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Abstract

Understanding how the network structure of plant and microbiota interactions differ along ecological gradi-
ents is of great interest. We studied network patterns at 60 sites across the Tibetan Plateau, representing a
gradient in both precipitation and plant species richness. The number of fungal OTUs that were uniquely
connected to each plant species in the plant-fungi network was most strongly positively related to plant
species richness. By contrast, the number of unique bacterial OTUs linked to each plant species decreased
with increasing plant species richness. The number of fungal OTUs specifically linked to each plant species
was positively related to plant species richness, and to productivity. We suggest that in a more extreme
high-stress environment that decreases plant species richness, plants and fungi have fewer excess resources
to invest in specific relationships, showing up as lower associated microbiome richness, with bacteria may
partially replacing this role in high stress/low productivity environments.

Keywords: interkingdom and intrakingdom networks, connectivity, specificity, plant diversity
gradient, Tibetan Plateau

Introduction



The impacts of biodiversity on ecosystem function are a classical and central topic in ecology(Bardgett
& van der Putten 2014). Alpine plant and microbial communities are models for understanding pioneer
communities, and the primary components of resilient ecosystems(Winkler et al. 2019). Relationships
between plants and microbiota across environmental gradients could affect the ability of ecosystems to adapt
to impacts such as climate change,by driving the maintenance biodiversity(Shen et al. 2021), community
stability(Yang et al. 2022a), and ecosystem functioning (Wardleet al. 2004). Under natural conditions,
the interactions between plant and microbial communities are complex, as they involve several factors that
interact with each other and are subject to both biotic and abiotic influences, including temperature and
water balance conditions (Cobian et al. 2019; Ware et al. 2021), plant species categories and distributions
(Polme et al. 2018; Yang et al. 2022b), and soil element nutrients(Zhu et al. 2022). However, most of these
network studies on plant-microbiota interactions have focused on the rhizosphere microbiotas which vary
among only one or a few distinct plant species (Toju et al. 2013; Toju et al. 2015; Polme et al. 2018; Yao et
al.2019), but it is still unclear how the traits of plant-microbial interactions vary along the plant diversity
gradient.

With regard to the biogeographical patterns of soil microbiota, studies have been conducted on a range
of scales, from global (Chu et al.2020) to regional (Yang et al. 2021a) to the elevational zones of a single
mountain (Yang et al. 2021b). These studies have noted patterns in relation to latitude (Fuhrman et al.
2008),climate (Yuan et al. 2021), soil characteristics(Chen et al.2021), and land use (Xue et al. 2022)
for example. However, few studies have considered the effects of plant richness and plant productivity on
microbial cooccurrence network.

In this study, we apply cooccurrence network analysis to soil microbial communities and associated plants
across an extensive area of the Tibetan Plateau samples. Cooccurrence networks are used to detect the
possibility of specific interactions within communities (Barberanet al. 2012). This methodology empirically
indicates the strength of interactions between species both positive and negative. The strength of these
network interactions has been shown to correlate with the ability of the soil biota to carry out biogeochemical
processes, and their resilience to environmental changes (Seaton et al. 2022).

Previous studies have shown that the plant diversity enhances soil fungal diversity in the natural environ-
ment of the Tibetan Plateau (Yanget al. 2017), as well as the soil fungal network stability in a diversity
manipulation experiment (Shen et al. 2022). Here, we compared 60 sites along the precipitation gradient
of the Tibetan Plateau, to qualitatively and quantitatively explore the proportions of multiple factors on
different features of the cooccurrence network between plants and soil microbiotas. Using data from sampling
carried out as part of a wide ranging study, we analysed amplicon data of the fungi (ITS2), bacteria (16S)
and records of plant species present in each of 60 sites.

Our main question in this study was as follows: what are the cooccurrence relationships between plants
and soil microbiota, and how does this vary along the environmental and plant richness gradients that are
present?

