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Abstract

In this paper, we consider the asymptotic behavior of the Boussinesq equation with nonlocal weak damping when the nonlinear

function is arbitrary polynomial growth. We firstly prove the well-posedness of solution by means of the monotone operator

theory. At the same time, we obtain the dissipative property of the dynamical system (E ,S( t)) associated with the problem

in the space H 0 2 ( ) × L 2 ( ) and D ( A 3 4 ) x H 0 1 ( ) , respectively. After that, the asymptotic smoothness of the

dynamical system (E ,S( t)) and the further quasi-stability are demonstrated by the energy reconstruction method. Finally,

different from [21] we show not only existence of the finite global attractor but also existence of the generalized exponential

attractor.
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1 Introduction

We are concerned with the following nonlocal weak damping Boussinesq equation


εutt + ∆2u+ ‖ut‖rL2(Ω)ut −∆g(u) = f(x), x ∈ Ω, t ≥ 0,

u|∂Ω = ∂u
∂ν

∣∣
∂Ω

= 0, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.1)

where ε ∈ (0, 1), Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω , ν is an unit outward vector

of ∂Ω, ‖ut‖rL2(Ω)ut (r ≥ 0) is nonlocal weak damping, the forcing term f ∈ H−1(Ω). We give rise to the

following conditions with respect to the nonlinear function g(u),

g ∈ C3(R,R), g(0) = 0, (1.2)

|g′′(s)| ≤ C(1 + |s|p), ∀ p > 0, (1.3)

g′(s) ≥ −l, ∀ s ∈ R, 0 < l <

√
λ1

2
, (1.4)

where C > 0 is a constant, λ1 > 0 is the first eigenvalue of ∆2 with boundary conditions u|∂Ω = ∂u
∂ν

∣∣
∂Ω

= 0.

Let we recall simply the background and development of Boussinesq equation. In 1872, Boussinesq
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([1]) established the following equation

utt − uxx + µuxxxx = a(u2)xx, (1.5)

which it was the first science explanation about the solitary wave phenomena discovered and recorded by

Scolt Russell in [2]; µ and a are constants depending on the depth of fluid and characteristic velocities of

water waves, u is the motion of free surface of fluid. As we know that (1.5) is called a good Boussinesq

equation when µ > 0 and a bad Boussinesq equation when µ < 0. After that, the generalized Boussinesq

equations have been applied into various models, such as the model of surface waves in shallow water([3,4])

as well as the small lateral oscillation of nonlinear beam ([5,6,7]). Besides, such equations can model not

only the oscillation of the nonlinear strings but also the two-dimensional irrigational flows of an inviscid

liquid in a uniform rectangular channel as µ > 0 ([8,9]); meanwhile, they can also be exploited to describe

the propagation of ion-sound waves in a uniform isotropic plasma and nonlinear lattice waves as µ < 0

([3,4]). To the best of our knowledge, there are quite a lot of profound researches to the Boussinesq

equations from various view of dynamical system, see [10-18] and references therein. For instance, in

[10] the finite time blow-up of solution, existence and uniqueness of local mild solution were achieved for

the cauchy problem of dissipative Boussinesq equations. Liu and Wang proved existence and scattering

of a small global amplitude solution for the nonlinear Boussinesq equation in line with the estimates of

dispersion along with the principle of Banach contracting mapping, see [11] for details.

As far as we know, global attractor is a key concept to study the long-time behavior of solutions

for dissipative nonlinear evolution equations coming from physics and mechanics as well as atmospheric

sciences and so on, please refer to [22-26] and references therein. In the matter of Boussinesq equations,

study of global attractor has attracted lots of mathematicians, see [12-18]. In these literatures, Li and

Yang ([12]) investigated the following Boussinesq equation with perturbation damping

εutt + ∆2u−∆ut −∆f(u) = g(x), (1.6)

in which they first of all obtained the local well-posedness of weak solution for (1.6), and then proved the

global well-posedness and dissipativity when the initial data could be controlled by a constant Rε relying

on ε, while Rε was blow-up as ε → 0. In [13] the long-time behavior of solution for (1.6) was studied

for ε = 1 when nonlinear function f(u) satisfied non-supercritical growth conditions. Simultaneously,

existence of uniform attractor was shown for the nonautonomous Boussinesq equation with critical growth

nonlinearity in [14].

To the limit of our knowledge, for study to the nonlinear evolution equations with nonlocal damping,

Silve, Narciso and Vicente in [19] investigated the global well-posedness of solutions and polynomial

stability as well as non-exponential decay estimates to the following nonlinear beam equations with

nonlocal energy damping

utt − k∆u+ ∆2u− λ(‖∆u‖2L2 + ‖∆ut‖2L2)q∆ut + f(u) = 0. (1.7)

Zhao and Zhong considered the following extensible beam model with nonlocal weak damping in [21],

utt + ∆2u−m(‖∇u‖2)∆u+ ‖ut‖put + f(u) = h(x). (1.8)
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They above all obtained a global well-posedness of solution by virtue of the monotone operator theory;

subsequently, the asymptotic smoothness of the semigroup associated with (1.8) was verified via the energy

reconstruction method; ultimately, existence of a global attractor was achieved under the condition that

the subcritical growth of nonlinear term. At the same time, above three authors ([20]) also focused on

the following wave equation with nonlocal weak damping and nonlocal weak anti-damping

utt −∆u+ k‖ut‖pL2ut + f(u) =

∫
Ω

k(x, y)ut(y)dy + h(x). (1.9)

With the aid of monotone operator theory similar to [21] and the condition (C) which was first proposed

by Ma, Wang and Zhong ([28]), they proved again existence and uniqueness of a global solution as well as

global attractors for (1.9) in a bounded domain. Throughout these writings all mentioned above, there

has no any results on study of attractors for Boussinesq equation with nonlocal weak damping, it is just

our concerned and interested.

The aim of the present paper is to solve the following questions. (i) Taking advantage with the

monotone operator theory, which is similar to those in [20, 21], we obtain the global well-posedness

of solution for (1.1). However, it is interesting that the condition of positive constant l in dissipative

assumption (1.4) is different from that of [12], in which g′(s) ≥ −l and l >
√
λ1 since their damping is

−∆ut, while 0 < l <
√
λ1

2 in our problem. Besides, the growth order of nonlinear term g(u) only satisfies

p > 0 and has no else restrict condition. (ii) Existence of global attractors is proved by using the energy

reconstruction technique. (iii) We utilize the quasi-stable method to show the finite fractal dimension of

global attractor, and from this we further achieve existence of generalized exponential attractor. Some

results are extend and improvement of [21].

2 Well Posedness

Without loss of generality, denote H = L2(Ω) equipped with the norm ‖ · ‖ and inner product

(·, ·), and ‖ · ‖q is the norm of Lq(Ω). Let V1 = H1
0 (Ω), V2 = D(A

1
2 ) = H2

0 (Ω), V3 = D(A
3
4 ), where

A = ∆2 : V2 → V
′

2 , and the operator As(s ∈ R) is strictly positive. We define a family of Hilbert spaces

Vs = D(A
s
4 ) with the following inner products and norms respectively,

(u, v)s = (A
s
4u,A

s
4 v), ‖u‖Vs = ‖A s

4u‖,

especially,

‖u‖V1 = ‖A 1
4u‖ = ‖∇u‖, ‖u‖V2 = ‖A 1

2u‖ = ‖∆u‖.

