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Abstract 
A method for accurately estimating the electron correlation energy as a 1st order correction to 

the Hartree-Fock energy is presented. It succeeds by disallowing the representation of the 

electron repulsion operator to be more fine-grained than the corresponding representation of 

the two-particle density. To extract the electron correlation contribution to the molecular 

internal energy from the exact wavefunction, the short-range contribution to the electron 

repulsion operator is replaced by a corresponding correlation kinetic energy penalty. Utilizing 

the virial theorem, this self-interaction-free exact-exchange method becomes applicable on 

condition of stability of the Self-Consistent Field wave function. Laplace as well as Fourier 

transforms are resorted to as consistency checks. Atomic and small molecular ions are 

considered for validation. The latter require modelling of the screened Coulomb hole 

associated with 1s electrons owing to coupled short-range electron-nucleus and electron-

electron interactions. For this purpose, Hooke’s atom is analyzed (0.03 ≤ 𝜔 ≤ 1000) and 

consistency is demonstrated for	1s!	Helium-like ions (Z=1-36). While impacting core-

valence interactions, the said screening is absent in the valence as confirmed by the Be-like 

ions (Z=3-36) 1𝑠!2𝑠!	systems, for LiH, BeH+, Li2 and for LiBe+. A chemistry associated 

exclusively with K-shell orbitals is briefly discussed based mainly on results for HeH+ and 

H3+. Fractional charges scaling the Coulomb hole is inferred to better represent the complex 

correlation hole in hydrogen clusters and high-pressure metallic hydrogen.   



1. Introduction 

Any attempt at disentangling the electron correlation contributions to the many-electrons 

wave function must necessarily reflect on related assumptions in quantum theory as well as 

on the relevance for present-days electronic structure-based computational approaches. Soon 

it will be 100 years since Schrödinger’s famous discovery of the equation that bears his name 

[1]. As validated by describing the hydrogen atom, its indelible impact on contemporary 

chemistry and physics, still today, is a tribute to its universality. It assumes quantum reality to 

be intertwined with classical mechanics via the Hamilton principal function that relates the 

coordinates and conjugated moments of a system’s constituents to its internal energy via 

Hamilton-Jacobi equation. For a non-relativistic electron associated with a fixed proton, the 

time-independent Hamiltonian reduces to 

𝐻 /𝑞,
𝑑𝑆
𝑞 4 = 𝐸.			(1) 

Here, the second essential ad hoc assumption is made. It concerns the classical action S 

taking the form 

𝑆 = 𝐾 ln𝜓							(2) 

Upon inserting Eq. 2 into Eq.1 and subjecting it to the variational method, an equation is 

sought for the function 𝜓 such that continuity and finiteness constraints on 𝜓 as well as its 

derivatives are satisfied. The Schrödinger equation (SE) follows,  

∆	𝜓 +
2𝑚"

|𝐾|! A𝐸 +
𝑒!

𝑟 D𝜓 = 0.					(3) 

|𝐾| = ℏ emerges, and the observed electronic spectrum of the hydrogen atom is deduced. It is 

truly remarkable how an analytical expression for the exact energy of a real system emerges, 

such that it implicitly complies with the Heisenberg indeterminacy principle in position and 

momentum of the electron [2]. The emergence of exact physical properties from probability 

functions, albeit for stationary states, through mathematical forms that remind of entropy was 



explored by von Neumann [3] and later transferred into information theory by Shannon [4]. A 

crucial step in realizing the versatile potential of the single-electron SE was its independent-

electrons generalization as developed by Hartree, Slater, Gaunt [5-7], and Slater and Fock 

[8,9]. The self-consistent field method was designed by Hartree to produce solutions to the 

resulting Hartree-Fock equations [10] that approximate the solution to one many-electron 

Schrödinger equation by those of many coupled one-electron integro-differential equations. 

The computability, however cumbersome at the time, was realized by Roothaan [11] by 

recasting the Hartree-Fock equations on the form of a matrix equation that is reiterated here 

for completeness. Thus, linear-combinations C of basis functions belonging to a set {𝑔} are 

taken to represent the spatial components of the molecular orbitals 

𝜙# =J𝑐#$ 	𝑔$
$

						(4) 

such that C is determined variationally upon minimizing the energy while constrained by 

maintaining orthonormal orbitals. The Hartree-Fock-Roothaan - method implies iteratively 

solving for  

𝑭𝑪 = 𝑺𝑪ℇ.					(5) 

where the Fock matrix 𝑭 is a functional of C. For doubly occupied space orbitals, the overlap 

matrix 𝑺,	and the Fock matrix 𝑭 take their well-known explicit forms 

𝑆$% = ⟨𝜇|𝜈⟩																(6) 

𝐹$% = X𝜇Y−&
!𝛻&

! −∑ 𝑍'
|𝒓& − 𝑹'|' Y𝜈` +J𝐷()

()

b〈𝜇𝛾|
1
𝑟&!

|𝜈𝛿〉 −
1
2
〈𝜇𝛾 Y

1
𝑟&!
Y 𝛿𝜈〉g						(7) 

Such that 𝑫 is the density matrix defined as 

𝐷() = 2 J 𝑐#(𝑐#)

*!"/!

#,&

						(8) 

and 



𝐸-. =J𝐷$% k𝐹$% −
1
2J𝐷() b〈𝜇𝛾|

1
𝑟&!

|𝜈𝛿〉 −
1
2
〈𝜇𝛾 Y

1
𝑟&!
Y 𝛿𝜈〉g	

()

l
$%

					(9) 

A tribute to this handy ab initio formalism is that it is laying bare its own shortcomings. 

Thus, it was immediately realized that its usefulness would be limited by lack of electron 

correlation. Clearly, solutions to the Schrödinger equation for independent electrons are 

incompatible with the pairwise electron-electron interactions &
/#$
	appearing in the ab initio 

Hamiltonian. Löwdin [12] introduced the definition  

𝐸01// = 𝐸"2304 − 𝐸-.   (10) 

Increased complexity in the wave function to include explicit inter-electronic distances in the 

wave function ansatz, as introduced by Hylleraas [13], offered a remedy. Generalization of 

the HF method by the configuration interaction CI approach was also shown to solve the 

electron correlation deficit in the HF formalism [14]. Hybrids of the two approaches have 

proven viable albeit still associated with high computational costs [15,16]. Vast amount of 

research went into clarifying what was missing and formulating intuitive remedies that 

completely or partially bypass the computational efforts associated with the enhanced 

complexity of the wave function ansatz [17,18]. Among these, density functional theory has 

emerged as the most successful one. What rendered DFT unique was how intuition was recast 

into theorems, establishing the connection between the ground state electron density, the 

ground state wavefunction, and the external potential [19] that paved the way for its practical 

realization. While resorting to the Slater determinant to provide the electron density, a set of 

equations, the Kohn Sham equations [20] analogous to the Hartree-Fock equations were 

formulated. Crucially retaining the kinetic energy expression for non-interacting electrons, 

KS DFT effectively replaces the HF exchange term by a universal exchange-correlation 

potential in the form of a functional of the electron density. This warrants computability for 

virtually all of chemistry and a large part of physics.  



