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Abstract

This paper develops the stable adaptive time-dependent mesh scheme for a one-dimensional linear advection-diffusion equation

with homogeneous Dirichlet boundary conditions and a sinusoidal initial condition. The aim is to present accurate stable

moving nodes finite difference scheme with its stability and convergence. The boundary layer of the flow is exponential

therefore difference scheme needs mesh refinement. The moving mesh method analyzes the problem physics and adjusts the

mesh according to the problem as it moves nodes in the region of edges. We develop numerical results using four MMPDEs

with varying numbers of nodes. A conservative semi-discretization finite difference scheme is used for the spatial derivative and

backward Euler difference scheme is employed for the temporal derivative. We have presented five cases in detail to understand

the physics of the problem. The proposed moving mesh finite difference method is considerably more efficient than the numerical

methods offered in the literature.
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Abstract

This paper develops the stable adaptive time-dependent mesh scheme for a one-
dimensional linear advection-diffusion equation with homogeneous Dirichlet bound-
ary conditions and a sinusoidal initial condition. The aim is to present accurate
stable moving nodes finite difference scheme with its stability and convergence. The
boundary layer of the flow is exponential therefore difference scheme needs mesh
refinement. The moving mesh method analyzes the problem physics and adjusts the
mesh according to the problem as it moves nodes in the region of edges. We develop
numerical results using four MMPDEs with varying numbers of nodes. A conserva-
tive semi-discretization finite difference scheme is used for the spatial derivative and
backward Euler difference scheme is employed for the temporal derivative. We have
presented five cases in detail to understand the physics of the problem. The proposed
moving mesh finite difference method is considerably more efficient than the numer-
ical methods offered in the literature.
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1 INTRODUCTION

The partial differentials are the ultimate essentials of physical problems in physics and engineering models. Solving partial
differential equations (PDEs) analytically is a significant challenge for scientists; however, numerical solution of PDEs can obtain
using finite difference and finite element method or other higher order numerical techniques. Mesh refinement techniques like
domain decomposition and local refinement are employed to bring more accurate solutions, but these techniques can increase
the computation cost and complexity. Moreover, the mesh refinement techniques using the hp-adaptive methods don’t adjust
according to the problem, especially near edges. The idea of the r-adaptive mesh refinement technique uses a much smaller
number of mesh points than fixed mesh techniques. The MM-method is a sort of adaptive mesh method which moves nodes
continuously in time. This magnificent idea of the adaptive moving mesh method introduced by Huang and Russell26,30, we
employ this method to deal with the advection-diffusion equation. The moving mesh finite difference method (MMFDM) utilizes
time-dependent higher-order polynomials which give improved computational accuracy and efficiency. The adaptive moving
mesh method is utilized successfully to determine solutions to several problems with high order accuracy1,3,26. Consider one
dimensional linear advection diffusion equation:

𝜕𝑢
𝜕𝑡

+ 𝑐 𝜕𝑢
𝜕𝑥

= 𝜈 𝜕
2𝑢

𝜕𝑥2
, 0 < 𝑥 < 𝐿, 𝑡 ∈ (0, 𝑇 ] (1)
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The linear advection-diffusion equation oversees many extensive physics and engineering problems. It also aids in the ap-
plication of Navier-Stokes equations4,14,22. In the fluids transport phenomenon, advection-diffusion occurs in oceanography
physical processes occur. We consider a one-dimensional linear advection-diffusion equation with Dirichlet boundary conditions
𝑢(𝑡, 𝑥𝑜) = 𝑢

(

𝑡, 𝑥𝐿
)

= 0. We also observe that the (1) from its advection and diffusion terms that when the diffusion term domi-
nates, the (1) becomes parabolic or when the advection term dominates, and the (1) becomes hyperbolic. The denomination of
the advection term in (1), the solution becomes ill-behaving and difficult to obtain. From the literature, it is learned that scientists
have presented numerous discretization techniques to obtain stable, efficient numerical schemes. In15 extended cubic B-spline
Galerkin arrangement in combination with the second-order Crank-Nicolson central difference scheme is used to solve the 1D
LAD equation; however, it experiences the oscillations. In recent years B-splines have gotten a lot of attention from researchers
to produce accurate results13,17; these splines are complicated. Several authors have solved the LAD problem analytically and
numerically. Mojtabi et. al.2 presented an analytical solution by making the change of variables as 𝑢(𝑡, 𝑥) = 𝑣(𝑡, 𝑥)𝑒𝛼𝑥+𝛽𝑡 with
which advection term is made to zero and a closed-form solution is presented with the aid of Fourier. Watkins et al. in11 pre-
sented a nodal Discontinuous Galerkin approach via flux reconstruction solving LAD equation. The main goal of our work is to
give high accuracy moving mesh FDM solution of linear advection-diffusion equation using Dirichlet boundary conditions. The
organization of our work is hereafter: The first section elaborates on the analytical solution over the finite domain. Section 2 elab-
orates the series solution of the LAD equation using appropriate transformations. Section 3 an adaptive mesh finite difference
method is described for the LAD equation. Section 4 elaborates on the mesh density functions and moving mesh PDEs. Section
5 presents the stability and convergence results and Section 6 demonstrates numerical results computed using the moving mesh
finite difference semi-discretization scheme. The last section 7 concludes the remarks.

