-M

showed superior performance on average in the GLUE, we aim to estimate its classifi-

cation impact on polysemy.

The MPP detection experiments indicated that obtaining additional training data is

a promising approach for improving ML backed approaches for identifying machine-

paraphrased text. Additional training data should cover more paraphrasing tools,

topics, and languages. We see a community-driven open data effort (or crowdsourc-

ing) as a promising option for generating a comprehensive training set.

Another interesting direction would be to use AE or AR to spin words or generate

new text. This setup will be more realistic in the future as LMs are publicly available

and generate texts that are difficult to distinguish from human writing.

Considering Longformer’s superior performance in most tasks and the improve-

ment of LMGC-M over its backbone network (XLNet), we see two interesting future

experiments with our proposed methods. First, using Longformer as the backbone

network for LMGC-M, and second, applying the converged Longformermini model to

the task of PD.
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Someof these ideas have been realized in later works built on this thesis such asAE

(Wahle et al., 2021a) and AR paraphrasing (Wahle et al., 2022c). Other works have used

concepts from this thesis for applications such as abstractive text summarization

(Kirstein et al., 2022) ormisinformation detection about COVID-19 (Wahle et al., 2022a).
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Appendix A

Dataset Details

As our experiments in Section 4.2 showed, the additional learning of WSD in parallel

to MLM leverages our model’s performance to other natural language understanding

tasks. One direct result of incorporating LMGC training methods is the increased

results on the GLUE tasks. To investigate the correlation between the number of

polysemous words and LMGC, we report how many words from each GLUE tasks can

be found as polysemous in WordNet, as Table A.1 shows.

TABLE A.1: The number of polysemous words in relation to the number of total words in the
GLUE evaluation datasets except for WNLI. Under each dataset is the number of training

examples.

MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k

Train
Words 11 695k 8050k 3 818k 633k 65k 114k 160k 130k
Polysemous 5205k 3 452k 1 439 366k 23k 51k 65k 50k
Relation (%) 44.5 42.9 37.7 57.8 35.5 44.9 40.9 39.0

Test
Words 286k 893k 205k 17k 8k 34k 17k 14k
Polysemous 126k 382k 78k 9k 2k 15k 7k 5k
Relation (%) 44.2 42.8 8.2 54.1 34.7 46.4 41.9 38.7

Our first observation is the number of polysemous words in the text from different

NLU tasks is high in general. We find specific tasks like QQP with 42.8% polysemous

words in the test set with a high accuracy boost in LMGC-M, but other tasks like SST-2

with 54.1% in the test set with almost no improvement. This result indicates LMGC-M

can improve the performance with an increased number of polysemous words but

does not necessarily mean there is a causation. The baseline model BERTbase already

learnsWSD to some extent to resolve polysemy in text, which the results in GLUE tasks

show. Also, the difficulty of some tasks is not bound to polysemous words. However,
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as our experimental results showed, on average, the performance of LMGC-M is higher

than the original BERTbase model, which indicates WSD influence general language

understanding.
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