Today, approximate functionals are parametrized to satisfy a set of exact properties of the 

exact functional. A central characteristic of present days DFT is flexibility in design of new 

functionals. Yet, ambiguity in choice of functional, or tailoring it to fit a particular problem, 

may become a double-edged sword. Arguably, the need for quantitative 1st principles 

computability to complement experiment risk developing mainstream apologetic tolerance to 

flaws in the DFT methodology. Our exploratory contribution in this context is to unravel 

hidden conceptual robustness in bridging between HF and DFT [21] as well as between the 

Complete Active Space Self-Consistent Field and ensemble-DFT approaches [22,23]. In what 

follows, we summarize and extend on the former. 

Surely, it is the exact definition of electron correlation as formulated in Eq. 10 that 

motivates revisiting the sources. To make progress, inspiration is drawn from three such 

sources. For one, the success of DFT is undeniable. Second, is the under-explored 

opportunity to utilize the Heisenberg indeterminacy principle beyond merely as a property of 

the exact wave function, in designing more efficient ab initio computational tools. Third, is 

the exact expression for the wave function from coupled-cluster theory [25,26] – the 

exponential operator 𝑒56  generating virtual excitations from the reference Slater determinant 

Ψ78 with amplitudes determined by the coupled-cluster equations, such that 

𝐸"2304⟨Ψ|Ψ⟩ = oΨp𝐻qpΨr = oΨ78p𝑒95
6𝐻q𝑒56 pΨ78r = oΨ78p𝐻q"::"04#;"pΨ78r

= 𝐸"2304⟨Ψ78|Ψ78⟩																																																																									(11) 

It is in this spirit that an expression for the electron correlations dressed Hamilton operator 

𝐻q"::"04#;", i.e., one that achieves the disentanglement of the exact electronic wave function 

into that of independent electrons, is justified and validated. And rather than cluster 

expansions of the wave function, we should anticipate additional terms in the electrons 

interaction representation to match the independent-electrons wave function. Intuitively, 

incorporation of indeterminacy of relative pair-wise electrons positions and relative pair-wise 



electrons momenta in 𝐻q"::"04#;" is sought. We will find that, to the extent that inter-

electronic positions are correlated in the true electronic wave function, i.e., the one that 

matches the true non-relativistic Hamilton operator, their contribution to the internal energy 

may be readily disentangled at the Hartree-Fock level of theory by a virial augmented 

regularized electron repulsion operator. A most remarkable property of quantum theory is 

indeed its interplay with classical mechanics, underscoring its indelible role in the emerging 

quantum mechanics, cf. Eq. 1. The fact that the time-independent Schrödinger equation obeys 

the virial theorem was demonstrated, e.g., by Slater [28], and it has become ubiquitous in 

quantum chemistry, see for example [12,29]. While to some extent analogous to DFT [30], 

here, self-interaction-free disentanglement is offered that separates the exchange and 

correlation contributions to the exchange-correlation potential. It is found that the 

representation of the electron repulsion operator cannot be more fine-grained than the 

representation of the two-particle density.  

In what follows, Section 2 develops and assesses the general expressions utilized, Section 3 

deduces the coulomb hole augmented electron repulsion integrals (ERI:s), Section 4 explores 

screening effects on the Coulomb hole by computing the correlation energies for (a) Hooke’s 

atom 0.03 ≤ 𝜔 ≤ 1000	and (b) He-like ions (Z=1-36), Section 5 partitions the density matrix 

to account for screening of the Coulomb hole in the 1s region owing to the singular electron-

nucleus attractions, Section 6 validates the partitioning and screening for Be-like (4 electrons) 

ions, while Section 7 provides further proof of concept by computing  total energies in the 

Hartree-Fock limit and corresponding correlation energy contributions for small molecular 

ions including 2-, 4-, and 6- electrons, and comparing those with exact numbers in the 

literature. 

 

 



2. The Coulomb hole and its virial 

In conventional wavefunction based ab initio quantum chemistry, electron correlation 

comprises a property of an increasingly complex wave function. It may be understood to 

describe a relative pairwise displacement of electrons to avoid highly repulsive regions in 

pair-space owing to the inter-electronic &
/#$

 interaction. To achieve the effect of the said 

pairwise displacements, while remaining true to the independent particle ansatz, a Coulomb 

hole approach, referred to as the regularized Hartree-Fock method (reg-HF), where the 

correlation kinetic energy becomes absorbed in the coulomb and exchange potentials is 

reiterated and explored further below. Appropriately, we start out with exact expression for 

the electron repulsion energy in terms of the two-particle density 𝜌!(𝒓&, 𝒓!) 

 

𝑉"" =u
𝜌!(𝒓&, 𝒓!)

𝑟&!
𝑑<𝒓𝟏𝑑<𝒓𝟐 =

1
2u𝜌(𝒓&)𝜌(𝒓!)

1
𝑟&!

[1 + ℎ20(𝒓&. 𝒓!)]𝑑<𝒓𝟏𝑑<𝒓𝟐						(12) 

 

By (i) factorizing 1 + ℎ20(𝒓&. 𝒓!) = (1 + ℎ2(𝒓&. 𝒓!))(	1 + ℎ0(|𝒓& − 𝒓!|))  to account for 

non-local and interactions separately, (ii) replacing the exact electron density 𝜌 by 𝜌? 

referring here to the Slater determinantal wave function, and (iii) introducing the effective 

Coulomb hole attenuated electron-electron interaction operator 〈𝐺(𝑟&!)〉, Eq. 12 becomes 

reshaped into 

𝑉"" =
&
!∬𝜌?(𝒓&)𝜌?(𝒓!) 〈𝐺(𝑟&!)〉[1 + ℎ2(𝒓&. 𝒓!)]𝑑<𝒓𝟏𝑑<𝒓𝟐 (13) 

where 

〈𝐺(𝑟&!)〉 = 〈 &
/#$
[1 + ℎ0(|𝒓& − 𝒓!|)]〉   (14) 

By virtue of Eqs. 13 and 14, the formalism to follow becomes self-interaction free. The 

〈brackets〉 are introduced to emphasize the effective nature of the operator thereby matching 

the truncated wave function |Ψ78⟩. Thus, the sought Coulomb hole potential takes the form 



〈𝑉�@1A"B/"??"B〉 = 〈
ℎ0(|𝒓& − 𝒓!|)

𝑟&!
〉												(15) 

To arrive at a practical expression for 〈𝑉�@1A"B/"??"B〉	the exact integral representation of 
!
"!"

 is 

partitioned according to 

&
/#$
= !

√D
∫ 𝑒9?$/#$$E
F 𝑑𝑠 + !

√D
∫ 𝑒9?$/#$$G
E 𝑑𝑠 (16) 

Subsequently, we identify 

〈𝑉�@1A"H3/"〉E = − !
√D
〈∫ 𝑒9?$/#$$G
E 𝑑𝑠〉.		   (17) 

By virtue of the virial theorem but also considering that  #$𝒓&! ∙ 𝛁 constitutes a pairwise 

displacement operator, it was noted in [21] that a consecutive regularization of !
√D
∫ 𝑒9?$/#$$G
E  

most generally leads to  

2
√𝜋

〈� 𝑒9?$/#$$
G

E
𝑑𝑠〉 ≈

2
√𝜋

𝜒	𝑒9E$I/#$$ ; 	𝑟&! ≠ 0.										(18) 

This in turn implies that 

〈
1
𝑟&!
〉 ≈

2
√𝜋

� 𝑒9?$/#$$
E

F
𝑑𝑠 +

2
√𝜋

𝜒	𝑒9E$I/#$$ 						(19) 

To estimate 𝜃 we first Fourier transform Eq. 19 

〈�
2
𝜋
1
𝑘!
〉 ≈ �2

𝜋
𝑒9

%$

&'$

𝑘! +
1
√2𝜋

𝑒
9 J$
KIE$

𝜃
<
!𝜒!