2 THE TRANSPORT DIFFUSION EQUATION

Recalling the linear advection-diffusion equation in its unsteady form as:
𝜕𝑢
𝜕𝑡

+ 𝑐 𝜕𝑢
𝜕𝑥

= 𝜈 𝜕
2𝑢

𝜕𝑥2
, −1 < 𝑥 < 1, 𝑡 ∈ (0, 𝑇 ] (2)

Where, 𝑢(𝑡, 𝑥) is the velocity, the advection velocity coefficient is 𝑐 > 0, 𝜈 is kinematic viscosity, and 𝑡 is time. The Dirichlet
boundary conditions are 𝑢(𝑡,−1) = 𝑢(𝑡, 1) = 0, and the generic form of the initial condition: 𝑢(0, 𝑥) = 𝑓 (𝑥) is imposed. With
the aid of variable transformation, we can have a closed-form solution of the LAD equation2:

𝑢(𝑡, 𝑥) = 𝑣(𝑡, 𝑥)𝑒𝛼𝑥+𝛽𝑡 (3)

By inserting (3) in (2), one can have:
𝜕𝑣
𝜕𝑡

+
(

𝛽 + 𝑐𝛼 − 𝛼2𝑣
)

𝑣 + (𝑐 − 2𝛼𝑣) 𝜕𝑣
𝜕𝑥

= 𝑣𝜕
2𝑣

𝜕𝑥2
(4)

With the appropriate selection of 𝛼 and 𝛽, (4) can reduce to the standard heat equation:
𝜕𝑣
𝜕𝑡

= 𝑣𝜕
2𝑣

𝜕𝑥2
(5)

The boundary conditions reduces to 𝑣(𝑡,−1) = 𝑣(𝑡, 1) = 0, and the non-homogeneous initial condition reduces to: 𝑣(0, 𝑥) =
− sin(𝜋𝑥)𝑒−

𝑐𝑥
2𝑣 . The solution presented for the above-reduced problem in the Fourier series with the aid of separating variables.

The exact solution is taken from the literature as2:

𝑢(𝑡, 𝑥) = 16𝜋2𝑣3𝑐𝑒
𝑐
2𝑣

(

𝑥− 𝑐
2
𝑡
)

[𝐺(𝑡, 𝑥) +𝐻(𝑡, 𝑥)] (6)

where,

𝐺(𝑡, 𝑥) = sinh
( 𝑐
2𝑣

)

∞
∑

𝑝=0

(−1)𝑝2𝑝 sin(𝑝𝜋𝑥)𝑒−𝑣𝑝2𝜋2𝑡

𝑐4 + 8(𝑐𝜋𝑣)2
(

𝑝2 + 1
)

+ 16(𝜋𝑣)4
(

𝑝2 − 1
)2

and,

𝐻(𝑡, 𝑥) = cosh
( 𝑐
2𝑣

)

∞
∑

𝑝=0

(−1)𝑝(2𝑝 + 1) cos
(

2𝑝+1
2

𝜋𝑥
)

𝑒−𝑣
(2𝑝+1)2

4
𝜋𝑡

4 + (𝑐𝜋𝑣)2
(

8𝑝2 + 8𝑝 + 10
)

+ (𝜋𝑣)4
(

4𝑝2 + 4𝑝 − 3
)2

We utilize the exact solution in (6) for the numerical solution validation and error measure in the L2-norm. Using conventional
difference schemes is not accurate due to oscillatory behaviour of the concerned problem. We consider a complex but highly
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efficient numerical method25,27,28,29 to evaluate the LAD equation. Many authors have proposed a numerical solution to the
LAD equation. Szymkiewicz presented a numerical solution if the 1D LAD equation used the process-splitting technique and
a spline function for interpolation18. In8, Karahan proposed the numerical solution of 1D ADE with a finite difference method
using implicit spreadsheet simulation. In20, S. Ortleb proposed fully discrete 𝐿2 stability analysis for linear advection-diffusion
equation, and the discontinuous Galerkin method based on diffusion schemes used to discretize in space. J. Lou et al. in12

proposed a reconstructed discontinuous Galerkin (rDG) approach to evaluate the LAD equation on hybrid unconstructed grids.

3 MOVING MESH PDES AND MESH DENSITY FUNCTIONS

MMPDE4 ∶
(

𝑀𝑥𝑡,𝜉
)

𝜉 = −1
𝜏
(

𝑀𝑥𝜉
)

𝜉 (7)

MMPDE5 ∶ 𝑥𝑡 =
1
𝜏
(

𝑀𝑥𝜉
)

𝜉 (8)

Modif iedMMPDE5 ∶ 𝑥𝑡 =
1

𝑀𝜏
(

𝑀𝑥𝜉
)

𝜉 (9)

MMPDE6 ∶ 𝑥𝑡,𝜉𝜉 = −1
𝜏
(

𝑀𝑥𝜉
)

𝜉 (10)
where 𝑀 = 𝑀(𝑡, 𝑥) is the mesh density function. In MMPDEs, the term 𝜏 > 0 is responsible for the mesh displacement. The
minor the value of 𝜏, the more rapidly mesh reacts to the variate in 𝑀(𝑥, 𝑡). In the literature, the arc-length and the curvature
mesh density functions are the most commonly encountered mesh density functions (MDF).

arc − length ∶ 𝑀(𝑡, 𝑥) =
√

1 + 𝛼𝑢2𝑥 (11)

curvature ∶ 𝑀(𝑡, 𝑥) =
(

𝛼 + 𝛽𝑢2𝑥𝑥
)

, where 𝑛 = 2 or 𝑛 = 4 (12)
𝛼 and 𝛽 are the adaptive parameters7,31, which can be picked according to problem dynamics. The preference for mesh density
function is the principle in mesh movement. The MDF decides the allocation of mesh points in the neighborhood of the domain.