Besides, provided that X is a separable Banach space, and

W 1,p(a, b;X) = {f ∈ C(a, b;X) : f ′ ∈ Lp(a, b;X)},

especially,

W 1,1(a, b;V2) = {f ∈ C(a, b;V2) : f ′ ∈ L1(a, b;V2)},

where Lp(a, b;X) (1 ≤ p ≤ ∞) is the identity class spaces consisting of Bochner measure functions

f : [a, b] 7→ X, endowed with the norm ‖f‖Lp(a,b;X) = (
∫b
a
‖f(t)‖pXdt)

1
p , that is ‖f(·)‖X ∈ Lp(a, b).

C(a, b;X) denotes all of continuous functions valued on X acting on [a, b].
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By virtue of the Poincaré inequality, there holds

‖A s
4u‖2 ≥ λ

1
2
1 ‖A

s−1
4 u‖2, s = 1, 2, ∀ u ∈ V2. (2.1)

It is easy to see that (1.1) is equivalent to the following Cauchy problem: εA−
1
2utt +A

1
2u+A−

1
2 (‖ut‖rut) + g(u) = A−

1
2 f(x),

u(0) = u0, ut(0) = u1.
(2.2)

For convenience, write E = V2 ×H, W = V3 × V1, and endowed with norms respectively as follows,

‖(u, v)‖2E = ‖A 1
2u‖2 + ε‖v‖2, ‖(u, v)‖2W = ‖A 3

4u‖2 + ε‖A 1
4 v‖2.

Throughout the paper, ci, c
i, Ci, C

i, C, i ∈ N be the different constants for brevity.

Next we prove the well-posedness of solution for (1.1) by using the monotone operator theory. For

this purpose, we define the operator A1 : D(A1) ⊂ E→ E; B1 : E→ E as follows:

A1 =

 0 −I

ε−1A ε−1D

 , B1(ϕ) =

 0

ε−1F (ϕ)

 , (2.3)

with domain

D(A1) = {ϕ = (u, v) ∈ V2 × V2 : Au+Dv ∈ H},

ϕ = ϕ(t) = (u(t), v(t)) ∈ E, v = ut, F (ϕ) = f + ∆g(u), D(ut) = ‖ut‖rut. Then problem (1.1) can be

written as the following form 
dϕ(t)

dt +A1ϕ(t) = B1(ϕ(t)),

ϕ(0) = ϕ0 = (u0, u1).
(2.4)

Based on above preliminary works, we need only to verify the following conditions in order to obtain

existence and uniqueness of strong solution as well as generalized solution, this is,

(1) Operator A1 is maximum monotone(or m-accretive);

(2) Operator B1 : E→ E is local Lipschitz.

Below we begin our proof from the following known results.

Lemma 2.1
[21]

Let u, v ∈ X, X is a Hilbert space. Then there exists a positive constant Cr, such

that

(‖u‖r−2
X u− ‖v‖r−2

X v, u− v) ≥

 Cr‖u− v‖rX , r ≥ 2,

Cr
‖u−v‖2X

(‖u‖X+‖v‖X)2−r , 1 ≤ r ≤ 2.
(2.5)

In line with Lemma 2.1 we achieve the assumption 1.1 in [22] at once.

Lemma 2.2
[22]

Let D(ut) = ‖ut‖rut, then D: L2(Ω)→ L2(Ω) is monotone and hemicontinuous,

D(0) = 0, i.e., for any ut, vt ∈ L2(Ω), r ≥ 0, there holds

(
D(ut)−D(vt), ut − vt

)
= (‖ut‖rut − ‖vt‖rvt, ut − vt) ≥ Cr‖ut − vt‖r+2 ≥ 0, (2.6)

and λ 7→ (D(ut + λvt), vt) : R → R is a continuous function. As a result, the damping operator D is

strictly monotone.

Moreover, there exists a subset W ⊂ H, such that for D(w) ∈ H, ∀w ∈ W , and W is dense in H,

where W = D(A
1
2 ) = H2

0 (Ω).
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Definition 2.3
[22]

The function u(t) ∈ C([0, T ];V2)
⋂
C1([0, T ];H) with u(0) = u0, ut(0) = u1 is

called:

(S) a strong solution to (1.1) on [0, T ], if the following conditions holds

(1) u ∈W 1,1(a, b;V2), ut ∈W 1,1(a, b;H), for any 0 < a < b < T ;

(2) Au(t) +D(ut(t)) ∈ H, for almost all t ∈ [0, T ];

(3) (1.1)is satisfied in H, for almost all t ∈ [0, T ] .

(G) generalized solution to (1.1) on the interval [0, T ], if and only if, there exists a sequence of strong

solutions {un(t), unt(t)} of (1.1) with initial data (u0n, u1n) instead of (u0, u1), such that

lim
n→∞

max
t∈[0,T ]

{
|ut(t)− unt(t)|+

∣∣A 1
2

(
u(t)− un(t)

)∣∣} = 0. (2.7)

Lemma 2.4 Assume that the conditions (1.2)-(1.4) hold, then the operator A1 : D(A1) ⊂ E 7→ E is

maximum monotone.

Proof: We prove this Lemma by two steps.

Step I, we claim that A1 is a monotone operator. For this aim, we take arbitrary elments u =

(u1, u2), ω = (ω1, ω2) ∈ D(A1), and let ξ = (ξ1, ξ2) = A1(u), η = (η1, η2) = A1(ω). Thus, we have

ξ1 = −u2, ξ2 = ε−1(Au1 +D(u2)), η1 = −ω2, η2 = ε−1(Aω1 +D(ω2)).

Since

(A1(u)−A1(ω), u− ω)E = (A
1
2 (ξ1 − η1), A

1
2 (u1 − ω1)) + (ε(ξ2 − η2), u2 − ω2),

we get by using Lemma 2.2

(A1(u)−A1(ω), u− ω)E = −(A(u2 − ω2), u1 − ω1)+

(A(u1−ω1) + (D(u2)−D(ω2)), u2 − ω2) = (D(u2)−D(ω2), u2 − ω2) ≥ 0.

Therefore, the operator A1 is monotone.

Step II, we claim that the operator A1 is maximum once we show that R(I +A1) = E. In fact, given

f0 ∈ D(A
1
2 ) = V2, f1 ∈ H, such that

x− y = f0, Ax+Dy + εy = εf1, as (x, y) ∈ D(A1). (2.8)

Substituting x = y + f0 into above second formula, it leads to

Ay +Dy + εy = εf1 −Af0 ∈ V ′2 . (2.9)

Let v = A
1
2 y, then we obtain

v + Sv = A−
1
2 (εf1 −Af0) ∈ H, (2.10)

where Sv = A−
1
2D(A−

1
2 v) + εA−

1
2 IA−

1
2 v. According to Lemma 2.2 we see that A−

1
2D(A−

1
2 v) is max-

imum monotone in H. Thanks to D(A
1
2 ) ⊂ H, it is clear to see that εA−

1
2 IA−

1
2 v is a bounded linear

positive operator on H. Therefore, in line with ([26], Lemma 2.1) we deduce that the operator S is

maximum monotone on H, that is, R(I + S) = H. As a result, there exists v ∈ H satisfying (2.10),

furthermore, y = A−
1
2 v ∈ D(A

1
2 ) is a solution of (2.9). Thus (x, y) ∈ D(A1).
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Below we start to verify that the operator B1 is local Lipschitz continuous in E, for this purpose, first

of all, we need the following a priori estimates.

