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Abstract

We study the ground state solutions for the following p\&q-Laplacain equation \[ \left\{ \begin{array}{ll} -\Delta pu-\Delta -

qu+V(x) (|u|ˆ{p-2}u+|u|ˆ{q-2}u)=\lambda K(x)f(u)+|u|ˆ{qˆ*-2}u,˜x\in\RˆN, \\ u\in Wˆ{1,p}(\RˆN)\cap Wˆ{1,q}(\RˆN),

\end{array} \right. \] where $\lambda>0$ is a parameter large enough, $\Delta ru = \text{div}(|\nabla u|ˆ{r-2}\nabla u)$
with $r\in\{p,q\}$ denotes the $r$ Laplacian operator, $1
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Abstract. We study the ground state solutions for the following p&q-Laplacain equation{
−∆pu−∆qu+ V (x)(|u|p−2u+ |u|q−2u) = λK(x)f(u) + |u|q∗−2u, x ∈ RN ,
u ∈W 1,p(RN ) ∩W 1,q(RN ),

where λ > 0 is a parameter large enough, ∆ru = div(|∇u|r−2∇u) with r ∈ {p, q} denotes
the r-Laplacian operator, 1 < p < q < N and q∗ = Nq/(N − q). Under some assumptions
for the periodic potential V (x), weight function K(x) and nonlinearity f(u) without the
Ambrosetti-Rabinowitz condition, we show the above equation has a ground state solution.
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principle; critical; Ambrosetti-Rabinowitz condition.

2010 Mathematics Subject Classification : Primary 35A15, 35B09, 35J62, 58E05.

1. Introduction and Main Results

In this article, we consider the ground state solution to the p&q-Laplacain equation{
−∆pu−∆qu+ V (x)(|u|p−2u+ |u|q−2u) = λK(x)f(u) + |u|q∗−2u, x ∈ RN ,
u ∈ W 1,p(RN) ∩W 1,q(RN),

(1.1)

where λ > 0 is a parameter large enough, ∆ru = div(|∇u|r−2∇u) with r ∈ {p, q} denotes
the r-Laplacian operator, 1 < p < q < N and q∗ = Nq/(N−q). Let’s state the assumptions
on V (x), K(x) and f(u) as follows

(V ) V ∈ C(RN) is ZN -periodic with infx∈RN V (x) > 0;

(K) K ∈ L∞(RN) and infx∈RN K(x) , K∞ = lim|x|→∞K(x) > 0;

(f1) f ∈ C0(R,R) with f(t) ≡ 0 for all t ≤ 0 and f(t)/tp−1 → 0 as t→ 0+;
(f2) there are C0 > 0 and s ∈ (q, q∗) such that |f(t)| ≤ C0(1 + |t|s−1) for all t > 0;

(f3) limt→+∞ F (t)/tq = +∞, where F (t) =
∫ t

0
f(s)ds;

(f4) the map t 7→ f(t)/tq−1 is increasing on (0,∞).

Eq. (1.1) usually arises as the stationary version of a general reaction-diffusion equation

∂tu = div[D(u)∇u] + f(x, u), x ∈ RN , (1.2)

where u describes a concentration, D(u) , div(|∇u|p−2+|∇u|q−2) is the diffusion coefficient
and f(x, u) is the reaction term related to source and loss mechanisms. There are several

0Email address: liejunshen@163.com
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2 CRITICAL P&Q-LAPLACAIN EQUATION

applications in biophysics, plasma physics and chemical reaction design, see [5, 16, 4, 7]
and the references therein.

To deal with Eq. (1.1), for r ∈ {p, q}, we let W 1,r(RN) = {u ∈ Lr(RN) : |∇u| ∈ Lr(RN)}
denote the usual Sobolev space equipped with the norm

‖u‖1,r =

(∫
RN

(|∇u|r + |u|r)dx
) 1

r

, ∀u ∈ W 1,r(RN).