							(20) 

We note that for 𝜒! ≫ 𝑘! Eq. 20 reduces to 

�2
𝜋

J$

KE$
=

1
√2𝜋

𝑘!

𝜃
<
!𝜒!

					(21) 

so that 

𝜃 = 2
!
< ≈ 1.5874											(22) 



Assume the original time-independent Hartree-Fock theory to produce the Ψ78 in the sense of 

Eq.11, so that 𝜌? in Eq. 13 refers to independent electrons. The inferred stability of the time-

independent solution implies that upon introducing 〈𝑉�@1A"H3/"〉E, the virial theorem must be 

obeyed to satisfy the requirement of being an a priori stable system. We write 

〈𝑉�@1A"B/"??"B〉E = 〈𝑉�@1A"H3/"〉E − 〈𝑇�01//〉E         (23) 

Here, by virtue of this theorem, the implicit kinetic energy associated with the electron 

correlation becomes 

〈𝑇�01//〉E = 〈−#
$𝒓&! ∙ 𝛁𝑉�@1A"

H3/"〉E  (24) 

We proceed by inserting Eq.18 into Eq.24 to obtain 

〈𝑇�01//〉E =
!
√D
〈−#

$𝒓&! ∙ 𝛁 ∫ 𝑒9?$/#$$G
E 𝑑𝑠〉 ≈ !

√D
𝜒<𝜃𝑟&!! 𝑒9E

$I/#$$      (25) 

Thus, we arrive at the explicit expression, albeit parametrized by the cut-off 𝜒 (to be 

determined below), i.e.,  

〈𝐺(𝑟&!; 𝜒)〉 =
1
𝑟&!

− 〈𝑉�@1A"B/"??"B〉E ≈
2
√𝜋

� 𝑒9?$/#$$
E

F
𝑑𝑠 +

2
√𝜋

𝜒<𝜃𝑟&!! 𝑒9E
$I/#$$  

																																																														≈
1
𝑟&!

−
2
√𝜋

𝜒𝑒9E$I/#$$ +
2
√𝜋

𝜒<𝜃𝑟&!! 𝑒9E
$I/#$$ 				(26) 

and its  Fourier transform 

𝐹 "	
2
√𝜋

' 𝑒#$!%"!! 𝑑𝑠 +	
2
√𝜋

𝜒&𝜃𝑟'(( 𝑒#)
!*%"!!

)

+
/ = 12

𝜋
𝑒#

#!
$%!

𝑘(
+

1

√2𝜋𝜃
&
!𝜒(

4
3
2
−

𝑘(

4𝜃𝜒(
8 𝑒

' #!
$(%! 					(27) 

The terms that enter Eqs. 26 and 27 are plotted in Figure 1. In particular, Equation 26 

replaces the intuitive soft Coulomb hole expression &9"
()*#$

$

/#$
 in [18]. 
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Figure 1.   
A. The three functions of 𝑟'(, cf. Eq.26, corresponding to '

%"!
 (red) , (

√-
∫ 𝑒#$!%"!!)
+ 𝑑𝑠	(blue), and 

(
√-
∫ 𝑒#$!%"!! 𝑑𝑠 +	 (

√-
𝜒&𝜃𝑟'(( 𝑒#)

!*%"!!)
+  (black), 𝜒 = 	0.5, 𝜒 = 0.5.	B. The regularized coulomb 

interaction (
√-
∫ 𝑒#$!%"!! 𝑑𝑠)
+ 	for χ: 0.5, 1, 2, 4, 8, 16, 32. Dashed is '

%"!
. C. The virial augmented 

regularized coulomb interaction (
√-
∫ 𝑒#$!%"!! 𝑑𝑠 +	 (

√-
𝜒&𝜃𝑟'(( 𝑒#)

!*%"!!)
+  for χ: 0.5, 1, 2, 4, 8, 16, 32. 

Dashed is '
%"!

. D. Top: Fourier transforms of (A): FE '
%"!
F = G(

-
'
.!
	(𝑅𝑒𝑑),		𝐹 E	 (

√-
∫ 𝑒#$!%"!!)
+ 𝑑𝑠F =

G(
-
/
' #!
$%!

.!
		(𝐵𝑙𝑢𝑒), and		𝐹 E	 (

√-
∫ 𝑒#$!%"!! 𝑑𝑠 +	 (

√-
𝜒&𝜃𝑟'(( 𝑒#)

!*%"!!)
+ F = G(

-
/
' #!
$%!

.!
+ '

√(-*
&
!)!

L&
(
−

.!

0*)!
M 𝑒

' #!
$(%! 	(𝐵𝑙𝑎𝑐𝑘). 𝜃 = 2

!
&. 𝜒 = 0.5. Bottom: same as Top, scaled	by	G(

-
𝑘#(. Dashed is 

FE '
%"!
F /G(

-
𝑘#(	=1. E. Fourier transforms of (B) scaled	by	G(

-
𝑘#(. Dashed is FE '

%"!
F /G(

-
𝑘#(	=1. 

F. Fourier transforms of (C) scaled	by	G(
-
𝑘#(. Dashed is FE '

%"!
F /G(

-
𝑘#(	=1. 
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3.  The Coulomb hole in a 4-center Gaussian representation  

– identifying the cut-of 𝜒()
$% 

In as much as the gaussian probability density function maximizes the information entropy 

for a given variance in the data, it is utilized here to construct an a priori unbiased gauge for 

the electron correlation. Moreover, spanning the molecular orbitals in a gaussian basis set 

{{Γ$(𝒓&)}	indeed	implies spanning the electron density in the corresponding product space 

{Γ$(𝒓&)⨂{ΓL(𝒓&)} ⇒ 	 {Γ$%(𝒓&)}.	 This by virtue of the gaussian product theorem. Here, the 

basis for spanning the two-particle density comprises {Γ$%(𝒓&)⨂{Γ()(𝒓!)} while the pair-

correlation function becomes absorbed by the effective electron-electron interaction 

𝐺�𝑟&!; 𝜒()
$%�. Thus, implementation of the novel Coulomb hole attenuated electron repulsion 

operator Eq. 26 in the matrix representation of the Hartree-Fock equations for a gaussian 

basis sets requires rewriting the ERI “metric” for the Coulomb and exchange contributions to 

the electron repulsion energy according to 

𝑉"" =u
𝜌!(𝒓&, 𝒓!)