(i) A priori estimates on E

Taking the inner product of (2.2) with A
1
2 v = A

1
2ut + αA

1
2u in L2(Ω), we find

d

dt
Q(t) +Q1(t) = 0, (2.11)

where

Q(t) = P (t) + εα(ut, u),

P (t) =E0(t) +
1

2
(g′(u), |A 1

4u|2)− (f, u),

E0(t) =
ε

2
‖ut‖2 +

1

2
‖A 1

2u‖2;

Q1(t) = α‖A 1
2u‖2 − εα‖ut‖2 + (‖ut‖rut, ut + αu)+

α(g′(u),|A 1
4u|2)− (f, αu)− 1

2
(g′′(u)|A 1

4u|2, ut).

By virtue of (1.3),(1.4),(2.1), and Young as well as interpolation inequalities, we arrive at

(g′(u), |A 1
4u|2) ≥ −l‖A 1

4u‖2 ≥ − l√
λ1

‖A 1
2u‖2, (2.12)

taking advantage with (1.3), (2.23) and Sobolev imbedding W 2,2(Ω) ↪→ C(Ω) (n = 3), we conclude

‖g′(u)‖L∞ ≤ C(1 + ‖u‖p+1
L∞ ) ≤ C(1 + ‖A 1

2u‖p+1),

‖g′′(u)‖L∞ ≤ C(1 + ‖u‖pL∞) ≤ C(1 + ‖A 1
2u‖p). (2.13)

So

|(g′′(u)|A 1
4u|2, ut)| ≤ ‖g′′(u)‖L∞‖A

1
4u‖2L4‖ut‖

≤ α‖ut‖2 + Cα(1 + ‖u‖2pL∞)‖A 1
4u‖4L4

≤ α‖ut‖2 + Cα(1 + ‖A 1
2u‖2p)‖A 1

2u‖4

≤ α‖ut‖2 + CαE0(t)p+2.

(2.14)

Together with Hölder, Young inequalities and (2.1), yields

|(f, u)| ≤ l

4
√
λ1

‖A 1
2u‖2 +

1

l
‖f‖2H−1 . (2.15)

Therefore, from (2.12)-(2.15) we deduce

P (t) ≥ c1E0(t)− C1, (2.16)

as 0 < l <
√
λ1

2 , and c1 = min{1, 1− l√
λ1
} > 0, C1 = 1

l ‖f‖
2
H−1 .

By means of Hölder and Young inequalities again, we conclude

εα|(ut, u)| ≤ εα‖ut‖‖u‖ ≤
c1ε

4
‖ut‖2 +

εα2

c1λ1
‖A 1

2u‖2, (2.17)

thus, choosing α > 0 small enough, such that

Q(t) ≥ c2E0(t)− C2, (2.18)

6



where c2 = min{ c12 , c1 −
2εα2

c1λ1
} > 0, C2 = 1

l ‖f‖
2
H−1 . As a result, (2.11) can be rewritten as follows

d

dt
Q(t) + αQ(t) + Υ = 0, (2.19)

where

Υ =(‖ut‖rut, ut + αu)− 3εα

2
‖ut‖2 +

α

2
‖A 1

2u‖2+

α

2
(g′(u), |A 1

4u|2)− 1

2
(g′′(u)|A 1

4u|2, ut)− εα2(ut, u).

With the aid of Young inequality, there exists positive constants c3, c4, such that

(ut, ut) = ‖ut‖2 ≤ c3 + c4‖ut‖r+2. (2.20)

Combining with Cauchy and Young inequalities as well as (2.1), it follows that

|(‖ut‖rut, αu)| ≤α
2
‖ut‖r+2 +

α

2
‖ut‖r‖u‖2

≤α
2
‖ut‖r+2 +

α

2λ1
(Cδ‖ut‖r+2 + δ)‖A 1

2u‖2

≤α
2
‖ut‖r+2 +

αCδ
2λ1

E0(t) · ‖ut‖r+2 +
αδ

2λ1
E0(t).

(2.21)

Moreover, in line with (2.11), (2.14) and (2.16), there holds

d

dt
P (t) + αP (t) ≤ d

dt
P (t) + αP (t) + ‖ut‖r+2 =

1

2
(g′′(u)|A 1

4u|2, ut) + αP (t)

≤ α

2
‖ut‖2 +

Cα
2
E0(t)p+2 + αP (t) ≤ C3α

2(p+2)P (t)p+2 + C4.

We infer from Lemma 4.1 in [27] that P (t) ≤ CB , t ≥ t0, so

E0(t) ≤ CB , t ≥ t0. (2.22)

Integer with (2.14) and (2.17)-(2.22), we obtain

Υ ≥
(

1− α

2
− αCδCB

2λ1

)
‖ut‖r+2 − αδCB

2λ1
− 3εα

2
‖ut‖2 +

α

2
‖A 1

2u‖2−

αl

4
√
λ1

‖A 1
2u‖2 − α

2
‖ut‖2 −

Cα
2
E0(t)p+2 − εαc1

4
‖ut‖2 −

εα3

c1λ1
‖A 1

2u‖2

≥
(

1

c4

(
1− α

2
− αCδCB

2λ1

)
− 3εα

2
− α

2
− εαc1

4

)
‖ut‖2 +

(α
2
− αl

4
√
λ1

− εα3

c1λ1

)
‖A 1

2u‖2

− c3
c4

(
1− α

2
− αCδCB

2λ1

)
− αδCB

2λ1
− C5Q(t)p+2 − 2p+1Cα

(C2

c2

)p+2
. (2.23)

Choosing small enough α, such that

1

c4

(
1− α

2
− αCδCB

2λ1

)
− 3εα

2
− α

2
− εαc1

4
> 0,

α

2
− αl

4
√
λ1

− εα3

c1λ1
> 0, 1− α

2
− αCδCB

2λ1
> 0,

for 0 < l <
√
λ1

2 . Thus Υ ≥ −αC6 − C5Q(t)p+2, furthermore, d
dtQ(t) + αQ(t) ≤ αC6 + C5Q(t)p+2. By

virtue of Lemma 4.1 in [27], we know that Q(t) ≤ C7, ∀ t ≥ t0, and then together with (2.17), we claim

that

‖(u, ut)‖2E ≤
2C7 + 2C2

c2
= R2. (2.24)
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(ii) A priori estimates on W

Taking the inner product of (2.2) with Aut + αAu in L2(Ω), we have

d

dt
E(t) + α‖A 3

4u‖2 − εα‖A 1
4ut‖2 + (‖ut‖rut, A

1
2ut + αA

1
2u)

+ α(g(u), Au)− (f, αA
1
2u) = (g′(u)ut, Au),

(2.25)

where

E(t) = E1(t) + (g(u), Au)− (f,A
1
2u) + εα(A

1
4ut, A

1
4u),

E1(t) =
ε

2
‖A 1

4ut‖2 +
1

2
‖A 3

4u‖2.