Define the space

W 1,r
V (RN) =

{
u ∈ D1,r(RN) :

∫
RN
V (x)|u|rdx < +∞

}
,

where D1,r(RN) is the closure of C∞0 (RN) with respect to ‖ · ‖D1,r(RN ) = (
∫
RN |∇ · |

rdx)1/r.

Let’s introduce the norm on W 1,r
V (RN) as follows

‖u‖V,r =

(∫
RN

(|∇u|r + V (x)|u|r)dx
) 1

r

, ∀u ∈ W 1,r
V (RN).

Since V (x) ∈ C(RN) is ZN -periodic with infx∈RN V (x) > 0 by (V ), one shall easily observe
that ‖ · ‖V,r is equivalent to ‖ · ‖1,r on W 1,r

V (RN). Hence, E , W 1,p
V (RN) ∩W 1,q

V (RN) is the
natural work space in this paper endowed with the norm

‖u‖ = ‖u‖V,p + ‖u‖V,q, ∀u ∈ E.
We will establish the existence of ground state solutions for Eq. (1.1) by looking for critical
points of the associated functional

JλK(u) =
1

p
‖u‖pV,p +

1

q
‖u‖qV,q − λ

∫
RN
K(x)F (u)dx− 1

p∗

∫
RN
|u|p∗dx, ∀u ∈ E.

Combing (K), (f1)− (f2) and Lemma 2.1 below, it’s simple to verify that JλK ∈ C1(E,R).
Similar to [23, 5], the critical points of JλK are in fact the (weak) solutions of Eq. (1.1).
We say that u ∈ E is a (weak) solution of Eq. (1.1) if for any ψ ∈ E there holds

0 =

∫
RN

[
|∇u|p−2∇u∇ψ + |∇u|q−2∇u∇ψ + V (x)|u|p−2uψ + V (x)|u|q−2uψ

]
dx

− λ
∫
RN
K(x)f(u)ψdx−

∫
RN
|u|p∗−2uψdx.

To search for the ground state solutions, let’s introduce the ground state energy and Nehari
manifold associated to JλK ,

mλ
K , inf

u∈NλK
JλK(u),

where
N λ
K =

{
u ∈ E\{0} : 〈(JλK)′(u), u〉 = 0

}
.

In recent years, there are extensive bibliographies in the study of the quasilinear equation
of the p&q-Laplacian type, see e.g. [5, 10, 11, 13, 13, 20, 1, 7, 25, 26, 8, 16, 24, 4, 12, 22,
19, 21, 9, 3, 17, 19, 2] and the references therein.
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In [5], Cherfils-Il’yasov obtained the existence and nonexistence results for the problem{
−∆pu−∆qu+ v(x)|u|p−2u+ w(x)|u|q−2u = λf(x, u), x ∈ Ω,
u = 0 on ∂Ω,

Subsequently, authors in [16] exploited the Morse theory to show that the problem{
−∆pu− µ∆qu = f(x, u), x ∈ Ω,
u = 0 on ∂Ω,

has at least three nontrivial solutions, where the classic Ambrosetti-Rabinowitz condition
((AR) condition in short) is replaced by

(F ) if σ(x, t) , f(x, t)t− qF (x, t), then there exists 0 ≤ % ∈ L1(Ω) such that

σ(x, t) ≤ σ(x, s) + %(x) for a.e. x ∈ Ω, all 0 ≤ s ≤ t or all t ≤ s ≤ 0.