𝑟&!
𝑑<𝒓𝟏𝑑<𝒓𝟐

≈
1
2JJ𝐷$%𝐷() b〈𝜇𝛾| 〈𝐺�𝑟&!; 𝜒()

$%�〉 |𝜈𝛿〉
()$%

−
1
2
〈𝜇𝛾 �〈𝐺�𝑟&!; 𝜒()

$%�〉� 𝛿𝜈〉g	 							(28) 

In what follows, we will use the short-hand notation 〈𝜇𝛾| 〈𝐺�𝑟&!; 𝜒()
$%�〉 |𝜈𝛿〉 ≡

〈〈𝐺�𝑟&!; 𝜒()
$%�〉〉()

$% to represent the attenuated ERI:s, such that 

 

〈〈𝐺�𝑟&!; 𝜒()
$%�〉〉()

$%

≈ 〈
1
𝑟&!
〉()
$% −

2
√𝜋

〈〈𝜒()
$%𝑒9E+,

-.$I/#$$ 〉〉()
$% +

2
√𝜋

〈〈𝜒()
$%<𝜃𝑟&!! 𝑒

9E+,
-.$I/#$$ 〉〉()

$% 				(29) 



and correspondingly for 〈〈𝐺�𝑟&!; 𝜒(%
$)�〉〉(%

$). In bypassing, it is noted that Eq. 29 may 

equivalently be written as 

〈〈𝐺�𝑟&!; 𝜒()
$%�〉〉()

$% ≈
2
√𝜋

〈〈� 𝑒9?$/#$$
E+,
-.

F
𝑑𝑠〉〉()

$% +
2
√𝜋

〈〈𝜒()
$%<𝜃𝑟&!! 𝑒

9E+,
-.$I/#$$ 〉〉()

$% 															(30)		 

Thus, the regularized Hartree-Fock approach is realized in the conventional framework as 

follows: Let 𝑨$ , 𝑨%, 𝑨(	and	𝑨) be origins of gaussian basis functions with corresponding 

exponents 𝛼$ , 𝛼% , 𝛼𝛾	and	𝛼𝛿.	In what follows, we limit ourselves to s-type basis functions and 

include ghost functions to mimic the effects of atom-centered polarization functions. Let 

𝑷 = M-𝑨-OM.𝑨.
M-OM.

	 (31) 

𝑸 = M+𝑨+OM,𝑨,
M+OM,

	 (32) 

𝑅PQ! = |𝑷 − 𝑸|! (33) 

𝑆$% 	= / KM-M.
RM-OM.S

$4
</K

exp £− M-M.
M-OM. 

�𝑨$ − 𝑨%�
𝟐¤       (34) 

where 𝑆$% 	and	correspondingly	𝑆() constitute the usual overlap integrals over gaussian 

functions. Introducing  

𝜅 = 𝛼$ + 𝛼% 						(35) 

𝜉 = 𝛼( + 𝛼) 					(36) 

𝛽 =
𝜅 ∙ 𝜉
𝜅 + 𝜉 									(37) 

we obtain the well-known expression 

〈
1
𝑟&!
〉()
$% = 𝑆$%𝑆()
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(𝜅 ∙ 𝜉)</! 	2 /
𝛽
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&
!
𝐹F�𝛽 ∙ 𝑅PQ! �																			(38) 

where 

𝐹F(𝑊) = � 𝑒9T?$
&

F
𝑑𝑠																						(39) 



An expression for 𝜒 is obtained by merging the generic Eq. 19 into Eq 38 

〈
1
𝑟&!
〉()
$% ≈ 〈

2
√𝜋

� 𝑒9?$/#$$
E+,
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F
𝑑𝑠〉()

$% + 〈
2
√𝜋

𝜒()
$% 	𝑒9E+,

-.$I/#$$ 〉()
$% 							(40) 

On expanding 𝐸q.	40	to 1st order in 𝑅PQ!  and identifying terms we obtain 	

𝜒()
$%! = 𝑎 ∙ 𝛽             (41) 

𝑎 = −
1
2 +

√5
2 ≈ 0.6180															(42) 

𝜃 = 1 +
√5
3 ≈ 1.7454												(43) 

Equation 41 is the sought expression that constrains the representation of the interaction so 

that it cannot be more fine-grained than the corresponding representation of the two-particle 

density. Besides the sought cut-off 𝜒()
$%, an alternative expression for 𝜃,	previously obtained 

by the complementary Fourier transformation procedure, cf. Eqs. 20-22, emerges. A 

comparison between the different impacts that the two values of  𝜃 have on Eq. 40, is shown 

in Figure 2.  

 
a 

 

b 

 

Figure 2. Assessments of Eq. 40 as function of RUV. 〈 &
/#$
〉()
$% 	and 〈 !

√D
∫ 𝑒9?$/#$$E+,

-.

F 𝑑𝑠〉()
$% +

〈 !
√D
𝜒()
$% 	𝑒9E+,

-.$I/#$$ 〉()
$% 	are superimposed in insets. Errors in dashed red frames are enlarged. 

(a)		relative	error	for	𝜃 = 1 + √W
<

    - from Eq. 40 developed to 1st order in 𝑅PQ! . 

(b)	relative	error	for	𝜃 = 2
$
1  - from Fourier transform of Eq. 19, expanded to 1st order in 

X$

KY$
, and	inserted in Eq. 40. 



We obtain 

〈
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〈
2
√𝜋

𝜒	𝑒9E+,
-.$I/#$$ 〉()

$% = 𝑆$%𝑆()
𝜋<

(𝜅 ∙ 𝜉)</! 	2 /
𝛽
𝜋4

&
!
∙ 𝑎! ∙ 𝑒𝑥𝑝�−𝑎! ∙ 𝛽 ∙ 𝜃 ∙ 𝑅PQ! �			(45) 

and 
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2
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Thus, corresponding to Eq. 29, we obtain 
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while matching Eq. 30, we get 
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Again, it follows from Eqs. 47 and 48 that  

𝐹F�𝛽 ∙ 𝑅PQ! � ≈ 𝑎 ∙ 𝐹F�𝑎! ∙ 𝛽 ∙ 𝑅PQ! � + 𝑎! ∙ 𝑒𝑥𝑝�−𝑎! ∙ 𝛽 ∙ 𝜃 ∙ 𝑅PQ! �							(49) 

Eq. 49 is analogous to Eq. 40, that was evaluated in  Figure 2.  

 

 



 

4. Scaled Coulomb hole from nuclear attraction screening 

Equations 47 and 48 comprise the final expressions in cases where the electron-electron 

interaction is the only electron associated interaction that possesses a singularity, e.g., when 

Effective Core Potentials (ECP:s) are employed. In cases where the electron correlation for 

1s electrons are computed, the impact of electron-nuclei interactions becomes to screen the 

Coulomb hole and increasingly so with increased nuclear charges. To account for this effect, 

we introduce a scaling factor ƒ and write analogously to Eq. 47 
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and corresponding to Eq. 48 
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The validity of these forms and the expression for the scaling factor is addressed in sections 

4.a and 4.b.   

 

4.a.  Scaling the Coulomb hole in Hooke’s atom 

Here, we turn to Hooke’s atom to validate the ansatz. This system has arguably become a 

gold standard for descriptions of electron correlation in two-electron systems, cf. [31-35]. For 



this model system, the electron-nucleus attraction in Eq. 7 is replaced by a harmonic 

oscillator potential to produce 

𝐻q = −#
$
(∇&! + ∇!!) + #

$𝜔
!(r&! + r!!) +

&
/#$

     (52) 

On implementing the regularized Hartree-Fock (reg-HF) scheme to solve for Hooke’s atom, 

it is first noted that Eqs. 50 and 51 reduce to 
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In line with the leading correction to the total energy of Hooke’s atom at large 𝜔 being 

𝑂(𝜔9F.W)	[34],	two analogous forms, i.e., 𝑓 = &
3$91$3

&O√b
 and 𝑓 = &

cd3$91$3
&e
$
Ob

, are 

considered here, both satisfying the requirement that non-interacting electrons	result	in the 

limit 𝜔 → 0.	While indeed performing similarly for large 𝜔, the former performs 

significantly better for intermediate and small 𝜔. Therefore, only the results for 
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are provided in Table 1. Clearly, these results set the standard for the accuracy that is 

expected from the reg-HF approach. 