By means of Hölder, Young and Gagliardo-Nirenberg inequalities, and together with (2.13), (2.24), there

holds

‖A 1
2 g(u)‖ = ‖g′(u)A

1
2u+ g′′(u)(A

1
4u)2‖

≤‖g′(u)‖L∞‖A
1
2u‖+ ‖g′′(u)‖L∞‖A

1
4u‖2L4 ≤ C(R),

(2.26)

so from (2.26) yields

|(g(u), Au)| ≤ ‖A 1
2 g(u)‖‖A 1

2u‖

≤C(R)‖A 1
2u‖ ≤ 3C(R)√

λ1

+
1

12
‖A 3

4u‖2,
(2.27)

|(g′(u)ut, Au)| = |(g′′(u)A
1
4u · ut + g′(u)A

1
4ut, A

3
4u)|

≤‖g′′(u)‖L∞‖A
1
4u‖L4‖ut‖L4‖A 3

4u‖+ ‖g′(u)‖L∞‖A
1
4ut‖‖A

3
4u‖

≤α
2
‖A 1

4ut‖2 + C(1 + ‖A 1
2u‖2p + ‖A 1

2u‖2(p+1))‖A 3
4u‖2,

(2.28)

|(f,A 1
2u)| ≤ 3‖f‖2H−1 +

1

12
‖A 3

4u‖2, (2.29)

|εα(A
1
4ut, A

1
4u)| ≤ 3ε2α2

λ1
‖A 1

4ut‖2 +
1

12
‖A 3

4u‖2. (2.30)

Collecting all above estimates, it follows that

E(t) ≥ c6E1(t)− C8, (2.31)

where c6 = min{1− 6εα2

λ1
, 1

2}, and 0 < c6 < 1, c8 = 3√
λ1
C(R) + 3‖f‖2H−1 . Thus (2.25) is transformed

into the following equality

d

dt
E(t) + αE(t) + Υ1 = (g′(u)ut, Au), (2.32)

where

Υ1 = (‖ut‖rut, A
1
2ut + αA

1
2u)− 3εα

2
‖A 1

4ut‖2 +
α

2
‖A 3

4u‖2 − εα2(A
1
4ut, A

1
4u).

In line with Hölder inequality and (2.23) yields

|(‖ut‖rut, αA
1
2u)| ≤ α‖ut‖r+1‖A 1

2u‖ ≤ αRr+1‖A 1
2u‖ ≤ αRr+2. (2.33)
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Therefore, collecting all (2.20), (2.30) and (2.33), we get

Υ1 ≥
(
‖ut‖rut, A

1
2ut

)
− αRr+2 − 3εα

2
‖A 1

4ut‖2 +
α

2
‖A 3

4u‖2 − 3ε2α3

λ1
‖A 1

4ut‖2 −
α

12
‖A 3

4u‖2

= ‖ut‖r‖A
1
4ut‖2 +

5α

12
‖A 3

4u‖2 −
(3εα

2
+

3ε2α3

λ1

)
‖A 1

4ut‖2 − αRr+2

≥ −
(Rr
ε

+
3α

2
+

3εα3

λ1

)
ε‖A 1

4ut‖2 +
α

4
‖A 3

4u‖2 − αRr+2

≥ −αRr+2 − εC8‖A
1
4ut‖2,

where C8 = Rr

ε + 3α
2 + 3εα3

λ1
. Combining with (2.28) and (2.32) we arrive at

d

dt
E(t) + αE(t) ≤

(
εC8 +

α

2

)
‖A 1

4ut‖2 + C(1 +Rp +Rp+1)‖A 3
4u‖2 + αRr+2

≤ C9E1(t) + αRr+2,

where C9 = min{2C8 + α
ε , 2C(1 +Rp +Rp+1)}. Using (2.31) we achieve

d

dt
E(t) +

α

2
E(t) ≤ C10E(t) + C11,

where C10 = C9

c6
, C11 = C8C9

c6
+ αRr+2. According to Gronwall Lemmas we deduce that

E(t) ≤ C(R)e−
α
4 tE(0) + C12,

hence, there exists t0 = t(B̄) = 4
α ln C(R)E(0)

C12
, such that E(t) ≤ 2C12, ∀ t ≥ t0. Together with (2.31) it

follows that

‖(u, ut)‖2W ≤
4C12 + 2C8

c6
= R̄2. (2.34)

Thus, in line with above two estimates, we infer the following results.

Lemma 2.5 The Operator B1 is local Lipschitz continuous in E.

Proof: By means of (1.2)-(1.3), (2.24) and embedding W 2,2(Ω) ↪→ C(Ω) (n = 3), similar to the

estimate (2.13) we conclude

‖g′′′(v + θz)‖L∞ ≤ C(R), ‖g′′(v + θz)‖L∞ ≤ C(R), ‖g′(v + θz)‖L∞ ≤ C(R), for 0 ≤ θ ≤ 1.

Then we infer from above inequality

‖g(u)− g(v)‖V2
=
( ∫

Ω

∣∣A 1
2

(
g′(v + θ(u− v))(u− v)

)∣∣2dx
) 1

2

≤
( ∫

Ω

|g′′′(v + θz)[A
1
4 (u+ θz)]v2z|2dx

) 1
2

+
( ∫

Ω

|g′′(v + θz)A
1
2 (u+ θz)z|2dx

) 1
2

+ 2
( ∫

Ω

|g′′(v + θz)A
1
4 (v + θz)A

1
4 z|2dx

) 1
2

+
( ∫

Ω

|g′(v + θz)A
1
2 z|2dx

) 1
2

≤ ‖g′′′(v + θz)‖L∞‖A
1
4 (v + θz)‖2L4‖z‖L∞ + ‖g′′(v + θz)‖L∞‖A

1
2 (v + θz)‖‖z‖L∞

+ 2‖g′′(v + θz)‖L∞‖A
1
4 (v + θz)‖L4‖A 1

4 z‖L4 + ‖g′(v + θz)‖L∞‖A
1
2 z‖

≤ C(R)(‖A 1
4u‖2L4 + ‖A 1

4 v‖2L4)‖A 1
2 z‖+ C(R)(‖A 1

2u‖+ ‖A 1
2 v‖)‖A 1

2 z‖

+ 2C(R)(‖A 1
4u‖L4 + ‖A 1

4 v‖L4)‖A 1
2 z‖+ C(R)‖A 1

2 z‖

≤ C(R)‖A 1
2 z‖,

(2.35)
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where z = u− v. Therefore,

‖ε−1(∆g(u) + f(x))− ε−1(∆g(v) + f(x))‖ = ε−1‖g(u)− g(v)‖V2
≤ C(R, ε)‖∆z‖,

that is, the operator B1(ϕ) =

 0

ε−1F (ϕ)

 is local Lipschitz in E.

From above discussions we obtain our first main result in this paper.