4 MOVING MESH SEMI-DISCRETIZATION FINITE DIFFERENCE SCHEME

The numerical solution of the linear advection-diffusion equation using the adaptive moving mesh finite difference method will
present in this section. We define coordinate transformation as:

𝑥 = 𝑥(𝜉, 𝑡) ∶ 𝜉 ∈ Ω𝑐 ≡ [−1, 1] → 𝑥 ∈ Ω𝑝 ≡ (𝑎, 𝑏), 𝑡 > 0 (13)

where 𝑥 and 𝜉 represents the space variables, 𝑡 is time. Ω𝑐 represents the computational domain and Ω𝑝 resents physical domain.
The coordinate transformation from a physical domain to a computational domain is employed; using the chain rule:

𝑢𝑡 = �̇� − �̇�𝑢𝑥, 𝑢𝑥 =
𝑢𝜉
𝑥𝜉

, 𝑢𝑥𝑥 = 1
𝑥𝜉

( 𝑢𝜉
𝑥𝜉

)

𝜉
(14)

Use the above definitions, (2) becomes as:
�̇� − �̇�

𝑢𝜉
𝑥𝜉

+ 𝑐
𝑢𝜉
𝑥𝜉

= 𝜈
𝑥𝜉

( 𝑢𝜉
𝑥𝜉

)

𝜉
(15)

Then yields,
̇(𝑥𝜉𝑢) − �̇�𝜉𝑢 − (�̇� − 𝑐) 𝑢𝜉 = 𝜈

( 𝑢𝜉
𝑥𝜉

)

𝜉
= 0 (16)

A fixed uniform mesh is defined using the equidistribution principle on the computational domain as Ω𝑐 as:  𝑛
ℎ ∶ 𝜉𝑗 =

𝑗−1
𝑁−1

, 𝑗 =
1,… , 𝑁 .

𝜉𝑘 =
𝑘
𝑀

, 𝑘 = 0, 1,… ,𝑀. (17)
Then a time-dependent mesh is given by:

𝑥𝑘(𝜏) = 𝑥(𝜉𝑘, 𝜏) = 𝑥(𝑘∕𝑀, 𝜏), 𝑘 = 0, 1,… ,𝑀. (18)

The degree of each physical cell can be imply as:

ℎ𝑘(𝜏) = 𝑥𝑘(𝜏) − 𝑥𝑘−1(𝜏), 𝑘 = 0, 1,… ,𝑀. (19)
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The midpoints of the cells can be defined as:

𝑥𝑘−1∕2(𝑡𝑚) =
1
2
(

𝑥𝑘(𝑡𝑚) + 𝑥𝑘−1(𝑡𝑚)
)

, 𝑘 = 0, 1,… ,𝑀. (20)

Considering 𝑥ℎ(𝜉, 𝑡) is piecewise-quadratic in space and linear in time, such that:

𝑥ℎ(𝜉, 𝑡𝑚) = 𝑥𝑘−1∕2(𝑡𝑚)𝓁0(𝜉) + 𝑥𝑘(𝑡𝑚)𝓁1(𝜉) + 𝑥𝑘+1∕2(𝑡𝑚)𝓁2(𝜉). (21)

where 𝓁0, 𝓁1, 𝓁2 are quadratic Lagrange polynomials, then for 𝜉𝑘−1∕2 ≤ 𝜉 ≤ 𝜉𝑘+1∕2,

𝑥ℎ(𝜉, 𝑡) = 𝑥ℎ(𝜉, 𝑡𝑚) + (𝑡 − 𝑡𝑚)
𝑥ℎ(𝜉, 𝑡𝑚+1) − 𝑥ℎ(𝜉, 𝑡𝑚)

𝑡𝑚+1 − 𝑡𝑚
. (22)

then we can have,

̇(

𝑥ℎ𝜉
)𝑚+1

𝑘
=

(

𝑥ℎ𝜉
)𝑚+1

𝑘
−
(

𝑥ℎ𝜉
)𝑚

𝑘

𝑡𝑚+1 − 𝑡𝑚
=

�̇�ℎ
(

𝜉𝑘+1∕2, 𝑡𝑚+1
)

− �̇�ℎ
(

𝜉𝑘−1∕2, 𝑡𝑚+1
)

Δ𝜉
. (23)

and

𝑥ℎ𝜉
(

𝑡𝑚
)

=
𝑥𝑘+1∕2

(

𝜏𝑚
)

− 𝑥𝑘−1∕2
(

𝑡𝑚
)

Δ𝜉
= 1

Δ𝜉

(ℎ𝑚
𝑘+1 + ℎ𝑚

𝑘

2

)

, 𝜉𝑘−1∕2 < 𝜉 < 𝜉𝑘+1∕2. (24)

With the above-defined equality, we see that 𝑥ℎ(𝜉, 𝑡) satisfies a discrete geometric conservation law.
(