  



 

Table 1. Hooke’s atom energies from Hartree-Fock. regularized Hartree-Fock, 𝑓 =
&

3$91$3
&O√b

, are	compared	with	Full CI and f!:;<=
b

 results [34] for a range of different force 

constants. 

𝜔 𝐸>? 𝐸@ABC>? 𝐸?DE 
𝐸%/1#23

𝜔
 

𝐸"2304
𝜔  

0.03 0.207816 0.187235 0.1872131 6.241165 6.240437 
0.033 0.223300 0.202112 0.2020337 6.124777 6.122233 
0.036 0.238511 0.216779 0.2166358 6.021639 6.017661 

0.0365373 0.241209 0.219383 0.2192297 6.004370 6.000161 
0.04 0.258422 0.236025 0.2358069 5.900625 5.895173 
0.05 0.306693 0.282890 0.282503 5.657802 5.65006 
0.06 0.353283 0.328342 0.3278107 5.472369 5.463512 
0.08 0.442870 0.416165 0.4153963 5.202059 5.192454 
0.1 0.529042 0.501005 0.5000511 5.010052 5.000511 

0.15 0.734982 0.704637 0.7033557 4.697582 4.689038 
0.2 0.932305 0.900425 0.8989284 4.502127 4.494642 
0.3 1.311900 1.278022 1.2762559 4.260072 4.254186 
0.4 1.679136 1.643962 1.6420337 4.109905 4.105084 
0.5 2.038439 2.002332 2.0002946 4.004665 4.000589 
1. 3.771464 3.732855 3.7305644 3.732855 3.730564 
2. 7.101464 7.060903 7.0584674 3.530451 3.529234 
5. 16.756755 16.714320 16.711796 3.342863 3.342359 

10. 32.495528 32.452094 32.449546 3.245209 3.244955 
100. 307.950844 307.905672 307.90313 3.079057 3.079031 

1000. 3025.203196 3025.157450 3025.1549 3.025157 3.025155 
 

4.b.  Scaling of the 1s Coulomb hole in Helium like ions 

Scaling of the Coulomb hole, by the force constant in case of Hooke’s atom or by nuclear 

charge in case of Coulombic K-shell electron-nucleus attraction, respectively, may be taken 

to reflect their infinitely high parabolic potential walls and the infinitely deep electron-

nucleus attraction wells. Similar asymptotic considerations as for Hooke’s atom, albeit 

replacing 𝜔9F.W	by 𝑍, see	e. g. [12,34,35],	lead to comparing 𝑓g =
&

c(3$91$3
&)$Oj$	

  to 𝑓g =



&
3$91$3

&Oj
 . The former expression is found to outperform the latter for the low-𝑍 systems, 

while they behave similarly for the intermediate and high-Z systems. Thus, comparison 

between experiment and reg-HF is provided in Table 2 for 𝑓g =
&

c(3$91$3
&)$Oj$	

  , 

corresponding to 
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Table 2. Comparison between Hartree-Fock and regularized Hartree-Fock for He-

like 2-electron ions. 𝑓g =
&

c(3$91$3
&)$Oj$	

.	virtually Z-independent electron 

correlation energy is observed in agreement with experiment [36]. Z=1 is H-. For 

discussion, see text. HGBS-9 basis set [37] is employed in this work. 

𝑍 𝐸>? 𝐸@ABC>? 𝐸>? − 𝐸@ABC>? 𝐸HI@@[29] 
1 -0.48792973 -0.51976453 0.0318348 0.0407 
2 -2.86167999 -2.90337214 0.0416922 0.0421 
3 -7.23641519 -7.28125252 0.0448373 0.0435 
4 -13.61129940 -13.65768997 0.0463906 0.0443 
5 -21.98623441 -22.03355089 0.0473165 0.0448 
6 -32.36119279 -32.40912403 0.0479312 0.0451 
7 -44.73616385 -44.78453298 0.0483691 0.0453 
8 -59.11114255 -59.15983941 0.0486969 0.0455 
9 -75.48612621 -75.53507758 0.0489514 0.0456 
10 -93.86111328 -93.910267100 0.0491547 0.0457 
11 -114.23610277 -114.28542371 0.0493209 0.0458 
12 -136.61109408 -136.66055340 0.0494593 0.0459 
13 -160.98608675 -161.03566310 0.0495763 0.0459 
14 -187.36108048 -187.41075707 0.0496766 0.046 
15 -215.73607506 -215.78583849 0.0497634 0.0461 
16 -246.11107032 -246.16090969 0.0498394 0.0461 
17 -278.48606614 -278.53597250 0.0499064 0.0462 
18 -312.86106242 -312.91102829 0.0499659 0.0463 
19 -349.23605909 -349.28607820 0.0500191 0.0463 
20 -387.61105607 -387.66112308 0.050067 0.0463 
21 -427.98605334 -428.03616368 0.0501103 0.046 



22 -470.36105085 -470.41120056 0.0501497 0.046 
23 -514.73604855 -514.78623421 0.0501857 0.047 
24 -561.11104645 -561.16126506 0.0502186 0.047 
25 -609.48604449 -609.53629340 0.0502489 0.047 
26 -659.86104268 -659.91131956 0.0502769 0.047 
27 -712.23604097 -712.28634375 0.0503028 0.047 
28 -766.61103940 -766.66136622 0.0503268 0.047 
29 -822.98603791 -823.03638711 0.0503492 0.047 
30 -881.36103650 -881.41140658 0.0503701 0.047 
31 -941.73603516 -941.78642478 0.0503896 0.047 
32 -1004.11103390 -1004.16144183 0.0504079 0.047 
33 -1068.48603267 -1068.53645780 0.0504251 0.047 
34 -1134.86103159 -1134.91147290 0.0504413 0.047 
35 -1203.23603042 -1203.28648700 0.0504566 0.047 
36 -1273.61102938 -1273.66150037 0.050471 0.047 

 

5. Core-Valence separation 

Thus, the parameters 𝜒 and 𝜃, as well as the expression for the scaling ƒ of the Coulomb hole 

in 1s have been determined, the latter owing to the singular electron-nucleus attraction [12]. 

To form the inter-electronic contribution to the Hartree-Fock energy, incorporation of Eq. 50 

or Eq 51) in Eq. 9 requires partitioning of the density matrix  𝑫	into	𝑫#**"/ +𝑫1p4"/ 

contributions  

𝐷$%#**"/(𝑓g) = 2 J 𝑓#𝑐#$𝑐#%

g9?@"AA?

#,&

							(56) 

𝐷$%1p4"/(𝑓q) = 2 J 𝑓#𝑐#$𝑐#%

*!"/!

#,g9?@"AA?O&

							(57) 

This way, the electron correlation energy takes the form 
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It is noted that only the last term in Eq. 58 applies in case of ECP:s. 