In [11], He and Li considered the existence and nonexistence of nontrivial solutions for
the following p&q-Laplacian problem{

−∆pu−∆qu+m|u|p−2u+ n|u|q−2u = g(x, u), x ∈ RN ,
u ∈ D1,p(RN) ∩D1,q(RN),

where m,n > 0 are constants, N ≥ 3 and 1 < p < q < N , g(x, u)/uq−2 tends to a positive
constant l as u→ +∞ satisfying the following (AR) condition

(AR) there exists a constant µ ∈ (q, q∗) such that

0 < µG(x, t) = µ

∫ t

0

g(x, s)ds ≤ g(x, t)t, ∀(x, t) ∈ RN × R,

which was used in some literatures, see [7, 2] for example.
In [4], by introducing the coercive assumptions on a(x) and b(x), the authors proved{

−∆pu−∆qu+ a(x)|u|p−2u+ b(x)|u|q−2u = f(x, u), x ∈ RN ,
u ∈ D1,p(RN) ∩D1,q(RN),

admits a nontrivial solution, where f(x, t) is subcritical and satisfies (F ) for % ∈ L1(RN).
Especially, Figueiredo [7] investigated the existence results for Eq. (1.1) with K(x) ≡ 1 by
imposing the (AR) condition on f .

Inspired by the above mentioned works and their references therein, we try to obtain the
ground state solution to the critical p&q-Laplacain equation without the (AR) condition.
It’s worthy pointing here that the condition (F ) is also unnecessary in this paper.

We obtain the following main result.

Theorem 1.1. Let (V ), (K) and (f1)−(f4) hold, then there is a constant λ∗ > 0 such that
Eq. (1.1) has a ground state solution u ∈ E satisfying JλK(u) = mλ

K = infv∈E\{0}maxt>0 J
λ
K(tv)

for all λ > λ∗.

Remark 1.2. Our results generalize [5, 16, 4, 2] to the critical case. Because of the absence
of the condition (F ), we also improve and replenish the results in [16, 7]. Since we require
that f is only continuous, the classical Nehari manifold arguments exploited in [11, 1] do
not work in our context.
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Motivated by the results in [11], there exists a general form on Theorem 1.1 if K(x)f(u) is
replaced by f(x, u) in Eq. (1.1). Precisely, we suppose that f(x, u) satisfies the conditions

(F1) f : RN ×R→ R satisfies the Caratheodory conditions, i.e. for a.e. x ∈ RN , f(x, t) is
continuous in t ∈ R and for each t ∈ R, f(x, t) is Lebesgue measurable with respect
to x ∈ RN ; f(x, t) ≥ 0, for t ≥ 0 and f(x, t) ≡ 0, for t < 0 and all x ∈ RN ;

(F2) f(x, t) = o(tp−1) as t→ 0 uniformly in x ∈ RN , there are C0 > 0 and s ∈ (q, q∗) such
that |f(x, t)| ≤ C0(1 + |t|s−1) for all (x, t) ∈ RN × R;

(F3) the map t 7→ f(x, t)/tq−1 is increasing on (0,∞) for each x ∈ RN ;
(F4) there exists a function f(t) ∈ C(R) with f(x, t) ≥ f(t) for every (x, t) ∈ RN ×R and

meas{x ∈ RN : f(x, t) > f(t)} > 0 for any t > 0 such that lim|x|→+∞ f(x, t) = f(t)
uniformly in bounded t.

By means of the approaches used in Theorem 1.1, we can derive

Corollary 1.3. Assume that (V ) and (F1)− (F4), then there is a constant Λ > 0 such that{
−∆pu−∆qu+ V (x)(|u|p−2u+ |u|q−2u) = λf(x, u) + |u|q∗−2u, x ∈ RN ,
u ∈ W 1,p(RN) ∩W 1,q(RN),

possesses a ground state solution for all λ > Λ.

Remark 1.4. One can easily get the proof of Corollary 1.3 after some slight modifications
in Theorem 1.1, so we omit the detail proof. Compared with [11], we remove the assumption

(F5) f ∈ C1(R) and (q − 1)f(t) ≤ f
′
(t)t for all t > 0.