𝑥ℎ𝜉
)𝑚+1

𝑘
=
(

𝑆ℎ
𝜉

)𝑚

𝑘
+

𝑡𝑚+1 − 𝑡𝑚
Δ𝜉

(

�̇�ℎ𝑘+1∕2 − �̇�ℎ𝑘−1∕2
)

. (25)

Now derive the semi-discretization scheme for (16), using the notation 𝑉 𝑚
𝑘 for the approximate solution of 𝐶(𝑆𝑚

𝑘 , 𝜏𝑚). The
backward and forward divided differences can define as:

(𝐷+𝑉 )𝑘 =
𝑉𝑘+1 − 𝑉𝑘

ℎ𝑘
, (𝐷−𝑉 )𝑘 =

𝑉𝑘 − 𝑉𝑘

ℎ𝑘−1
. (26)

and the average operator can be given as:
(𝛿𝑉 )𝑘+1∕2 =

1
2
(

𝑉𝑘 + 𝑉𝑘+1
)

. (27)

Employ Central Difference for spatial and Backward Euler for temporal derivatives in (16),

̇(𝑥𝜉𝑢) − �̇�𝜉𝑢 − (�̇� − 𝑐) 𝑢𝜉 − 𝜈
(

𝑢𝜉
𝑥𝜉

)

𝜉
≈

(

𝑥ℎ𝜉 𝑉
)𝑚+1

𝑘
−
(

𝑥ℎ𝜉 𝑉
)𝑚

𝑘

Δ𝜏𝑚+1
− (�̇�)𝑚+1𝑗 𝑉 𝑚+1

𝑘

− 1
2Δ𝜉

[

(

𝜈
(

𝐷+ −𝐷−
)

𝑉
)𝑚+1
𝑘 −

(

(

𝑥ℎ
)𝑚+1
𝑘 − 𝑐

)(

(𝛿𝑉 )𝑚+1𝑗+1∕2 − (𝛿𝑉 )𝑚+1𝑗−1∕2

)]

. (28)

Such that, we have obtained a numerical scheme for (16):
(

𝑥ℎ𝜉𝑉
)𝑚+1

𝑘
=
(

𝑥ℎ𝜉𝑉
)𝑚

𝑘
− Δ𝜏 (�̇�)𝑚+1𝑗 𝑉 𝑚+1

𝑘

− 1
2Δ𝜉

[

(

𝜈
(

𝐷+ −𝐷−
)

𝑉
)𝑚+1
𝑘 −

(

(

𝑥ℎ
)𝑚+1
𝑘 − 𝑐

)(

(𝛿𝑉 )𝑚+1𝑗+1∕2 − (𝛿𝑉 )𝑚+1𝑗−1∕2

)]

. (29)

The stability and convergence results will figure out in the next section.

5 STABILITY AND CONVERGENCE

The mesh dependent 𝐿2 norm can be defined as:

‖𝑉 ‖𝑛 =

(𝑀−1
∑

𝑗=1

(ℎ𝑚
𝑘 + ℎ𝑚

𝑘+1

2

)

(

𝑉𝑗
)2
)

1
2

. (30)

and the differentials can be estimated using cell-based norms:

‖𝑊 ‖�̄� =

(𝑀−1
∑

𝑘=1
ℎ𝑚
𝑘

(

𝑊𝑗
)2
)

1
2

. (31)
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Theorem 1. Consider the scheme (28) is adopted for the formulation of (16), then sufficiently small mesh intervals, a priori
bound may persist:

‖𝑉 𝑚+1
‖𝑚+1 ≤ 𝐴‖𝑉 0

‖0. (32)

where 𝐴 is a universal constant.

Proof. Multiply 𝑉 𝑚+1
𝑘 on both sides of expression (29) and sum all the interior nodes (since 𝑉0 = 𝑉𝑀 = 0), we get:

𝑀−1
∑

𝑘=1

(

𝑥ℎ𝜉
)𝑚+1

𝑘

(

𝑉 𝑚+1
𝑗

)2
= 𝐈 + 𝐈𝐈 + 𝐈𝐈𝐈 + 𝐈𝐕. (33)

where

𝐈 =
𝑀−1
∑

𝑘=1

(

𝑥ℎ𝜉
)𝑚

𝑘
𝑉 𝑚
𝑘 𝑉 𝑚+1

𝑘 ,

𝐈𝐈 = Δ𝑡𝑚+1
𝑀−1
∑

𝑘=1

(

𝑥ℎ
)𝑚+1
𝑘

(

𝑉 𝑚+1
𝑘

)2 , (34)

𝐈𝐈𝐈 =
𝜈Δ𝑡𝑚+1
2Δ𝜉

𝑀−1
∑

𝑘=1

[

((

𝐷+ −𝐷−
)

𝑉
)𝑚+1
𝑘

]

𝑉 𝑚+1
𝑘 , (35)

𝐈𝐕 =
Δ𝑡𝑚+1
Δ𝜉

𝑀−1
∑

𝑘=1

[

(

𝑥ℎ − 𝑐
)𝑚+1
𝑘

(

(𝛿𝑉 )𝑚+1𝑘+1∕2 − (𝛿𝑉 )𝑚+1𝑘−1∕2

)]

𝑉 𝑚+1
𝑘 . (36)

Exercising the argument in (26), (27) and employing the identity:

𝑎𝑏 = 1
2
𝑎2 + 1

2
𝑏2 − 1

2
(𝑎 − 𝑏)2 .