 

6.  Validation I: Be-like 1s22s2 ions  

To validate the core-valence separation procedure we first turn to the Be-like ions, in that 

these possess both 1s (core) and 2s (valence) electrons, see Table 3. The results for 1s2 and 

1s22s2 ions are summarized in Figure 3, and some are highlighted further in Table. 4 for 

comparison with literature. It is noted that the scaled coulomb hole impacts exclusively 

interactions that involve K-shell orbitals, i.e., it vanishes for the 2s-2s valence interactions in 

Be-like ions, i.e., 𝑓q = 1 in Eq. 58.  In cases where ECP:s are resorted to, so that only valence 

electrons are described explicitly, then 𝑓q = 𝑓 = 1.  

Table 3. Comparison between Hartree-Fock and regularized  
Hartree-Fock energies for Be-like 4-electron ions. 𝑓g =

&

c(3$91$3
&)$Oj$	

	and	𝑓q =

1.	Comparison with experiment [36] is provided. Z=3 is Li-. HGBS-9 basis set [37] is 
employed in this work. 
𝑍 𝐸>? 𝐸@ABC>? 𝐸@ABC>? − 𝐸>? 𝐸HI@@[29] 

3 -7.42820493 -7.49909271 -0.070887777 -0.07255 [33] 
4 -14.57302313 -14.66640254 -0.093379404 -0.0944 
5 -24.23757511 -24.34803802 -0.11046291 -0.1123 
6 -36.40849520 -36.53415089 -0.12565569 -0.1268 
7 -51.08231679 -51.22222815 -0.13991136 -0.1412 
8 -68.25771031 -68.41133480 -0.15362450 -0.1551 
9 -87.93405264 -88.10104541 -0.16699278 -0.1684 
10 -110.11101216 -110.29113952 -0.18012736 -0.1814 
11 -134.78839590 -134.98149183 -0.19309592 -0.1941 
12 -161.96608375 -162.17202590 -0.20594215 -0.2066 
13 -191.64399715 -191.86269272 -0.21869556 -0.219 
14 -223.82208249 -224.05345935 -0.23137686 -0.2313 
15 -258.50030183 -258.74430282 -0.24400098 -0.2435 
16 -295.67862767 -295.93520668 -0.25657901 -0.2556 
17 -335.35703957 -335.62615889 -0.26911931 -0.2677 
18 -377.53552205 -377.81715041 -0.28162836 -0.2797 
19 -422.21406303 -422.50817423 -0.29411120 -0.2917 
20 -469.39265318 -469.69922504 -0.30657187 -0.3037 



21 -519.07128480 -519.39029840 -0.31901359 -0.316 
22 -571.24995205 -571.58139107 -0.33143902 -0.327 
23 -625.92864995 -626.27250026 -0.34385031 -0.339 
24 -683.10737426 -683.46362352 -0.35624927 -0.351 
25 -742.78612187 -743.15475926 -0.36863739 -0.363 
26 -804.96488973 -805.34590569 -0.38101596 -0.375 
27 -869.64367570 -870.03706175 -0.39338605 -0.387 
28 -936.82247741 -937.22822599 -0.40574858 -0.398 
29 -1006.50129340 -1006.91939775 -0.41810435 -0.411 
30 -1078.68012226 -1079.11057630 -0.43045404 -0.423 
31 -1153.35896249 -1153.80176074 -0.44279825 -0.434 
32 -1230.53781297 -1230.99295047 -0.45513750 -0.446 
33 -1310.21667309 -1310.68414533 -0.46747224 -0.458 
34 -1392.39554095 -1392.87534383 -0.47980288 -0.47 
35 -1477.07441753 -1477.56654730 -0.49212976 -0.482 
36 -1564.25330054 -1564.75775377 -0.50445323 -0.494 

 

 

 
Figure 3. Electron correlation energies for 1𝑠!	(Z=1-36) and 1𝑠!2𝑠! (Z=3-36) ions as 

function of nuclear charge. Blue lines correspond to Tables 2 and 3. Orange is estimated 

from experiment [34]. 



 

Table 4. Comparison of HF and reg-HF energies for selected ions. Comparisons with 

accurate HF and explicit electron correlation calculations and estimates in the literature are 

provided. HGBS-9 basis set [37] is employed in this work.  

Helium 

Descriptions HF 𝐸414 ≈ 𝑟𝑒𝑔 − 𝐻𝐹 

This work -2.86167999 -2.90337214 

Exact: [38] −2.86167910 −2.90372438 

Hydrogen anion 

This work -0.48792973 -0.51976452 

Exact: [38] -0.48792973 −0.52775101 

Lithium mono-cation:  

This work -7.23641519 -7.28125252 

Exact: [38] −7.23641520 −7.27991341 

Lithium anion:  

This work -7.42820493 -7.49909271 

Exact:[39] -7.42820493 -7.5007512 

Beryllium:  

This work -14.57302313 -14.66640254 
Exact:[40] -14.57302313 -14.66735651 

 

To understand the remaining deviations from the exact value, it should be born in 

mind that the formalism is based on effective electrons separability and 1st order perturbation 

theory. Analogous to the V-representability of DFT, it becomes essential that the emerging 

SCF Slater determinant is a “true” match to the employed 𝐻q"::"04#;" in the sense of Eq. 11. 

Systematic deviation is expected when the ƒ~ &
j
  scaling, associated Coulomb hole for the 1s 

orbital, becomes ill-defined, see 𝐻𝑒𝐻O	and 𝐻<O	below. To clarify this, consider here the 

electron affinity of the hydrogen atom, cf. Table 4 again. We find 𝐸𝐴--. = −0.33	𝑒𝑉, 

	𝐸𝐴-
/"r9-. = +0.54	𝑒𝑉 and 𝐸𝐴-

"2s = +0.75	𝑒𝑉. While significantly improved when 



compared to the HF result, disagreement remains with the exact electron affinity. It is the 

complex three-body nature of that system that limits the reg-HF approach, i.e., the electron 

correlation renders the electron density subdivided into a more diffuse outer electron density 

and an inner more hydrogen-like contribution [41]. Indeed, the complexity of the hydride ion 

is contrasted by Lithium for which Ereg-HF(Li-) compares well with Eexact(Li-) as does Ereg-

HF(Li+) with Eexact(Li+), cf. Table 4. Analogous agreement with the exact total energy is 

obtained for the Beryllium atom, cf. Table 4 again. These findings support the notion that 

beyond hydrogen, the impact of the 1s region reduces to the 𝑓~ &
j
		scaling of the Coulomb 

hole associated with interactions with K-shell electrons, see Eq. 58, Figure 3 and Table 3 

again. We conclude that the direct impact of nuclear charge on valence-valence interactions 

becomes negligible throughout, i.e., 𝑓q = 1. 

 

7. Validation II: Small molecules and molecular ions 

Modelling in quantum chemistry is generally associated with chemical usefulness. 

Consequently, error cancellation becomes central. Here however, we compare total energies 

to assess the performance of our Coulomb hole model. Resorting to s-type gaussian basis 

functions. we employ “ghost” basis sets to saturate the description at the Hartree-Fock level. 

Throughout, our bare Hartree-Fock results should come close to the HF basis set limit, while 

the reg-HF numbers should compare to the exact values for the correlated systems thereby 

rendering any shortcomings tractable.  