We note that, to the best knowledge of us, the result in Theorem 1.1 seems to be new.
The proof of Theorem 1.1 will be obtained by exploiting variational procedures. The main
difficulties in the proof can be stated as follows. (I) Because f(t) does not satisfy the (AR)
condition, we have to obtain the boundedness of the (C) sequence in an unusual way. (II)
The lack of compactness due to the critical Sobolev exponent and the whole space RN urges
us to take some delicate analysis. (III) the Nehari manifold technique, which was utilized
in [11], is no longer applicable since f(t) ∈ C0 leads to that N λ

K is not a C1-manifold. As
we will see later, the above facts prevent us applying the variational method in a standard
way to prove Theorem 1.1.

To complete this section, we sketch our proof of Theorem 1.1.
Firstly, we’ll verify that the functional JλK has a Mountain-Pass geometry around 0 ∈ E

and then the (C) sequence {un} ⊂ E can be obtained. To show that {un} is bounded, we
make full use of the concentration-compactness principle developed by P.-L. Lions [15] to
get across this desired result. In the meanwhile, we have to pull the Mountain-Pass energy
down to some critical value because of the appearance of the critical term. Secondly, since
JλK and (JλK)′ are not translation-invariant, we study the existence of ground state solution
of the limiting problem{

−∆pu−∆qu+ V (x)(|u|p−2u+ |u|q−2u) = λK∞f(u) + |u|q∗−2u, x ∈ RN ,
u ∈ W 1,p(RN) ∩W 1,q(RN),

(1.3)

which plays a significant role in this paper. To this end, we obtain the following result



CRITICAL P&Q-LAPLACAIN EQUATION 5

Proposition 1.5. Suppose that (f1)− (f4), then Eq. (1.3) admits a ground state solution
for some sufficiently large λ > 0.

Finally, with the help of Proposition 1.5 and the Non-Vanishing in Lemma 2.2 below, we
can finish the proof of Theorem 1.1.

The article is organized as follows. In Section 2, we introduce some preliminary results
and present the proof of Theorem 1.1 in Section 3.

Notations. Throughout this paper we shall frequently use the following notations:

• C and Ci (i = 1, 2, · · · ) for various positive constants;
• Ls(RN) (1 ≤ s ≤ +∞) is the usual Lebesgue space with the standard norm |u|s;
• The best Sobolev constant

S , {|∇u|qq : u ∈ D1,q(RN) and |u|q∗ = 1}; (1.4)

• “ → ” and “ ⇀ ” denote the strong and weak convergence in the related function
space, respectively;
• For any ρ > 0 and any x ∈ RN , Bρ(x) , {y ∈ RN : |y − x| < ρ}.

Let (X, ‖·‖X) be a Banach space with its dual space (X−1, ‖·‖∗), and Ψ be its functional
on X. The Cerami sequence at a level c ∈ R ((C)c sequence in short) corresponding to Ψ
assumes that Ψ(xn)→ c and (1 + ‖xn‖X)‖Ψ′(xn)‖∗ → 0 as n→∞, where {xn} ⊂ X.

2. Preliminaries

In this section, we introduce some technical lemmas which will be used later.

Lemma 2.1. (see e.g. [1]) The work space E is continuously embedded in Ls(RN) for any
s ∈ [p, q∗] and compactly embedded in Lsloc(RN) for all s ∈ [1, q∗).

As a direct consequence of Lemma 2.1, for all u ∈ E, there exists a constant C > 0 such
that

|u|s ≤ C‖u‖, where p ≤ s ≤ q∗. (2.1)

It is easy to see that the following lemmas hold, see e.g. [15] for details.

Lemma 2.2. Let {ρn} ⊂ L1(RN) be a bounded sequence and ρn ≥ 0, then there exists a
subsequence, still denoted by ρn, such that one of the following two possibilities occurs:

(i) (Vanishing) limn→∞ supy∈RN
∫
BR(y)

ρndx = 0 for all R > 0;

(ii) (Non-Vanishing) there are β > 0 and R < +∞ such that

lim
n→∞

sup
y∈RN

∫
BR(y)

ρndx = β.