then,

𝐈 = 1
2

𝑀−1
∑

𝑘=1

(

𝑥ℎ𝜉
)𝑚

𝑘

[

(

𝑉 𝑚+1
𝑘

)2 +
(

𝑉 𝑚
𝑘

)2 −
(

𝑉 𝑚+1
𝑘 − 𝑉 𝑚

𝑘

)2
]

,

𝐈 = 1
2

𝑀−1
∑

𝑘=1

(

𝑥ℎ𝜉
)𝑚

𝑘

(

𝑉 𝑚+1
𝑘

)2 + 1
2

𝑀−1
∑

𝑘=1

(

𝑥ℎ𝜉
)𝑚

𝑘

(

𝑉 𝑚
𝑘

)2 − 1
2

𝑀−1
∑

𝑘=1

(

𝑥ℎ𝜉
)𝑚

𝑘

(

𝑉 𝑚+1
𝑘 − 𝑉 𝑚

𝑘

)2 ,

using (23),(24) and (26), such that

𝐈 = 1
2

𝑀−1
∑

𝑘=1

[

(

𝑥ℎ𝜉
)𝑚+1

𝑘

(

𝑉 𝑚+1
𝑘

)2 −
Δ𝑡𝑚+1
2Δ𝜉

𝑀−1
∑

𝑘=1

(

(

𝑥ℎ
)𝑚+1
𝑘+1∕2 −

(

�̇�ℎ
)𝑚+1
𝑘−1∕2

)

]

+ 1
2

𝑀−1
∑

𝑘=1

[(

𝑥ℎ𝜉
)𝑚

𝑘

(

𝑉 𝑚
𝑘

)2 −
(

𝑥ℎ𝜉
)𝑚

𝑘

(

𝑉 𝑚+1
𝑘 − 𝑉 𝑚

𝑘

)2
]

,

𝐈 ≤ 1
2Δ𝜉

(

‖𝑉 𝑚+1
‖

2
𝑚+1 + ‖𝑉 𝑚

‖

2
𝑚‖ − ‖𝑉 𝑚+1 − 𝑉 𝑚‖2𝑚‖

)

+ 𝐴
Δ𝑡𝑚+1
Δ𝜉

‖𝑉 𝑚+1
‖

2
𝑚+1. (37)

Utilizing the same reasoning as in9, we have beginequation

𝐈𝐈 = −
𝜈Δ𝑡𝑚+1
2Δ𝜉

‖𝐷+𝑉
𝑚+1

‖

2
̄𝑚+1
. (38)

Utilizing (23), as:

𝐈𝐈𝐈 =
Δ𝑡𝑚+1
Δ𝜉

𝑀−1
∑

𝑘=1

(

�̇�𝑚+1𝑗+1∕2 − �̇�𝑚+1𝑗−1∕2

)

(

𝑉 𝑚+1
𝑘

)2 ≤ 𝐴
Δ𝑡𝑚+1
Δ𝜉

‖𝑉 𝑚+1
‖

2
𝑚+1 (39)
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We have 𝑉 𝑚+1
0 = 𝑉 𝑚+1

𝑀 = 0, such that

𝐈𝐕 =
Δ𝑡𝑚+1
2Δ𝜉

𝑀−1
∑

𝑘=1

[

(

�̇�ℎ − 𝑐
)𝑚+1
𝑘 𝑉 𝑚+1

𝑘+1 𝑉 𝑚+1
𝑘 −

(

�̇�ℎ − 𝑐
)𝑚+1
𝑘 𝑉 𝑚+1

𝑘 𝑉 𝑚+1
𝑘−1

]

=
Δ𝑡𝑚+1
2Δ𝜉

[𝑀−1
∑

𝑘=1

[

(

�̇�ℎ − 𝑐
)𝑚+1
𝑘 𝑉 𝑚+1

𝑘+1 𝑉 𝑚+1
𝑘

]

−
𝑀−2
∑

𝑘=1

[

(

�̇�ℎ − 𝑐
)𝑚+1
𝑘+1 𝑉

𝑚+1
𝑘+1 𝑉 𝑚+1

𝑘

]

]

≤
Δ𝑡𝑛+1
4Δ𝜉

𝑁−2
∑

𝑗=1

[

(

�̇�ℎ
)𝑛+1
𝑗+1 −

(

�̇�ℎ
)𝑛+1
𝑗

]

[

(

𝑉 𝑛+1
𝑗+1

)2
+
(

𝑉 𝑛+1
𝑗

)2
]

≤ 𝐴
Δ𝑡𝑚+1
Δ𝜉

‖𝑉 𝑚+1
‖

2
𝑚+1.