We found a clear trend of decreasing richness of fungal OTUs associated with each plant species, along a
gradient of decreasing total plant species richness. We suggest that this may reflect a decrease in reliance on
specialised relationships by both plants and fungi due to reduced available energy in the more extreme plant
species-poor environments. By contrast, the richness of specifically associated bacterial OTUs per plant
species increased along this gradient, suggesting that bacteria may substitute as specialists in increasingly
extreme environments associated with low plant species richness.

Methods
Sample collection and dataset information

Details on soil sampling, vegetation survey, measurement of soil properties, sequencing and bioinformatics
were described in our previous study (Yang et al. 2017; Shi et al. 2019). Briefly, in the growing season of
2011, 180 soil samples were collected across the north-eastern and central Tibetan Plateau.



Within each of the sites, three of the ten small plots - each 1x1m in size - were randomly chosen on the
diagonals of the 1-ha site at least 40 m apart (Fig S1). In each 1x1m plot, seven randomly located soil cores
of the top 5 cm of topsoil (under any litter layer) were collected and homogenized as a composite soil sample.
All vascular plant species and the number of individuals of each were recorded, at each of the 180 plots, and
summarized at the site level (60 sites), and plant species richness was calculated.

All soil properties, including pH, soil moisture (SM), total carbon, total nitrogen, soil total phosphorus
(STP), soil organic carbon (SOC), were measured at the individual plot level following (Jing et al.2015), and
then averaged at the site level. As three small plots were merged from each site, this gave 60 sites samples
in total.

Soil DNA from each plot was extracted and amplified in the Illumina MiSeq platform PE250 (Illu-
mina Inc., San Diego, CA, USA). The primers ITS3 (50-GCATCGATGAAGAACGCAGC)/ITS4 (50-
TCCTCCGCTTATTGATATGC) were used to target the fungal internal transcribed spacer 2 (ITS2) region.
The bioinformatic pipeline on ITS2 sequencing data was identical to the description of Teng et al (Yang et al.
2017). The primer set of F515: 5-GTGCCAGCMGCCGCGG, R907: 5-CCGTCAATTCMTTTRAGTTT
(Lane et al. 1985) were used to amplify the V4-V5 hyper-variable regions of bacterial 16S rRNA gene. The
high-throughput sequencing process and analysis of soil fungi and bacteria has been described already by
Teng et al (Yang et al. 2017) and Shi et al (Shi et al. 2019). In order to be compatible with plant and
soil data, we merged the OTU table at the site level. Finally, 11,576,489 fungal sequences (min=123,753
sequences per site) and 1,031,092 bacterial sequences (min=9,037 sequences per site) were obtained in the 60
sites. In order to analyze the microbial data at the same sequencing depth, the OTU matrices were rarefied
to 123,753 sequences per sample for fungi. But for bacteria, most sites were rarefied to 12850 sequences,
only two sites far less than 12850 sequences were rarefied to 9037 reads, to keep as many reads as possible
without compromising the bacterial alpha diversity. The richness of bacteria and fungi species were then
calculated by “countif” function in Excel.

Network construction

To understand whether and how the co-occurrence networks including fungal and bacterial community varies
across the Tibetan Plateau in relation to environmental and plant richness gradients, two different kinds of
networks were constructed basing on the Spearman correlation matrix by “WGCNA” R package (Langfelder
& Horvath 2012), viz., molecular ecological network (MEN) including fungi-only and bacteria-only network,
and plant—microbiota interkingdom ecological networks (IDEN) including plant-fungi network and plant-
bacteria networks.

Given the generally observed relationships between broad habitat zones and microbiota and floristic com-
position, we also divided the 60 samples according to the three main types of vegetation in our samples
(desert steppe, alpine meadow, alpine steppe), and constructed plant-fungi and plant-bacteria networks for
each vegetation type.