Theorem 2.6(Well-posedness) Assume that the conditions (1.2)-(1.4) hold, then for any T > 0,

we have

(1) For every (u0, u1) ∈ V2 × V2, such that Au0 +D(u1) ∈ H, there exists a unique strong solution

u(t) of (1.1), satisfying

(ut, utt) ∈ L∞(0, T ;V2 ×H), ut ∈ Cr([0, T ];V2),

utt ∈ Cr([0, T ];H), Au(t) +D(ut(t)) ∈ Cr([0, T ];H),
(2.36)

where Cr denotes the right continuous function space, and

P (t) +

∫ t
0

‖ut(τ)‖r+2dτ = P (0) +
1

2

∫ t
0

(g′′(u)|A 1
4u|2, ut)dτ. (2.37)

(2) For every (u0, u1) ∈ V2 ×H, there exists a unique generalized solution u(t) of (1.1), satisfying

(u, ut) ∈ C([0, T ];V2 ×H). (2.38)

Especially, this generalized solution is also weak solution.

Proof: On the basis of Lemmas 2.4, 2.5 and applying the same argument as in the proof of Theorem

7.2 of [25], it is easy to know that for any ϕ0 = (u0, u1) ∈ D(A1), there exists tmax ≤ ∞, such that

(2.4) has a unique strong solution ϕ = (u, ut) on the interval [0, tmax). In addition, we infer from Lemma

2.2 that D(A1) = E because the set D(A1) × H2
0 (Ω) ⊂ D(A1) and W is dense in H. Meanwhile, if

ϕ0 ∈ D(A1), then there exists a unique generalized solution ϕ ∈ C([0, tmax);E) of (2.4). Besides, under

such two cases we have

lim
t→tmax

‖ϕ(t)‖E =∞, provided tmax <∞. (2.39)

In accordance with (2.7) we know that the generalized solution is hold to a priori estimates on E.

Therefore, thanks to above a priori estimates, we obtain the global existence(uniqueness) of strong and

generalized solution.

On the other hand, due to D(ut) = ‖ut‖rut we show that D : H → H satisfies

‖D(ut)‖ = ‖ut‖p+1 ≤ Cρ, ∀ ut ∈ H, ‖ut‖ ≤ ρ, ρ > 0,

then the operator D is bounded on bounded sets, along with Lemma 2.2 we show that a generalized

solution is also a weak solution.

As a result, making use of Theorem 2.6, we define a dynamical system (E, S(t)) associated with

problem (1.1) in E = V2 ×H, i.e.,

S(t)ϕ(0) = ϕ(t) = (u(t), ut(t)),

and u(t) is a weak solution of (1.1) with initial data ϕ(0) = (u0, u1).
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3 Some Abstract Results

In order to obtain our next two main results, that is, existence of global attractors and generalized

exponential attractors of (1.1), some abstract results are necessary.

Definition 3.1[22] A dynamical system (X,S(t)) is said to be asymptotically smooth, if for any

positive invariant bounded subset M ⊂ X (i.e., ∀ t > 0, S(t)M ⊂ M), there exists a compact subset

K ⊂ M̄ , such that lim
t→+∞

dX{S(t)M |K} = 0, where dX{A|B} = sup
x∈A

distX(x,B) is Hausdorff semi-

distance.

Definition 3.2[22] A bounded closed set A ⊂ X is said to be a global attractor of (X,S(t)), if the

following conditions hold,

(1) A is invariant, namely, S(t)A = A, ∀ t ≥ 0;

(2) A is uniformly attracting, i.e., for all bounded set M ⊂ X, lim
t→+∞

dX{S(t)M |A} = 0.

Theorem 3.3[22] Let (X,S(t)) be a dynamical system on a complete metric space X endowed with

a metric d. Assume that for any bounded positive invariant set B ⊂ X, there exists T > 0, and a

continuous non-decreasing function h : R+ → R+ as well as speudometric %TB on C(0, T ;X), such that

(1) h(0) = 0, and h(s) < s, ∀ s > 0;

(2) Speudometric %TB is precompact, w.r.t. X in the following sense: for any sequence {xn} ⊂ B,

there exists subsequence {xnk} ⊂ {xn}, such that yk(τ) = S(τ)xnk and {yk} ⊂ C(0, T ;X) is Cauchy

sequence w.r.t. %TB ;

(3) For any y1, y2 ∈ B, there holds

d(S(T )y1, S(T )y2) ≤ h
(
d(y1, y2) + %TB

(
{S(τ)y1}, {S(τ)y2}

))
, (3.1)

where yi(τ) = S(τ)yi. Then dynamical system (X,S(t)) is asymptotically smooth.

Remark 3.4[22] Instead of (3) we can also assume that

d(S(T )y1, S(T )y2) ≤ h
(
d(y1, y2)

)
+ %TB

(
{S(τ)y1}, {S(τ)y2}

)
.

Theorem 3.5[22] Assume that dynamical system (X,S(t)) is dissipative, then (X,S(t)) possesses a

compact global attractor A if and only if (X,S(t)) is asymptotically smooth.

Theorem 3.6[23] Let the dynamical system (X,S(t)) possesses a compact global attractor A and it

is quasi-stable on A, i.e., there exists a compact seminorm nX on X and non-negative scalar functions

a(t), b(t), c(t) on R+ such that

(1) a(t), c(t) are locally bounded on [0,∞); (2) b(t) ∈ L1 (R+) possesses the property lim
t→∞

b(t) = 0;

(3) for every y1, y2 ∈ B and t > 0 we have

‖S(t)y1 − S(t)y2‖2X ≤ a(t)‖y1 − y2‖2X , (3.2)

‖S(t)y1 − S(t)y2‖2X ≤ b(t)‖y1 − y2‖2X + c(t) sup
s∈[0,t]

[nXz(s)]
2 (3.3)

where S(t)yi = yi(t), i = 1, 2, z(t) = u(t)− v(t). Then the attractor A has a finite fractal dimension.
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Theorem 3.7[23] Let the dynamical system (X,S(t)) have a positively invariant absorbing set B and

it is quasi-stable. We also assume that there exists a space X̃ ⊇ X such that for any T > 0, we have

‖S(t1)y − S(t2)y‖X̃ ≤ CB|t1 − t2|γ , t1, t2 ∈ [0, T ], y ∈ B, (3.4)

where CB > 0, γ ∈ (0, 1]. Then the dynamical system (X,S(t)) possesses a gengralized exponential

attractor Aexp ⊂ X whose dimension is finite in the space X̃.

4 Global Attractors

In this section, first of all, we show the following two dissipative results from a priori estimates in

section 2.

Theorem 4.1 Assume that the conditions (1.2)-(1.4) hold, then the dynamical system (E, S(t))

generated by (1.1) is dissipative, namely, there exists a constant R > 0, for any bounded set B ⊂ E, there

is a t0 = t(B) > 0 such that ‖S(t)y‖E = ‖
(
u(t), ut(t)

)
‖E ≤ R, for any y ∈ B and t ≥ t0. Especially, the

set

B0 = {(u, ut) ∈ E; ‖(u, ut)‖E ≤ R}

is a bounded absorbing set in E for dynamical system (E, S(t)).

Theorem 4.2 Assume that the conditions (1.2)-(1.4) hold, then there exists R̄ > 0, for any bounded

set B̄ ⊂ W, there is a t0 = t(B̄) > 0, such that ‖S(t)y‖W = ‖
(
u(t), ut(t)

)
‖W ≤ R, for any y ∈ B̄ and

t ≥ t0. Especially,

B̄0 = {(u, ut) ∈W; ‖(u, ut)‖W ≤ R̄}

is a bounded absorbing set for dynamical system (E, S(t)) in W.

Now we start to restructure the energy for dynamical system (E, S(t)).