(40)

Incorporate estimations (37), (38), (39) and (5.8) in (33), we have:

‖

‖

‖

𝑉 𝑚+1‖
‖

‖

2

𝑚+1
≤
(

‖𝑉 𝑚
‖

2
𝑚 − ‖

‖

‖

𝑉 𝑚+1 − 𝑉 𝑚‖
‖

‖

2

𝑚

)

− 2𝜈Δ𝑡𝑚+1
‖

‖

‖

𝐷+𝑉
𝑚+1‖

‖

‖

2

𝑚+1

+ 𝐴Δ𝑡𝑚+1
‖

‖

‖

𝑉 𝑚+1‖
‖

‖

2

𝑚+1

(41)

Such that,
‖

‖

‖

𝑉 𝓁+1‖
‖

‖

2

𝓁+1
≤ ‖

‖

‖

𝑉 𝓁‖
‖

‖

2

𝓁
+ 𝐴Δ𝑡𝓁+1

‖

‖

‖

𝑉 𝓁+1‖
‖

‖

2

𝓁+1
(42)

Lets sum (42) for 𝓁 = 0, 1, ..., 𝑁 , we will get:
‖

‖

‖

𝑉 𝑁+1‖
‖

‖

2

𝓁+1
≤ ‖

‖

‖

𝑉 𝓁‖
‖

‖

2

0
+ 𝐴Δ𝑡𝓁+1

‖

‖

‖

𝑉 𝓁+1‖
‖

‖

2

𝓁+1
(43)

‖

‖

‖

𝑈𝑀+1‖
‖

‖

2

𝑀+1
≤

‖

‖

𝑉 0
‖

‖

2
0

1 − 𝐴Δ𝑡𝑀+1
+ 𝐴

1 − 𝐴Δ𝑡𝑀+1

𝑀
∑

𝓁=1
Δ𝑡𝓁

‖

‖

‖

𝑉 𝓁‖
‖

‖

2

𝓁
. (44)

The equidistribution principle can be defined as:
𝑥𝑚𝑘+1

∫
𝑥𝑚𝑘

𝑀(𝑥, 𝑡)𝑑𝑥 = 1
𝑀

𝑥𝑅

∫
𝑥𝐿

𝑀(𝑥, 𝑡)𝑑𝑥, 𝑘 = 0, ..., 𝑁, 𝑚 = 1, ..., 𝐿

The monitor function 𝑀(𝑥, 𝑡) > 1, such that
𝑥𝑚𝑘+1

∫
𝑥𝑚𝑘

𝑀(𝑥, 𝑡) ≤ 𝐴

Similarly, we have

ℎ𝑚
𝑘 ≡ 𝑥𝑚𝑘+1 − 𝑥𝑚𝑘 ≤

𝑥𝑚𝑘+1

∫
𝑥𝑚𝑘

𝑀(𝑥, 𝑡)𝑑𝑥 (45)

= 1
𝑀

𝑥𝑅

∫
𝑥𝐿

𝑀(𝑥, 𝑡)𝑑𝑥 ≤ 𝐴
𝑀

(46)

From10 and9, we induce that while scheme (28) is employed to (2) the error will have the bound as:
‖

‖

‖

𝑒0‖‖
‖

2

0
≤ 𝐴

[

max
(

𝑡,𝑀−2)]2 (47)

Numerical validation will present in the next section. We will employ four MMPDEs (i.e., MMPDE4, MMPDE5, modified
MMPDE5, MMPDE6) with varying the number of nodes. A weighted averaging is suggested by Huang et al. for smooth mesh
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movement27,28.

�̂�𝑗 ∶=

√

√

√

√

√

√

√

∑𝑗+𝑝
𝑘=𝑗−𝑝 �̂�

2
𝑘

(

𝛾
1+𝛾

)

|𝑘−𝑗|

∑𝑗+𝑝
𝑘=𝑗−𝑝

(

𝛾
1+𝛾

)

|𝑘−𝑗|
, 𝑗 = 1,… ,𝑀 + 1 (48)

where 𝑝 is called the smoothing index, a non-negative integer, and 𝛾 is the positive smoothing parameter.

6 NUMERICAL EXPERIMENTS AND DISCUSSION

In this section, numerical results are obtained with four MMPDEs and with a varying number of nodes. We perform the numerical
experiments for the 1D linear advection-diffusion equation with Dirichlet boundary conditions. We consider five cases for the
Reynolds number; three are periodic Reynolds numbers. The numerical solution is obtained with a different number of mesh
points, i.e., 200, 400, 600, 800, and 1200. We have compared the numerical solutions with the analytical solution in (6), proposed
by Mojabi et al.2. The accomplished numerical solution using one-dimensional homogeneous boundary conditions with the
sinusoidal initial condition; the fixed boundary can be seen in the Figure 1, for 𝑡 > 0, with increasing time, the variation moves
towards the terminal boundary. If the Reynolds number is infinite, we will have a shock wave at the boundary. At a high Reynolds
number, the flow will hit the boundary at 𝑥 = 1. The mesh time response coefficient is taken as 𝜏 = 10−4. The maximum
absolute error can approximate using the L2-norm. Reynolds number can be defined as 𝑅𝑒 = 𝑐𝐿

𝜈
, choosing 𝐿 = 2 and 𝑐 = 1 for

the solutions, and the Reynolds number can reduce as 𝑅𝑒 = 2
𝜈
.

Example 2 (Case I). For, 𝑅𝑒 = 20𝜋, 𝑣 = 1
10𝜋
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Figure 1 Analytical and numerical solution for different times varying from 𝑡 = 0 to 𝑡 = 2.0, using 𝑅𝑒 = 20𝜋. The approximate
solution is obtained with 𝑁 = 800.

TABLE 1 The maximum error measure is obtained using the exact solution and the approximate solution. The approximate solution
is attained using four MMPDEs with varying number of mesh points. We observe that the error measured is the order of 10−5 in
comparison with fixed mesh the order is 10−3.