To avoid the bias of the correlation matrix causing by rare taxa, only OTUs with average relative abundances
> 0.01% of each subgroup were retained. Since the number of plant species amongst these 60 sites is low, we
kept all the plant species for the plant-microbiota network construction. The Spearman correlations between
OTUs and plants were filtered by the thresholds r > 0.6 and false discovery rate adjusted p < 0.05(Huang
et al. 2019). The OTUs and plants presented at each site were retained and generated subnetworks for
each soil sample from the combined interkingdom ecological networks by the “igraph” R package. Only
the correlations between plants and fungi (or bacteria) in each site were kept by the “startswith” function
in python, and were chosen as the adjacent matrix of the bipartite graph. The obtained adjacent matrix
associated with the bipartite graph consisted of 1 or 0, showing the presence/absence of corresponding plant—
microbiota associations (Fenget al. 2019). The plant—fungi and plant-bacteria network architecture of each
group was visualized based on the “ForceAtlas2” layout algorithm (Jacomy et al. 2014) using the program
Gephi (Bastian et al. 2009). We then examined the number of edges, plant and microbial species richness
in the observed IDEN in 60 sites. The observed IDEN topological features (Table S1) was evaluated at both



network and group (plants or microbiota) levels using “bipartite” v.2.08 package of R v.3.1.1 (Dormann et
al. 2009). Note that low Nestedness values indicate nestedness, while high Nestedness values (0 means cold,
i.e. high nestedness, 100 means hot, i.e. chaos) indicate antinestedness. In a nested network, specialists
(that is, species with narrow partner ranges) interact with subsets of the partners of generalists (that is,
species with broad partner ranges) (Toju et al. 2015). To further determine the compartmentalization of the
observed IDEN, modularity was calculated by module detection algorithm for example simulated annealing
(Guimeraet al. 2005), and high value indicates modular structure. Modularity is a measure of the extent to
which the network is structured as cohesive subgroups of nodes (modules), in which the density of interactions
is higher within subgroups than among subgroups (Olesen et al. 2007).

We then conducted the microbial intrakingdom ecological networks analysis using the same thresholds for
OTU and correlations mentioned above. To caculated the network-level topological features (Table S2), 60
subnetworks were generated by retaining the OTUs and associated edges for each site using the “subgraph”
function in “igraph” R package. Network-level topological features with a high value (such as edge density,
degree centralization and betweenness centralization) indicate closer connections within the network, whereas
those with lower values (such as average path length and modularity) suggest a more aggregated network
(Barberan et al. 2012; Ma et al. 2016). We then calculated the absolute value of negative/positive cohesion
to explore the stability of microbial networks along gradient(Yuan et al.2021).

Statistical analyses

To assess how different environmental factors shaped the network parameters of IDEN and MEN, we used
cluster analysis to assess the collinearity or redundancy of environmental variables by the “varclus” function
in the “Hmisc” R package before further analyses. Only one variable was selected if pairs factors were
highly correlated (Spearman’s R?> 0.6) as the representative variable. Using these criteria, MAP, MAT,
carbon: nitrogen (C: N) ratio, SOC, STP, pH, SM, fungal richness, bacteria richness, plant richness and
plant productivity were reserved in our analysis (Fig S1). Those environmental factors of 60 samples in
desert steppe, alpine steppe and alpine meadow were showed by box plots, based on Kruskal-Wallis tests
(Fig S2).

A random forest analysis was applied to identify the major environmental factors contributing to the variation
in network topological features. The analysis was performed using the “randomForest” function in the
“randomForest” package in R (Svetnik et al. 2003). Using the “a3” function to examine the significance
values of the cross-validated R? in the “A3” package; the significance of each predictor on the response
variables was assessed with 2000 response variable permutations using the “rfPermute” function in the
“rfPermute” package in R.

The correlation coefficients between topological features and environmental factors were calculated. The
importance of environmental factors for topological features was estimated with multiple regression on dis-
tance matrices (MRM) in “ecodist” packages. The Euclidean distance matrices for environmental factors
and topological features standardized with “decostand” of “vegan” package were used in MRM models. We
furthermore quantified the relationship between these factors and topological features by linear fitting.