Repeatedly, the efficiency of the reg-HF description of the Coulomb hole is taken to 

reflect the ability of the Slater determinantal wave function of non-pathological systems to 

properly truncate the exact wavefunction, cf. Eqs.11-13. Implicit properties that emerge from 

the stability and assumed validity of the SCF Slater determinant include both implicit 

electron-electron correlations and molecular structure. In as much as the virial augmented 



Coulomb hole constitutes a net attractive contribution to the molecular energy, 

correspondingly, a virial kinetic energy is understood to maintain the SCF molecular 

structure. For the systems studied here, the molecular structures predicted by Hartree-Fock 

theory are often reasonably close to the true values. In general, this agreement is due to the 

cancellation of two errors, i.e., dynamic correlation tends to shorten bonds while static 

correlation causes bond elongation. Assuming the V-representability to hold, and both static 

and dynamic electron correlation to be included in our dressed Coulomb hole, then 

maintaining any given molecular structure, from Hartree-Fock or other methods, must be 

associated with a repulsive “kinetic” energy penalty. Because the minimum on the Coulomb 

hole potential energy surface PES is quadratic in vicinity of its minimum, and V=-T for 

harmonic potentials, the kinetic energy cost for displacing the nuclei from the Coulomb hole 

PES minimum to that from the SCF, is exactly accounted for by the electronic virial 

augmented Coulomb hole formalism. This argument is understood to hold true also if the 

structures are obtained from experiment or from 1st principles. 

In what follows, we present molecular total energies for s-type basis sets. “Ghost” 

atoms, here even-tempered 7 gaussian s-basis functions starting with gaussian exponents 0.05 

void of nuclear charge, are included to add the necessary flexibility to the electronic degrees 

of freedom. Connection with the Hartree-Fock limit is made to test the internal consistency of 

the overall understanding. In Table 5, the straight-forward H2, LiH, and BeH+ systems are 

contrasted somewhat by Li2, for incomplete V-representability of the HF wave function, and 

by HeHO and H<O for ill-defined Z-scaling in case of the two latter. Comparisons are made 

between the analogous expressions Eqs. 50 and 51 to test the robustness of results. 

 

  



Table 5. Comparison of HF and reg-HF energies for selected molecules. The s-basis sets 
of HGBS-9 [37] is utilized in conjunction with a geometry optimized even-tempered 
ghost basis set composed of 7 s-functions. Comparisons with accurate HF and explicit 
electron correlation calculations and estimates in the literature are provided. 

System Description 𝐸>?  𝐸JIJ ≈ 𝐸@ABC>? 𝐸JIJ − 𝐸>? 

H2 
R!"! = 1.40	au 
𝑅!"#$%&' = ±0.21𝑎𝑢 

Eq. 50 
-1.13362299 

-1.17392564 -0.0403027 

Eq. 51 -1.17416125 -0.0405383 

Exact -1.1336295742 -1.1744743,44 -0.0408444 

LiH 
𝑅)*+,
-./. = 3.015	𝑎𝑢 

𝑅()"#$%&' = +0.445	𝑎𝑢 
𝑅!"#$%&' = −0.275𝑎𝑢 

Eq. 50 
-7.98713813 

-8.06559196 -0.0784538 

Eq. 51 -8.06846076 -0.0813226 

Exact -7.987364645,46 -8.070547347 -0.0831827 

BeH+ 

𝑅#$"% = 2.464	𝑎𝑢 
𝑅#$"&'()* = 0.286	au 
𝑅%"&'()* = −0.208	𝑎𝑢 

Eq. 50 
-14.85351869 

-14.93885215 -0.0853334 

Eq. 51 -14.94167398 -0.0881552 

Exact -14.85417748 -14.94182249 -0.087645 

Li2 
𝑅+,"+,
-./ = 5.05	𝑎𝑢 

A 
𝑅()"#$%&' = ±0.22𝑎𝑢 

B 
𝑅()"#$%&'(𝐼) = 0.11𝑎𝑢 
𝑅()"#$%&'(𝐼𝐼) = 0.33𝑎𝑢 

 

A: Eq. 50 
-14.87148903 

-14.98656025 -0.1150712 

A: Eq. 51 -14.98884386 -0.1173548 

B: Eq. 50 
-14.87153654 

-14.986350827 -0.1148143 

B: Eq. 51 -14.988607052 -0.1170706 

Exact -14.8715628545 −14.995447,50 
-0.1238 

-0.122451 

HeH+ 

𝑅%$"% = 1.455	𝑎𝑢 
𝑅%$"&'()* = 0.2275𝑎𝑢 
𝑅%"&'()* = −0.2275𝑎𝑢 

Eq. 50; Z = 2 

-2.93307816 

-2.96755757 -0.0344794 

Eq. 51; Z = 2 -2.96792233 -0.0348442 

Eq. 50; Z = \
3
 -2.97893302 -0.0458549 

Eq. 51; Z = \
3
 -2.97929778 -0.0462196 

Exact -2.9331032746 -2.9786907452 -0.0455875 

H3+ 

𝑅!"% = 1.65	𝑎𝑢 
𝑅!"#$%&' = ±0.23	𝑎𝑢 

Along edges of triangle and in 
center. (Gaussian exponents > 

500 omitted) 

Eq. 50; Z = 1 

-1.30034028 

-1.33098024 -0.0306400 

Eq. 51; Z = 1 -1.33162052 -0.0312802 

Eq. 50; Z = \
]
 --1.34078791 -0.0404476 

Eq. 51; Z = \
]
 -1.34142819 -0.0410879 

Eq. 50; Z = 3
\
 -1.34557333 -0.04523305 

Eq. 51; Z = 3
\
 -1.34621361 -0.0458733 

Exact -1.3004001445,46 -1.34386353,54 -0.043463 

 

  



a. On the H2, LiH, and BeH+ two- and four-electrons systems 

Indeed, in as much as electron-nucleus cusp effects are negligible in the valence beyond He, 

i.e., 𝑓 = 1 for Li 2s and Be 2s, in case of hydrogen where Z=1, infers 𝑓 ≈ 0.987	, which is 

deemed close to the generic 𝑓 = 1 for valence shells, thus partly explaining the near-perfect 

results for H2, LiH, and BeH+. The numerical agreements are taken to suggest that the virial 

of the systems does indeed include both dynamic and static electron correlation contributions.  

 
b. On the Li2 and LiBe+ six-electrons systems 

The V-representability is commonly understood to be contested somewhat in the 6-electrons 

system Li2. This might be taken to explain the reg-HF total energy underestimation by ~0.20 

eV, see Table 5 again. Inherently difficult to resolve for several reasons, attempts at 

estimating the non-dynamic electron correlation by employing CASSCF arrive at 0.71 eV 

[55]. The latter number would constitute an overestimate, however, as the variational 

CASSCF method cannot avoid but to also include correlation contributions that are 

nominally considered dynamic. Still, this would beg to imply that static correlation is to a 

non-negligible extent accounted for by our exact-exchange reg-HF method. A contrasting 

aspect to Li2 is provided from studying the LiBe+ molecular ion, see Table 6. Fortuitous 

agreement between the CCSDT [56] and HF has been reported for the binding energy, while 

reg-HF undershoots by ~0.2 eV.  

  



Table 6. Comparison of HF, reg-HF and CCSDT [56] results for LiBe+.  Valence only– 

reg-HF includes only the valence electrons contribution to the correlation energy.  