Lemma 4.3 Assume that the conditions (1.2)-(1.4) hold, (u0, u1), (v0, v1) ∈ V2 × V2, then there

exists T0 > 0, and C > 0 independent of T , such that for any two strong solutions u, v of (1.1),

TEz(T ) +

∫T
0

Ez(t)dt ≤ C
{ ∫T

0

‖zt‖2dt+

∫T
0

|
(
D(t, zt), z

)
|dt+∫T

0

(
D(t, zt), zt

)
dt+

∣∣∣ ∫T
0

(g(u)− g(v), A
1
2 z)dt

∣∣∣+∣∣∣ ∫T
0

(g(u)− g(v), A
1
2 zt)dt

∣∣∣+
∣∣∣ ∫T

0

dt

∫T
t

(g(u)− g(v), A
1
2 zt)dτ

∣∣∣},
(4.1)

for T ≥ T0, where z(t) = u(t)− v(t), and

Ez(t) =
1

2
(ε‖zt‖2 + ‖A 1

2 z‖2), D(t, zt) = ‖ut‖rut − ‖vt‖rvt.

Proof: Let z(t) = u(t)− v(t), it satisfies

εA−
1
2 ztt +A

1
2 z +A−

1
2 (‖ut‖rut)−A−

1
2 (‖vt‖rvt) + g(u)− g(v) = 0. (4.2)

Taking the inner product of (4.2) with A
1
2 zt(t) in L2(Ω), we get

1

2

d

dt

(
ε‖zt‖2 + ‖A 1

2 z‖2
)

+
(
D(t, zt), zt

)
= −

(
g(u)− g(v), A

1
2 zt
)
, (4.3)
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where D(t, zt) = ‖ut‖rut − ‖vt‖rvt. Denote

Ez(t) =
1

2
(ε‖zt‖2 + ‖A 1

2 z‖2),

and integrating (4.3) over [t, T ], it follows that

Ez(T ) +

∫T
t

(
D(t, zt), zt

)
dτ = Ez(t)−

∫T
t

(
g(u)− g(v), A

1
2 zt
)
dτ. (4.4)

Taking the inner product of (4.2) with A
1
2 z(t) in L2(Ω), we arrive at

ε
d

dt
(zt, z)− ε‖zt‖2 + ‖A 1

2 z‖2 +
(
D(t, zt), z

)
= −

(
g(u)− g(v), A

1
2 z
)
.

Integrating above inequality over [0, T ], it yields

2

∫T
0

Ez(t)dt− 2ε

∫T
0

‖zt‖2dt+

∫T
0

(
D(t, zt), z

)
dt+ ε(zt, z)

∣∣T
0

= −
∫T
0

(
g(u)− g(v), A

1
2 z
)
dt.

Exploiting (2.1) we deduce

|(zt, z)| ≤
1

2
(‖zt‖2 +

1

λ1
‖A 1

2 z‖2) ≤ C

2
Ez(t).

Therefore,

2

∫T
0

Ez(t)dt ≤ C
(
Ez(0)− Ez(T )

)
+ 2ε

∫T
0

‖zt‖2dt−∫T
0

(
D(t, zt), z

)
dt−

∫T
0

(
g(u)− g(v), A

1
2 z
)
dt.

(4.5)

For (4.4), let t = 0, we have

Ez(0) = Ez(T ) +

∫T
0

(
D(t, zt), zt

)
dt+

∫T
0

(
g(u)− g(v), A

1
2 zt
)
dt. (4.6)

In line with the monotone property of D, integrating (4.4) over [0, T ], it leads to

TEz(T ) ≤
∫T
0

Ez(t)dt−
∫T
0

dt

∫T
t

(
g(u)− g(v), A

1
2 zt
)
dτ. (4.7)

Thus we can infer (4.1) from (4.5)-(4.7).

In order to obtain the asymptotical smoothness of dynamical system(E, S(t)), we need to verify the

three conditions of Theorem 3.3.

Proposition 4.4(Energy reconstruction) Assume that the conditions (1.2)-(1.4) hold, z(t) =

u(t)− v(t), 0 < β̃ < 1
4 , then there exists T0 > 0, C > 0, such that for any solution u, v of (1.1),

Ez(T ) ≤ CB,T (K + I)
( ∫T

0

(
D(t, zt), zt

)
dt
)

+ CB,T sup
t∈[0,T ]

‖A 1
2−β̃z(t)‖+ CB,T sup

t∈[0,T ]

‖A 3
4−β̃z(t)‖ (4.8)

as T ≥ T0.

Proof: Let B =
⋃
t≥t0

S(t)B0. It is easy to know that from Theorem 3.1 B is a bounded closed forward

invariant set. Then for any bounded set B, there is a t(B) ≥ 0, such that S(t)B ⊂ B0 for any t ≥ t(B).

Besides, B0 is also a bounded absorbing set, so there exists t0 ≥ 0, such that S(t)B0 ⊂ B0 for any t ≥ t0.
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Therefore, when t ≥ t0 + t(B), we show that S(t)B ⊂ B. From above discussions it follows that B is a

absorbing set. Assume that u(t), v(t) are two weak solutions, and

(u(t), ut(t)) ≡ S(t)y0, (v(t), vt(t)) ≡ S(t)y1, ∀ y0, y1 ∈ B. (4.9)

Let T > 0, by virtue of a priori estimates in E, along with (2.24), we conclude∫T
0

(D(ut), ut)dt+

∫T
0

(D(vt), vt)dt ≤ CB. (4.10)

Rewrite (4.1) as follows

TEz(T ) +

∫T
0

Ez(t)dt ≤C
{ ∫T

0

‖zt‖2dt+

∫T
0

|(D(t, zt), z)|dt

+

∫T
0

(D(t, zt), zt)dt+ ΓT (u, v)

}
,

(4.11)

where

ΓT (u, v) =

∣∣∣∣ ∫T
0

(g(u)− g(v), A
1
2 z)dt

∣∣∣∣+

∣∣∣∣ ∫T
0

(g(u)− g(v), A
1
2 zt)dt

∣∣∣∣
+

∣∣∣∣ ∫T
0

dt

∫T
t

(g(u)− g(v), A
1
2 zt)dτ

∣∣∣∣
≤CT

{ ∫T
0

∣∣∣(g(u)− g(v), A
1
2 z)
∣∣∣dt+

∫T
0

∣∣∣(g(u)− g(v), A
1
2 zt)

∣∣∣dt}.
(4.12)

Taking advantage with (2.1), (2.35) and Hölder inequality, there exists a constant 0 < α < 1
4 , it leads to

∣∣(g(u)− g(v), A
1
2 z
)∣∣ =

∣∣(A 1
2 (g(u)− g(v)), z

)∣∣ ≤ ‖g(u)− g(v)‖V2
‖z‖

≤C(R)‖A 1
2 z‖‖z‖ ≤ CB,T ‖A

1
2 z‖ ≤ CB,T ‖A

3
4−αz‖,

(4.13)

Analogously,

∣∣(g(u)− g(v), A
1
2 zt
)∣∣ ≤‖g(u)− g(v)‖V2

‖zt‖ ≤ C(R)‖A 1
2 z‖‖zt‖ ≤ CB,T ‖A

3
4−αz‖. (4.14)