To assess the variation trend in function of microbial nodes along the plant richness gradient, we divided
sites into three groups of low (0-8 species per sites), medium (9-13 species per sites) and high (14-28 species
per sites) plant richness. The function of microbiota linked to plants were predicted, and assigned to three
groups through sites they belong to. Ecological guilds of fungal OTUs linked to plants were assigned using
the “funguild_assign” function in the “FUNGuildR” package in R. Only sequence taxonomy identity above
97% and the guild confidence ranking assigned to ‘Highly probable’ and ‘Probable’ was accepted (Nuskeet
al. 2018). The PICRUSt 2 was used to predict the function (referring to KEGG pathway database) for each
sequences of bacterial OTU linked to plants (Douglas et al. 2019).

Results

Patterns in plant-fungi relationships



A random forest analysis was performed to evaluate the major environmental factors to the topological
features of plant-fungi network in the Tibetan Plateau. Plant species richness was the primary factor
affecting the number of fungal OTUs links to each plant species and other topological features, such as
the number of edges and modularity (Fig. 1a). These observations were also supported by heatmap based
on spearman correlation (Fig. 1b) and the multiple regression on distance matrices analysis (Fig. 1c),
confirming the leading effect of plant richness on the individual plant species to plant-fungi networks.

Further, there was an overall significant and positive linear relationship between plant species richness per
site, and the number of fungal OTUs associated with each plant species in plant-fungi network (Fig 2a).

As a test of the possible explanation that there are only more fungal OTUs linked to each plant species
because there is greater fungal richness in the whole soil community in the more plant species-rich samples,
we calculated the ratio of fungal OTU richness to plant species richness and estimated its pattern along the
plant species richness gradient. In fact, contrasting with the trend seen in Fig 2a for plant-linked OTUs
only, the ratio of fungal OTUs in the total soil community to plant species decreased towards higher plant
species richness levels (Fig 2b). Thus it appears that potential for association of fungi with plants enhances
along the plant richness gradient unbiased by overall fungal richness in the soil, indicating that the tendency
of fungi to form links with plants does actually increase with greater plant richness (Fig S3a).

The raising in plant richness increased the connection between plant and fungi at an alarming rate (Fig
S3b), with the increasing number of plants (Fig S3c¢) and fungi (Fig S3d) in IDEN. The modularity and
nestedness of the plant-fungi subnetwork in 60 sites also increased with increasing plant richness (Fig 2).
While the porportions of functional guilds respectively belong to low, middle and high level of plant richness
were similar in the plant-fungi network. (Fig S7a)

Patterns in plant-bacteria relationships

Plant richness only played a dominant role in the modularity in the plant-bacteria network, in contrast, SM
was the key predictor for most of network parameters, the number of bacterial OTUs linked to each plant
species (Fig S6).

The trend of the relationships in the plant-bacteria network was the opposite to that of the plant-fungi
network: the trend in plant-bacteria links shows a greater number of bacterial OTUs linked to each plant
species at lower levels of plant species richness (Fig 3a). Furthermore, the trend in the broader pool of
total number of bacterial OTUs (in the whole soil community) plotted against plant species per site broadly
paralleled this (Fig 3b).

In terms of the functional genes composition of bacterial OTUs in the network associated with the plants,
carbon fixation, oxidative phosphorylation and methane metabolism were the dominant functional gene
categories (Fig. S7b). While the proportion of functional genes in the plant-bacteria network that belong to
low, middle, and high level of plant richness were similar.

Comparison by vegetation zone

The overall network pattern of each vegetation type along the gradient is summarized in Fig 3, illustrating
the differences in numbers of OTUs linked to each plant species along the gradient from the semi-arid desert
steppe, through alpine meadow to alpine steppe. For the plant-fungi networks, there was a mean of 36, 145
and 179 edges to fungi per plant species in desert steppe, alpine meadow and alpine steppe, including 0%,
15.17% and 25.14% of negative edges, respectively. There were more plant species in networks of both the
alpine steppe (Fig 4c, 28 plant species) and alpine meadow (Fig 4b, 21 plant species), with each plant species
associated with a greater diversity of fungi than in the semi-arid desert steppe (Fig 4a, 8 plant species).