Maximum Error Estimate
𝑁 → 200 400 600 800 1200
MMPDE4 8.03e − 002 3.71e − 002 7.38e − 003 9.10e − 005 4.66e − 007
MMPDE5 7.66e − 002 3.21e − 002 6.59e − 003 8.18e − 005 4.21e − 006
MMPDE6 1.52e − 002 1.05e − 002 6.81e − 004 8.38e − 005 4.45e − 006
modified MMPDE5 7.67e − 002 1.91e − 002 2.87e − 003 9.00e − 005 4.38e − 007
MMPDE6 7.67e − 002 1.91e − 002 2.87e − 003 9.00e − 005 4.38e − 007
Fixed mesh 1.96e − 002 1.02e − 002 9.83e − 003 4.28e − 003 1.92e − 003
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Figure 2 Analytical and numerical solution for different times varying from 𝑡 = 0 to 𝑡 = 2.0, using 𝑅𝑒 = 40𝜋. The approximate
solution is obtained with 𝑁 = 800.

We observe from the Figure 1, that with 𝑅𝑒 = 20 boundary layer accelerate towards the boundary 𝑥 = 1 with increasing
time. The arc-length mesh density function with MMPDE4 is employed to obtain the numerical approximation. The analytical
solution is shown in the left of Figure 1. From the Table 1, we observe that error reduces with the increasing 𝑁 , and the solution
converges with the increasing number of mesh points.

Example 3 (Case II). For, 𝑅𝑒 = 40𝜋, 𝑣 = 1
20𝜋

TABLE 2 The maximum error measure is obtained using the exact solution and the approximate solution. The approximate solution
is attained using four MMPDEs with varying numbers of mesh points. We observe that the error measured is the order of 10−5 in
comparison with fixed mesh the order is 10−3.

Maximum Error Estimate
𝑁 → 200 400 600 800 1200
MMPDE4 4.71e − 002 9.95e − 003 9.67e − 004 5.84e − 005 3.32e − 007
MMPDE5 4.41e − 002 9.45e − 003 8.66e − 004 5.25e − 005 3.00e − 007
MMPDE6 4.48e − 002 9.13e − 003 8.44e − 004 4.89e − 005 2.89e − 007
modified MMPDE5 2.92e − 002 9.19e − 003 8.92e − 004 5.85e − 005 4.34e − 007
Fixed mesh 1.40e − 001 1.65e − 002 8.60e − 003 4.37e − 003 4.12e − 004

Figure 2 shows the numerical and analytical solutions of the LAD equation using 𝑅𝑒 = 40𝜋 and 𝑐 = 1. We can observe from
Figure 2 that the boundary layer is descending with time as the Reynolds number is periodic. We observe from Table 2 that
the solution converges as the error reduces with the increasing number of nodes. Figure 4 shows that the solution’s boundary
layer does not decay with time because the Reynolds number is not periodic. We have used the arc-length monitor function with
different MMPDEs to obtain the approximate solution demonstrated in Table 3; we observe that the error is scaling down with
the increasing number of mesh points. Figure 3 shows the numerical and analytical solutions with 𝑅𝑒 = 200𝜋. Table 5 and
Figure 5 are obtained with speed 𝑐 = 1 and Reynolds number 𝑅𝑒 = 4000.

Example 4 (Case III). For, 𝑅𝑒 = 2000, 𝑣 = 1
1000

Example 5 (Case IV). For, 𝑅𝑒 = 200𝜋, 𝑣 = 1
100𝜋

In Table 5 and Figure 6 are obtained with speed 𝑐 = 1 and Reynolds number 𝑅𝑒 = 4000.

Example 6 (Case V). For, 𝑅𝑒 = 2000, 𝑣 = 1
2000

In Figure 6, we observe that mesh points are concentrated near the leading and trailing edges. The increased number of points
are redistributed in the region of edges, this enables the accuracy of the approximate solution. The solution in Figure 6, we have
used speed 𝑐 = 2, we can see that flow for time 𝑡 = 0, 0.4, 0.8 are starting before the second boundary. But for time 𝑡 = 1.2, 1.6,
and 2.0 didn’t start before striking the wall at 𝑥 = 1. The numerical solution is approximated using four MMPDEs with varying
numbers of mesh points. We observe that the error measured is the order of 10−5 in comparison with fixed mesh the order is
10−3. Analytical and numerical solution for different times varying from 𝑡 = 0 to 𝑡 = 2.0, using 𝑅𝑒 = 200𝜋. The approximate
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Figure 3 Analytical and numerical solution for different times varying from 𝑡 = 0 to 𝑡 = 2.0, using 𝑅𝑒 = 200𝜋. The approximate
solution is obtained with 𝑁 = 800.

Table 3 The maximum error measure is obtained using the exact solution and the approximate solution. The approximate solution
is attained using four MMPDEs with varying numbers of mesh points. We observe that the error measured is the order of 10−5
in comparison with fixed mesh the order is 10−3.

Maximum Error Estimate
𝑁 → 200 400 600 800 1200
MMPDE4 8.09e − 002 5.22e − 002 1.07e − 003 5.47e − 005 9.81e − 007
MMPDE5 7.72e − 002 4.81e − 002 9.91e − 004 5.16e − 005 1.01e − 006
MMPDE6 1.57e − 002 2.31e − 002 6.64e − 004 3.60e − 005 2.45e − 006
modified MMPDE5 7.77e − 002 4.66e − 002 1.01e − 003 3.64e − 005 8.94e − 007
Fixed mesh 8.54e − 002 5.20e − 002 5.20e − 002 9.82e − 003 6.57e − 003
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Figure 4 Analytical and numerical solution for different times varying from 𝑡 = 0 to 𝑡 = 2.0, using 𝑅𝑒 = 2000. The approximate
solution is obtained with 𝑁 = 800.