Lemma 2.3. Let 1 < τ ≤ +∞, 1 < s ≤ +∞ with τ ∗ = Nτ/(N − τ) if τ < N . Suppose
that {un} is bounded in Ls(RN), {|∇un|} is bounded in Lτ (RN) and

lim
n→∞

sup
y∈RN

∫
BR(y)

|un|sdx = 0.

Then un → 0 in Lα(RN) for α ∈ (s, τ ∗).
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The following critical point theorem established by Costa and Miyagaki in [6] will be
used to search for the existence of solutions.

Theorem 2.4. Let (X, ‖ · ‖X) be a real Banach space and assume that Ψ ∈ C1(X,R)
satisfies the condition

max{Ψ(0),Ψ(e)} ≤ α < inf
‖u‖X≤ρ

Ψ(u)

for some α > 0, ρ > 0 and some e ∈ E with ‖e‖X > ρ. Let

c = inf
γ∈Γ

max
t∈[0,1]

Ψ(γ(t)),

where

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0 and γ(1) = e},
then there exists a (C)c sequence {un} for Ψ.

3. Proof of Theorem 1.1

In this section, we present the proof of Theorem 1.1 in detail. Firstly, we shall discuss
the conditions (f1)− (f4): By (f1), one has

f(t) = f(t+), ∀t ∈ R, (3.1)

where t+ = max{0, t}. Using (f4), there holds,

0 < F (t) =

∫ t

0

f(s)ds =

∫ t

0

f(s)

sq−1
sq−1ds ≤ f(t)

tq−1

∫ t

0

sq−1ds

≤ 1

q
f(t)t, ∀t ∈ (0,+∞). (3.2)

We claim that

f(t)t− qF (t) is increasing on t ∈ (0,+∞). (3.3)

Indeed, for all 0 < t1 < t2 < +∞, by (f4), one has

qF (t2)− qF (t1) = q

∫ t2

t1

f(s)

sq−1
sq−1ds ≤ q

f(t2)

tq−1
2

∫ t2

t1

sq−1ds

=
f(t2)

tq−1
2

(tq2 − t
q
1) ≤ f(t2)t2 − f(t1)t1

indicating the desired result. Combing (f1)− (f2) and (3.2), for every ε > 0 and s ∈ (q, q∗),
there exists a constant Cε > 0 such that

0 ≤ max{f(t)t, F (t)} ≤ ε|t|p + Cε|t|s, ∀t ∈ R. (3.4)

Next, we verify that the variational functional JλK possesses a Mountain-Pass geometry.

Lemma 3.1. Suppose that (K) and (f1)− (f3), for each fixed λ > 0, JλK satisfies
(i) there exist constants α, ρ > 0 such that JλK(u) ≥ α with ‖u‖ = ρ;
(ii) there exists a function e ∈ E with ‖e‖ > ρ such that JλK(e) < 0.



CRITICAL P&Q-LAPLACAIN EQUATION 7

Proof. (i) Since K(x) ∈ L∞(RN), for all u ∈ E and ε = 1
2|K|∞ > 0, by (2.1), one has

JλK(u) ≥ 1

q
‖u‖qV,q +

1

2p
‖u‖pV,p − C|u|

s
s − C|u|

q∗

q∗

≥ min

{
1

q
,

1

2p

}
(‖u‖qV,q + ‖u‖pV,p)− C‖u‖

s − C‖u‖q∗

≥ min

{
1

q
,

1

2p

}
(‖u‖pV,q + ‖u‖pV,p)− C‖u‖

s − C‖u‖q∗

≥ min

{
1

q
,

1

2p

}
C−1
p ‖u‖p − C‖u‖s − C‖u‖q

∗
, (3.5)

if ‖u‖V,q ≤ ‖u‖ ≤ 1 in the third inequality, where we have used the following fact

(a+ b)p ≤ Cp(a
p + bp), ∀a, b > 0.