There were fewer plant species in desert steppe (Fig 4d, 13 plants) and alpine steppe (Fig 4f, 6 plants) than
meadow steppe (Fig 4e, 21 plants), while 306, 98 and 15 edges in desert steppe, alpine meadow and alpine
steppe, including 0%, 19.39% and 33.3% of negative edges in the plant-microbial networks, respectively. The
relatively few species of plants in desert steppe were thus associated with the widest range of bacteria.



Complexity of the soil microbial community

Complexity of the soil microbial community network (fungi-only network and bacteria-only network) showed
distinct trends from those seen for the plant-microbiota networks, and were more strongly associated with
soil factors than plant community parameters (Fig 5).

Random Forest analysis showed that the fungi-only network complexity was principally controlled by soil
total phosphorus (STP) (Fig 5a&S8) while bacteria-only network complexity was dominated by soil moisture
(SM) (Fig 5b&S9). In the fungal network, significant and positive linear correlations were found between
STP and the number of nodes, number of edges, average degree, edge density, clustering coefficient, and
degree centralization (Fig. 5c&S10). Significant and negative linear correlations were found between STP
and average path length, modularity, betweenness centralization and eigenvector centralization (Fig. S10).
The opposite trend was observed in bacterial networks, significant and negative linear correlations were found
between SM and the number of nodes, number of edges, average degree, edge density, clustering coefficient,
and degree centralization (Fig. 5d&S11). Significant and positive linear correlations were found between SM
and average path length, modularity, betweenness centralization and eigenvector centralization (Fig. S11).
These findings were supported by the results of the multiple regression on distance matrices analysis (Fig
S12), indicating that increasing STP enhanced the network connections among fungi while increasing SM
weakened the network connections among bacteria.

Discussion .
Plant richness enhances plant-fungi network

Our analysis showed a striking pattern in the numbers of fungal OTUs statistically associated with each
plant species (Fig 2a), and revealed that in relatively plant species-poor plant samples, fewer fungal OTUs
were specifically associated with each plant species. This cannot be explained simply by more fungal OTUs
being present in the samples with high plant species richness: from the total ‘pool’ of fungal OTUs detected
in the soil is very large in all samples, there are more fungal OTUs present - relative to each plant species -
in the low plant species richness samples (Fig 2b).

It is unclear exactly what forms these specific plant-fungi interactions take, except that most are positive
(81.39%) rather than negative (18.61%). Positive interactions could be mutualisms (Seidl et al. 2009),
benefitting both sides, or specialised commensalisms benefitting only one side. Specialised pathogen-host
associations may also be expected to show up as positive, unless they have a strongly depleting effect on host
plant abundance. Negative interactions may occur across trophic levels involving plant defense mechanisms,
or antagonistic relations with other fungal species that are specialised on the same plant host(Chen et al.
2018) .

Compared to the whole soil fungal community, the plant-associated fungi had a distinct profile of taxo-
nomic identities and functional guilds (Fig S7a). The FUNGUILD classification reveals that around half of
the OTUs in the fungi-plant networks are of unknown ecology, with putative saprophytes (22.67%), ecto-
mycorrhizal fungi (4.04%) and plant pathogens (2.45%) dominating amongst those that could be assigned
by FUNGUILD. In terms of the functional composition of the whole soil fungal communities, saprotrophs
(30.5%) and plant pathogens (13.6%) were the dominant functional guilds. In alpine habitats, ectomycor-
rhizal (ECM) fungi are a significant functional guild, forming mutualisms with some small lignified shrubs
and herbaceous perennials, and playing role in carbon and nutrient cycling.

The striking decrease in numbers of fungal OTUs specifically associated with each plant species, along
the declining plant species richness gradient, suggests that interactions (both negative and positive) between
plants and the rhizosphere biota are less intense in the more physiologically stressful environments associated
with low plant richness. Plant species richness was strongly associated with a gradient in mean annual
precipitation and plant productivity according to our previous study on this area(Yanget al. 2017), so plant
richness in fact could be seen as a general proxy for physiological stress on both plants and soil biota.