 
 
 

LiBe+ 
𝑅+,"#$ = 4.919	𝑎𝑢 
𝑅()"#$%&'(𝐼) = 0.11𝑎𝑢 
𝑅()"#$%&'(𝐼𝐼) = 0.33𝑎𝑢 
𝑅*+"#$%&'(𝐼) = −0.11𝑎𝑢 
𝑅*+"#$%&'(𝐼𝐼) = −0.33𝑎𝑢 

 

 
 

Method Total energy (Ha) De (eV) 

HF -21.83267045 0.63 eV 

CCSDT [56] - 0.605 

reg-HF 
Eq. 50 

Eq. 51 

Valence only – reg-HF 

Eq. 50 

Eq. 51 

 

-21.95919862 

-21.96272892 

 

-21.85882621 

-21.85881364 

 

0.314 

0.410 

 

0.582 

0.582 

Be Valence only– reg-HF -14.60101656 - 

Li+ Valence only– reg-HF  same as HF (-7.23641519) - 

 

Here, agreement between the different methods is reached by omitting the core-core and 

core-valence contributions to the reg-HF energy, while retaining the valence-only 

contribution, cf. Table 6. This infers that the cause for the a priori energy difference  

originates from the 1st order contribution to the energy, i.e., disallowing response in the wave 

function owing to the core-valence correlation, rather than any absence of static correlation 

description. This supports the relevance of replacing the K-shells by ECP:s. 

 

c. Possible K-shell chemistry – 𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛	𝑜𝑓	𝐿𝑖O, 𝐻𝑒𝐻O and 𝐻<O two-electron 

systems 

The complex interplay between electron-nucleus and electron-electron cusps, resulting in Z-

screened K-shell Coulomb holes, is a topic on its own. In chemistry, it is often deemed of less 

importance as practical calculations commonly resort to accurate valence-only descriptions 

(cf. section 6.b and Table 6) as well as ECP:s. For systems like	HeHO and H<O, however, 

dealing with this issue cannot be avoided. The kinship of these three systems (three protons, 2 

electrons) was discussed by Banyard et al [57,58]. We note in bypassing how close the exact 



electron correlation energy 𝐸01//"2304come for these systems, i.e., -0.04345 Ha (𝐿𝑖O),  -0.04559 

Ha (𝐻𝑒𝐻O), -0.043463 Ha (𝐻<O) . Reg-HF predicting 97% of the exact electron correlation 

energy 𝐸01//"2304of Li+, see Table 4, is deemed satisfactory. Less so for the exotic 𝐻𝑒𝐻O, where 

reg-HF  (Z=2)  predicts 75-77%  of 𝐸01//"2304 . For this system however, the interplay between 

short-range electron-nucleus and electron-electron interactions renders the scaling procedure 

ill-defined. This is because the 1s2 orbital in a “unified-atom” sense [59] comes out 

significantly larger than that of Helium 1s2, thus not reflecting the bare charge of the latter. It 

is gratifying to note that ad hoc interpolation between Z=1 and Z=2 by computing reg −

HF		(𝑍":: = 1.5) provides 100.5-101.5% of 𝐸01//"2304. Elaborating further on the inferred exotic 

K-shell “unified-atoms” chemistry, finally consider the two-electron three-center cluster bond 

in equilateral triangular 𝐻<O.	Analogous, yet complementary to the 𝐻𝑒𝐻O	case, here too the 

interplay between electron-nucleus and electron-electron interactions is understood to be 

anomalous. Indeed, it suggests the screened Coulomb hole to exhibit 𝑍":: < 1. While reg-HF  

(Z=1) captures to some 70% of 𝐸01//"2304, cf. Table 5 again, it is noted that reg-HF  (𝑍":: =
<
K
) 

	and reg-HF  (𝑍":: =
!
<
) predict 93-94% and 104-106%, respectively. This feature is 

understood to have bearing on the modelling of solid and liquid hydrogen at high pressures 

[60]. 

 

8. Summary and Conclusions 

The notion that the electron correlation energy conceptually comprises an inherent property 

of Hartree-Fock theory was developed. 

1. A self-interaction-free exact-exchange method that accurately estimates 𝐸01// 

emerges as 1st order correction to the	Hartree − Fock energy was deduced and 

validated. 



2. Building on the virial theorem, the Coulomb hole augmented effective Hamiltonian is 

valid on condition of stability of the SCF wave function. Consequently, the formalism 

evolved from damping out the short-range contribution to the electron repulsion 

operator, replacing it by the corresponding correlation kinetic energy penalty.  

3. The coupling of electron-nucleus and electron-electron interactions in the K-shell, 

absent when Effective Core Potentials are employed, was accounted for by scaling the 

Coulomb holes that explicitly involve 1s orbitals by the proximal nuclear charges. 

4. Hooke’s atom was employed to parametrize the screening of the dressed coulomb 

hole by the bare nuclear charges in cases of interactions with K-shell electrons.  

5. For 1𝑠!systems, consistency was demonstrated in case of (a) Hooke’s atom for a 

range of different force constants, and (b) He-like ions for Z=1-36.  

6. For the valence-valence interactions other than among K-shell orbitals, the screening 

of the Coulomb hole owing to the short-range electron-nucleus interaction vanishes as 

validated by the Be-like ions Z=3-36  1𝑠!2𝑠!	systems, as well as by the molecular 

LiH, BeH+, Li2 and LiBe+. 

7. A chemistry associated exclusively with K-shell orbitals was briefly discussed based 

mainly on results for HeH+ and H3+. Fractional charge augmenting the Coulomb hole 

was inferred to better represent the complex correlation hole in hydrogen clusters and 

high-pressure metallic hydrogen.  

8. The procedure for transferring the electron correlation property from the wave 

function into the electron repulsion operator is applicable to the same class of systems 

as DFT. Indeed, it may serve as inspiration in the development of new and improved 

classes of self-interaction-free exact-exchange and hybrid functionals.  

9. The handy Laplace and Fourier transforms of the virial augmented regularized 

electron repulsion operator ensure usefulness irrespective of whether gaussian or 



plane-way bases – or a combination of the two – are used for spanning the electronic 

orbitals. This is understood to facilitate implementations for solid state applications. 

10. While this regularized Hartree-Fock method is found to perform well overall, still, 

literature [12,29] estimates	𝐸01//(𝐻𝑒 − 𝑙𝑖𝑘𝑒) = 1.28	eV	 for 𝑍 → ∞, while reg-HF 

predicts 1.38 eV. Analogously, 𝐸01//(𝐻𝑜𝑜𝑘𝑒) = 1.35	eV	was	deduced for 𝜔 →

∞	[61], while reg-HF predicts 1.25 eV. This is explained by the perturbative nature of 

the regularized Hartree-Fock approach.  

The success of the reg-HF approach is attributed to better obeying the Heisenberg 

indeterminacy principle [2], a property that is exclusive to the exact wave function. It is 

achieved by disallowing the representation of the electron repulsion operator to be more fine-

grained than the corresponding representation of the two-particle density. 

 

Computational details 

Mathematica [62] was used for the plots in Figures 1 and 2. A MATLAB [63] code was 

written to solves for Roothaan’s equations [11], as well as for the present regularized Hartree-

Fock scheme. Figure 3 was made in Microsoft Excel. 
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