Inserting (4.13) and (4.14) into (4.12) yields

ΓT (u, v) ≤ 2CB,T

∫T
0

‖A 3
4−αz‖dt. (4.15)

According to Lemma 2.1, let K0(s) = C
− 2
p+2

p s
2
p+2 ( p ≥ 0), it is strictly increasing concave function, and

K0 ∈ C(R+), K0(0) = 0, hence

K0

(
(‖u+ v‖p(u+ v)− ‖u‖pu), v

)
≥ K0(Cp‖v‖p+2 = ‖v‖2, ∀ u, v ∈ V2,

utilizing Jensen’s inequality, we achieve∫T
0

‖zt‖2dt ≤
∫T
0

K0

(
D(t, zt), zt

)
dt

≤ TK0

( 1

T

∫T
0

(D(t, zt), zt)dt
)

= K

( ∫T
0

(D(t, zt), zt)dt

)
,

(4.16)
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where K(s) = TK0( sT ). In addition, there exists 0 < β < 1
2 , such that

|(D(t, zt), z)| ≤ ‖z‖(
∫
Ω

(‖ut‖rut − ‖vt‖rvt)2dx)
1
2

≤ C‖z‖(‖ut‖2r‖ut‖2 + ‖vt‖2r‖vt‖2)
1
2

≤ CB‖z‖ ≤ CB‖A
1
2−βz‖,

(4.17)

thus, we infer from (4.11)-(4.17)

TEz(T ) +
1

2

∫T
0

Ez(t)dt ≤ CB

{
(K + I)

( ∫T
0

(D(t, zt), zt)dt
)

+

∫T
0

‖A 1
2−βz‖dt+ CB,T

∫T
0

‖A 3
4−αz‖dt

}
.

Therefore, let β̃ = min{α, β}, we obtain

Ez(T ) ≤ CB,T (K + I)
( ∫T

0

(
D(t, zt), zt

)
dt
)

+ CB,T

∫T
0

‖A 1
2−β̃z‖dt+ CB,T

∫T
0

‖A 3
4−β̃z‖dt

≤ CB,T (K + I)
( ∫T

0

(
D(t, zt), zt

)
dt
)

+ CB,T sup
t∈[0,T ]

‖A 1
2−β̃z(t)‖+ CB,T sup

t∈[0,T ]

‖A 3
4−β̃z(t)‖.

Proposition 4.5 Assume that the conditions (1.2)-(1.4) hold, then the dynamical system (E, S(t))

generated by (1.1)is asymptotically smooth in E.

Proof: In line with of Proposition 4.4, we need only to deal with the damping term of (4.8). For our

aim, let M0(s) = (K + I)−1
(

s
2CB,T

)
, then M0(s) is a strictly concave function, so

(K + I)−1(s) ≤ s, ∀s ≥ 0,

due to (4.8) we obtain

M0(Ez(T )) = (K + I)−1
(Ez(T )

2CB,T

)
≤(K + I)−1

{
1

2
(K + I)

( ∫T
0

(
D(t, zt), zt

)
dt
)

+
1

2
sup
t∈[0,T ]

‖A 1
2−β̃z(t)‖+

1

2
sup
t∈[0,T ]

‖A 3
4−β̃z(t)‖

}
≤1

2

∫T
0

(
D(t, zt), zt

)
dt+

1

2
(K + I)−1

(
sup
t∈[0,T ]

‖A 1
2−β̃z(t)‖+

1

2
sup
t∈[0,T ]

‖A 3
4−β̃z(t)‖

)
≤1

2

∫T
0

(
D(t, zt), zt

)
dt+

1

2
sup
t∈[0,T ]

‖A 1
2−β̃z(t)‖+

1

2
sup
t∈[0,T ]

‖A 3
4−β̃z(t)‖.

(4.18)

By virtue of Hölder inequality, combining with (1.3), (2.24) as well as Sobolev imbedding inequality

W 2,2(Ω) ↪→ C(Ω) (n = 3), we deduce that

∣∣(g(u)− g(v), A
1
2 zt
)∣∣ =

∣∣(A 1
4 (g(u)− g(v)), A

1
4 zt
)∣∣

≤
∣∣∣( ∫1

0

g′′(θu+ (1− θ)v)(θA
1
4u+ (1− θ)A 1

4 v)zdθ +

∫1

0

g′(θu+ (1− θ)v)A
1
4 zdθ,A

1
4 zt

)∣∣∣
≤C

∫
Ω

(1 + |u|p + |v|p)(|A 1
4u|+ |A 1

4 v|)|z||A 1
4 zt|dx+ C

∫
Ω

(1 + |u|p+1 + |v|p+1)|A 1
4 z||A 1

4 zt|dx

≤C(R)(‖A 1
4u‖L4 + ‖A 1

4 v‖L4)‖z‖L4‖A 1
4 zt‖+ C(R)‖A 1

4 z‖‖A 1
4 zt‖

≤C(R)(‖A 1
2u‖+ ‖A 1

2 v‖)‖A 1
4 z‖‖A 1

4 zt‖+ C(R)‖A 1
4 z‖‖A 1

4 zt‖

≤C(R)‖A 1
4 z‖‖A 1

4 zt‖,

(4.19)
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where g(u) − g(v) =
∫1

0
g′(θu + (1 − θ)v)zdθ. Taking t = 0 in (4.4), together with (2.34), (4.19) and

compact imbedding theorem, we achieve∫T
0

(D(t, zt), zt)dt = Ez(0)− Ez(T )−
∫T
0

(
g(u)− g(v), A

1
2 zt
)
dt

≤ Ez(0)− Ez(T ) + C(R)

∫T
0

‖A 1
4 z‖‖A 1

4 zt‖dt

≤ Ez(0)− Ez(T ) + CB,T ‖A
1
4 z‖

≤ Ez(0)− Ez(T ) + CB,T sup
t∈[0,T ]

‖A 1
2−β̃z(t)‖. (4.20)

Therefore,

Ez(T ) + 2M0(Ez(T )) ≤ Ez(0) + CB,T
(

sup
t∈[0,T ]

‖A 1
2−β̃z(t)‖+ sup

t∈[0,T ]

‖A 3
4−β̃z(t)‖

)
.

Since z(t) ∈ V3 is uniformly bounded, andD(A
1
2 ) ↪→↪→ D(A

1
2−β̃) ↪→↪→ H andD(A

3
4 ) ↪→↪→ D(A

3
4−β̃) ↪→↪→

H, with the aid of interpolation theorem, it follows that

‖A 1
2−β̃z(t) | ≤ ‖A 1

2 z‖θ1‖z‖1−θ1 ≤ CR‖z(t)‖1−θ1 , θ1 ∈ (0, 1),

and

‖A 3
4−β̃z(t) | ≤ ‖A 3

4 z‖θ1‖z‖1−θ1 ≤ CR‖z(t)‖1−θ1 , θ1 ∈ (0, 1).

Hence

Ez(T ) + 2M0(Ez(T )) ≤ Ez(0) + CB,T sup
t∈[0,T ]

‖z(t)‖θ2 , θ2 = 1− θ1 ∈ (0, 1].