The trend in linked fungal OTUs per plant species thus suggests that under more stressful, low plant



diversity conditions, narrowly specific interkingdom interactions are rarer, and if anything are replaced by
more generalised interactions that do not tend to produce detectable OTU-plant species links. This may
be because the maintenance energy requirements for survival — on both plants and fungi — are greater,
with less excess carbon and other resources available for engaging in specific interactions. For instance, an
unpredictable flow of photosynthate from frequent drought conditions may also preclude niche specialisation
by fungi on an unstable resource. The concept that physiologically extreme conditions preclude large numbers
of specialised interactions has long been discussed, for example in explaining gradients in insect and plant
diversity (Richards et al. 2015).

Different responses of fungi and bacteria to environmental stresses

The ratio of the whole pool of plants to bacterial OTUs in the community (Fig 3a) paralleled the trend in
total fungal OTUs to plant species (Fig 3b). According to the results of PICRUSt2, the functional guild
assemblage of bacterial OTUs that were associated with plant species were dominated by carbon fixation
and oxidative phosphorylation(Fig S7b), all of which are associated with energy metabolisms (Eida et al.
2018). Therefore, we suggest that soil bacteria communities may play a pivotal role in plant colonization in
stressful environments by providing more available energy.

The findings of this study are of general interest as a novel perspective on how plant-microbial interactions
may vary along environmental gradients, a broad and far reaching topic with many implications for ecosystem
function. It would be very interesting to see if the same trends hold true along environmental or plant
community gradients in other main ecosystems, such as forests, shrublands and agricultural landscapes. In
addition, this study clearly showed the ecological differences between soil fungi and bacteria on the aspect of
bipartite networks, although they had been known having the different pH niches (Rousk et al. 2010; Peay
et al. 2016) and dependence on plants (Yang et al. 2019; Ni et al. 2021).

Conclusion

Along an broad gradient of environmental variables and plant species richness, number of fungal OTUs
specifically linked to each plant species was positively related to plant species richness, while bacteria showed
the opposite trend. We suggest that in a more extreme high-stress environment that decreases plant diversity,
plants and fungi have fewer excess resources to invest in specific relationships, showing up as lower associated
microbiome diversity, but that bacteria may partially replace this role of fungi in high stress/low productivity
environments.

This appears to be the first instance in which an analysis of this type, finding plant-host links at the whole
community level, has been carried out. It would be interesting to conduct similar studies in other ecosystems
around the world.
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Figures and legends

Fig 1 Explanatory factors associated with features of the fungal-plant network in individual (a& b ) and
aggregate (c ) (Only the top three factors are shown to be formally significant). (a ) Random forest analysis
showing influences on number of fungal OTUs linked to each plant species, number of edges and modularity
of plant-fungi network. (b ) The heatmap of spearman correlation coefficients between the network features
and environmental factors. (¢ ) The explained variation values were estimated with the multiple regression on
distance matrices analysis. The results showed that plant species richness is the most important predictor for
plant-fungi network topological features. MAP, mean annual precipitation; MAT, mean annual temperature;
CNratio, carbon: nitrogen; SM, soil moisture; STP, soil total phosphorus; SOC, soil organic carbon. *P <
0.05, **P < 0.01, ***P < 0.001.