Table 4 The maximum error measure is obtained using the exact solution, with the approximate solution obtained employing
four MMPDEs and the different mesh points. The table shows that the error measured with adaptive mesh is in the order of
10 − 5 compared to 10 − 3 with fixed mesh.

Maximum Error Estimate
𝑁 → 200 400 600 800 1200
MMPDE4 5.30 − 002 9.57e − 003 2.22e − 003 5.15e − 004 2.66e − 006
MMPDE5 4.96e − 002 8.62e − 003 2.86e − 003 7.15e − 005 1.73e − 006
MMPDE6 4.48e − 002 1.06e − 002 8.74e − 004 5.48e − 005 2.82e − 006
modified MMPDE5 5.02e − 002 9.57e − 002 4.24e − 004 1.71e − 004 1.03e − 006
Fixed mesh 6.14e − 002 3.29e − 002 1.98e − 002 8.60e − 003 4.73e − 003
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Figure 5 Analytical and numerical solution for different times varying from 𝑡 = 0 to 𝑡 = 2.0, using 𝑅𝑒 = 4000. The approximate
solution is obtained with 𝑁 = 800.

Table 5 The maximum error measure is obtained using the exact solution with the numerical solution obtained using four
MMPDEs and the different mesh points. We can see from the table that the error measured with moving mesh is the order of
10−5 in comparison with fixed mesh is 10−3.

Maximum Error Estimate
𝑁 → 200 400 600 800 1200
MMPDE4 3.35e − 002 1.50e − 003 1.87e − 004 8.84e − 006 2.41e − 007
MMPDE5 3.43e − 002 1.42e − 003 1.52e − 004 9.75e − 006 3.50e − 007
MMPDE6 3.42e − 002 1.93e − 003 − − −
modified 4.51e − 002 6.30e − 004 1.95e − 005 8.84e − 006 8.16e − 007
MMPDE5
Fixed mesh 7.17e − 002 5.72e − 002 2.79e − 002 7.53e − 003 6.30e − 003
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Figure 6 The sharp edge in the numerical solution is zoomed to observe that mesh is moving accurately.

solution for all the cases are obtained with 𝑁 = 800. The numerical experiments were performed using MATLAB built-in fully
implicit ordinary differential equations solver 𝑂𝐷𝐸15𝑖. We use three kinds of mesh density functions (i.e., piecewise linear
approximations, arc-length, and curvature). While evaluating the results, we have seen that arc length was the best in handling
integration tolerances of the equation. With other mesh density functions, the subject equation sometimes becomes stiffer. In
case III and case V, the arc-length mesh density function wasn’t effective with an increased number of nodes; we have utilized
piecewise linear approximation for this case. For 𝑅𝑒 = 4000, with MMPDE6 and 𝑁 > 500 the program is unable to meet the
integration tolerances. The approximate solution is approximated using four MMPDEs with varying numbers of mesh points. We
observe that the error measured is the order of 10−5 in comparison with fixed mesh the order is 10−3. Analytical and numerical
solution for different times varying from 𝑡 = 0 to 𝑡 = 2.0, using 𝑅𝑒 = 200𝜋. The approximate solution for all the cases are
obtained with 𝑁 = 800. The numerical experiments were performed using MATLAB built-in fully implicit ordinary differential
equations solver 𝑂𝐷𝐸15𝑖. We use three kinds of mesh density functions (i.e., piecewise linear approximations, arc-length, and
curvature). While evaluating the results, we have seen that arc length was the best in handling integration tolerances of the
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Figure 7 Maximum absolute error estimate for the Re.2000, error is plotted for different MMPDEs against the number of mesh
points.

equation. With other mesh density functions, the subject equation sometimes becomes stiffer. In case III and case V, the arc-length
mesh density function wasn’t effective with an increased number of nodes; we have utilized piecewise linear approximation for
this case. For 𝑅𝑒 = 4000, with MMPDE6 and 𝑁 > 500 the program is unable to meet the integration tolerances.

7 CONCLUSIONS

We have applied moving mesh method based on moving mesh PDEs and mesh density functions. Adaptive moving mesh method
satisfyingly analyzed the boundary layer numerically with five cases of Reynolds numbers using the semi-discretization central
difference scheme for space and Backward Euler for time derivatives. The numerical solution is compared with the analytical
solution with varying numbers of mesh points. The maximum absolute error measure is compared for the different numbers of
mesh points. We examine that the error measure for the adaptive moving mesh is consistently smaller than the stationary mesh.
The adaptive moving mesh method successfully analyzes an efficient and accurate solution of the LAD equation compared with
the solution obtained using stationary mesh. However, the moving mesh adaptive method takes more computation time due to
the moving mesh PDEs that needs to solve along with the subject DE. Mesh density function have significant importance in the
success of adaptive method and its selection is central in the accuracy of method. We observe that the arc-length mesh density
function performed better than other density functions. We may extend this work to Neumann and mixed boundary conditions
in the future.
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