Thus, integer with

Ez(T ) =
1

2

(
ε‖zt‖2 + ‖A 1

2 z‖2
)

=
1

2
‖S(T )y1 − S(T )y2‖2E,

we have

‖S(T )y1 − S(T )y2‖E = (2Ez(T ))
1
2

≤
√

2

[
(I + 2M0)−1

{
1

2
‖y1 − y2‖2E + CB,T sup

t∈[0,T ]

‖z(t)‖θ2
}] 1

2

≤
√

2

[
(I + 2M0)−1

{
1

2

(
‖y1 − y2‖E + (CB,T sup

t∈[0,T ]

‖z(t)‖θ2)
1
2

)2}] 1
2

≤
√

2

[
(I + 2M0)−1

{
1

2

(
‖y1 − y2‖E + CB,T sup

t∈[0,T ]

‖z(t)‖θ3
)2}] 1

2

,

(4.21)

that is

‖S(T )y1 − S(T )y2‖E ≤ h
(
‖y1 − y2‖E + %TB

(
{S(τ)y1}, {S(τ)y2}

))
, (4.22)

where

h(s) =
√

2
(

(I + 2M0)−1(
s2

2
)
) 1

2

,

%TB
(
{S(τ)y1},{S(τ)y2}

)
= CB,T sup

t∈[0,T ]

‖u(t)− v(t)‖θ3 , θ3 ∈ (0,
1

2
].

It is clear that the function h satisfies the conditions of Theorem 3.3. Besides, using the similar technique

of [21], we conclude that pseudomeasure sup
t∈[0,T ]

‖u(t) − v(t)‖θ3 is precompact on the set LB,T , which all
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solutions of (1.1) on [0,T] with initial data in B. Thus in line with Theorem 3.3, we show that the

dynamical system (E, S(t)) is asymptotically smooth.

Now taking advantage with Theorem 4.1 and Proposition 4.5, from Theorem 3.4 we claim that the

following result is hold.

Theorem 4.6 The dynamical system (E, S(t)) associated with (1.1) possesses a compact global

attractor A.

5 Fractal Dimension and Generalized Exponential Attractor

From abstract Theorem 3.5 we know that the following Lemma need only to be proved.

Lemma 5.1 The dynamical system (E, S(t)) is quasi-stable in a bounded positive invariant set

B ⊂ E.

Proof: In line with the definition of quasi-stability in Theorem 3.5, we only need to verify (3.2) and

(3.3). For that purpose, first of all, taking the inner product of (4.2) with A
1
2Zt, we achieve

1

2

d

dt

(
ε ‖zt‖2 +

∥∥∥A 1
2 z
∥∥∥2
)

+ (‖ut‖r ut − ‖vt‖r vt, zt) = −
(
g(u)− g(v), A

1
2 zt

)
. (5.1)

Lemma 2.2 implies that

(‖ut‖r ut − ‖vt‖rvt, zt) > Cr ‖zt‖r+2 > 0, (5.2)

and due to (4.19), it leads to∣∣∣−(g(u)− g(v), A
1
2 zt

)∣∣∣ ≤ ‖g(u)− g(v)‖V2
· ‖zt‖

≤ C(R) ‖zt‖ ·
∥∥∥A 1

2 z
∥∥∥

≤ C(R, ε)

(
ε ‖zt‖2 +

∥∥∥A 1
2 z
∥∥∥2
)
.

(5.3)

Therefore, from (5.1)− (5.3) we deduce

d

dt

(
ε ‖zt‖2 +

∥∥∥A 1
2 z
∥∥∥2
)
≤ c(R, ε)

(
ε ‖zt‖2 +

∥∥∥A 1
2 z
∥∥∥2
)
. (5.4)

By virtue of Gronwall Lemma, it follows that

ε ‖zt(t)‖2 +
∥∥∥A 1

2 z(t)
∥∥∥2

6 ec(R,ε)t
(
ε ‖zt(0)‖2 +

∥∥∥A 1
2 z(0)

∥∥∥2
)
,

i.e. ,

‖s(t)y1 − s(t)y2‖2E ≤ a(t) ‖y1 − y2‖2E , (5.5)

where a(t) = ec(R,ε)t is local bounded on [0,∞].

Next we prove (3.3) is true. For the sake of this aim, we presume that

V̄ = closure{ν ∈ V2 : ‖ν‖V̄ ≡ µV2(ν) + ‖ν‖H <∞}.

Then V2 ↪→↪→ V̄ . Hence from Theorem 1.1.8 in [23] we claim W 1
∞,2(0, T ;V2, H) ↪→↪→ C(0, T ; V̄ ), where

W 1
∞,2(0, T ;V2, H) = {u ∈ L∞(0, T ;V2) : ut ∈ L2(0, T ;H)}. So the speudometric %TB ∈ C(0, T ;E), and

%TB
(
{S(τ)y1}, {S(τ)y2}

)
= c(t) sup

s∈[0,t]

µV2

(
u(s)− v(s)

)
,
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and the semi-norm is defined as follows

µV2
(u(t)− v(t)) = ‖u(t)− v(t)‖θ3 , θ3 ∈ (0,

1

2
].

Thanks to H2(Ω)
⋂
H1

0 (Ω) ↪→↪→ L2(Ω), it is clear that µV2(·) is compact semi-norm of V2. Now, choosing

KB(t)s = (I + 2M0(t))−
1
2 s in (4.21) and combining with (4.22), we get

‖S(t)y1 − S(t)y2‖2E ≤ b(t)‖y1 − y2‖2E + c(t) sup
s∈[0,t]

[µV2
(u(s)− v(s))]2,

where b(t) = (KB(t))2 = (I+2M0(t))−1, c(t) = CB,T . Apparently b(t) ∈ L1(R+), and lim
t→∞

b(t) = 0, c(t)

is local bounded in [0,∞). Therefore, Theorem 2.14 implies dynamical system (E, S(t)) is quasi-stable.

Thus we conclude the following result at once.

Theorem 5.2 The fractal dimension of compact global attractor A of (1.1) is finite.

Theorem 5.3 Assume that the conditions (1.2)-(1.4) hold, then the dynamical system (E, S(t))

possesses a generalized exponential attractor Aexp ⊂ E, and it has finite fractal dimension in Ẽ =

L2(Ω)×H−2(Ω) ⊇ E .

Proof: Based on Lemma 5.1, the dynamical system (E, S(t)) is quasi-stable in a bounded positive

invariant subset B ⊂ E, the reminder is only to verify the mapping t 7→ S(t)y is Hölder continuous in Ẽ.

In fact, if for any y = ϕ(0) = (u0, u1) ∈ B, there have S(t)y = (u(t), ut(t)) = ϕ(t). Utilizing (2.36), there

is R > 0, such that ‖ut‖2V2
+ ‖utt‖2 ≤ R2, hence, ‖ϕt(t)‖2Ẽ = ‖ut‖2 + ‖utt‖2V−2

≤ ‖ut‖2V2
+ ‖utt‖2 ≤ CB.

As a result, for any 0 ≤ t1 ≤ t2 ≤ T , there holds

‖S(t1)y − S(t2)y‖Ẽ ≤
∫ t2
t1

‖ϕt(s)‖Ẽds ≤ CB|t1 − t2|.

Thus, in accordance with Theorem 3.6 with r = 1, we show that the dynamical system (E, S(t)) possesses

a generalized exponential attractor Aexp in E, and its fractal dimension is finite in Ẽ.
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