Fig 2 Relationship between plant species richness per site and plant-fungi network features (a, c& d ) or
the ratio of fungal richness to plant richness (b ) in each site (vertical axis). (b )All OTUs detected in soil
are included, not only those linked to plant species. (P=< 0.001)

Fig 3 Relationship between plant species richness per site and plant-bacteria network features (a, c& d )
or the ratio of bacterial richness to plant richness(b ) in each site (vertical axis). (a ) there is no significant
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trend between plant richness and number of bacterial OTUs linked to each plant species(P>0.05). (b ) All
OTUs detected in soil are included, not only those linked to plant species. (P=< 0.001)

Fig 4 Observed plant-microbiota network structure for each main vegetation type sampled in this study. In
each network of (a ) desert steppe (DS) (8 plants and 25 fungi), (b ) alpine meadow (AM) (21 plants and
118 fungi), and (c ) alpine steppe (AS) (28 plants and 138 fungi), (d ) desert steppe (DS) (13 plants and
139 bacteria), (e ) alpine meadow (AM) (21 plants and 84 bacteria), and (f ) alpine steppe (AS) (6 plants
and 15 bacteria), fungi (yellow) and bacteria (purple) are linked with their host plants (green). The size
of circles represents the degree of microbiota or plants in each network. A blue edge indicates a negative
correlation, and a red edge indicates a positive correlation.

Fig 5 Random Forest analysis and linear regression showing influences on the network-level topological
features of fungi-only network(left) and bacterial-only network(right). Random forest shows that STP is the
most important environmental factors for the fungi-only network (a ), while SM is the most important for
the bacteria-only network (b ). MAP, mean annual precipitation; MAT, mean annual temperature; CNratio,
carbon: nitrogen; SM, soil moisture; STP, soil total phosphorus; SOC, soil organic carbon. *P < 0.05, **P
< 0.01 and ***P < 0.001.
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Fig 1 Explanatory factors associated with features of the fungal-plant network in individual (a& b ) and
aggregate (c ) (Only the top three factors are shown to be formally significant). (a ) Random forest analysis
showing influences on number of fungal OTUs linked to each plant species, number of edges and modularity
of plant-fungi network. (b ) The heatmap of spearman correlation coefficients between the network features
and environmental factors. (¢ ) The explained variation values were estimated with the multiple regression on
distance matrices analysis. The results showed that plant species richness is the most important predictor for
plant-fungi network topological features. MAP, mean annual precipitation; MAT, mean annual temperature;
CNratio, carbon: nitrogen; SM, soil moisture; STP, soil total phosphorus; SOC, soil organic carbon. *P <
0.05, ¥*P < 0.01, ***P < 0.001.

Fig 2.
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Fig 2 Relationship between plant species richness per site and plant-fungi network features (a, c& d ) or
the ratio of fungal richness to plant richness (b ) in each site (vertical axis). (b )All OTUs detected in soil
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Fig 3 Relationship between plant species richness per site and plant-bacteria network features (a, c& d )
or the ratio of bacterial richness to plant richness(b ) in each site (vertical axis). (a ) there is no significant
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trend between plant richness and number of bacterial OTUs linked to each plant species(P >0.05). (b ) All
OTUs detected in soil are included, not only those linked to plant species. (P =< 0.001)

Fig 4.
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Fig 4 Observed plant-microbiota network structure for each main vegetation type sampled in this study. In
each network of (a ) desert steppe (DS) (8 plants and 25 fungi), (b ) alpine meadow (AM) (21 plants and
118 fungi), and (c ) alpine steppe (AS) (28 plants and 138 fungi), (d ) desert steppe (DS) (13 plants and
139 bacteria), (e ) alpine meadow (AM) (21 plants and 84 bacteria), and (f ) alpine steppe (AS) (6 plants
and 15 bacteria), fungi (yellow) and bacteria (purple) are linked with their host plants (green). The size
of circles represents the degree of microbiota or plants in each network. A blue edge indicates a negative
correlation, and a red edge indicates a positive correlation.

Fig 5.
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Fig 5 Random Forest analysis and linear regression showing influences on the network-level topological
features of fungi-only network(left) and bacterial-only network(right). Random forest shows that STP is the
most important environmental factors for the fungi-only network (a ), while SM is the most important for
the bacteria~-only network (b ). MAP, mean annual precipitation; MAT, mean annual temperature; CNratio,
carbon: nitrogen; SM, soil moisture; STP, soil total phosphorus; SOC, soil organic carbon. *P< 0.05, **P
< 0.01 and ***P< 0.001.
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