Because p < s < q∗, one can find a small ρ ∈ (0, 1) in (3.5) to get the Point (i).
(ii) Choosing v ∈ E\{0} with ‖v‖ = 1, by (3.4), we have

JλK(tv) ≤ tq

q
+
tp

p
− λ

∫
RN
K(x)F (tv)dx− tq

∗

q∗
|v|q

∗

q∗

→ −∞ as t→ +∞,

where we have used (2.1) and (3.1). By taking e , t0v with a sufficiently large t0 > 0, one
can obtain the Point (ii). �

By Lemma 3.1 and Theorem 2.4, a (C) sequence of the functional JλK at the level

cλK , inf
γ∈Γ

max
t∈[0,1]

JλK(γ(t)) ≥ α > 0 (3.6)

can be constructed, where the set of paths can be defined as

ΓλK ,
{
γ ∈ C

(
[0, 1], E

)
: γ(0) = 0, JλK(γ(1)) < 0

}
.

In other words, there exists a sequence {un} ⊂ E such that

JλK(un)→ cλK and (1 + ‖un‖)‖(JλK)′(un)‖∗ → 0 as n→∞. (3.7)

Motivated by [23, Theorem 4.1], we can obtain the following result.

Lemma 3.2. Suppose that (K) and (f1)− (f3), then

cλK = mλ
K = dλK , inf

u∈E\{0}
max
t>0

JλK(tu),∀λ > 0. (3.8)

Proof. The proof is standard, we present it for the reader’s convenience. For all u ∈ N λ
K\{0}

we deduce that ξ(t) , JλK(tu) > 0 if t > 0 is small enough and ξ(t) < 0 if t > 0 is large
enough. By using (f4), there exists a unique tu > 0 such that tuu ∈ N λ

K . Moreover, the set
N λ
K separates E into two components. Combing (f1) and (f2), the component containing

the origin also contains a small ball around the origin. Since 〈(JλK)′(tuu), tuu〉 ≥ 0 for every
t ∈ [0, tu], J

λ
K(u) ≥ 0 for all u in this component. Thereby, every γ ∈ ΓλK has to cross N λ

K
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and mλ
K ≤ cλK . Using the fact that ξ(t) < 0 if t > 0 is large enough for all u ∈ E\{0}, one

has cλK ≤ dλk . We finish the proof of this lemma by verifying dλK ≤ mλ
K .

To show dλK ≤ mλ
K , we claim that

ptq − qtp + q − p ≥ 0 and qtq
∗ − q∗tq + q∗ − q ≥ 0, ∀t > 0, (3.9)

and

gu(t) ,
1− tq

q
f(u)u+ F (tu)− F (u) ≥ 0, ∀t > 0 and u ∈ E\{0}. (3.10)

Obviously, (3.9) is clear. It’s easy to compute that

∂

∂t
gu(t) = f(tu)u− tq−1f(u)u = tq−1uq

[
f(tu)

(tu)q−1
− f(u)

uq−1

]
{
≥ 0, if t ∈ [1,+∞),
≤ 0, if t ∈ (0, 1],

where we have used (f4) and (3.1). Therefore, gu(t) is decreasing on t ∈ (0, 1] and increasing
on t ∈ [1,+∞) for all u ∈ E\{0}. Then, gu(t) ≥ mint>0 gu(t) = gu(1) = 0. Combing (3.9)
and (3.11), we have

JλK(u)− JλK(tu)− 1− tq

q
〈(JλK)′(u), u〉

=
ptq − qtp + q − p

pq

∫
RN

[
|∇u|p + V (x)|u|p

]
dx+

qtq
∗ − q∗tq + q∗ − q

qq∗

∫
RN
|u|q∗dx

+λ

∫
RN
K(x)

[
1− tq

q
f(u)u+ F (tu)− F (u)

]
dx

≥ 0. (3.11)

Given a u ∈ N λ
K , by (3.11), we can conclude that JλK(u) ≥ JλK(tu) for all t > 0 which yields

that dλK ≤ mλ
K . The proof is complete. �

Because of the appearance of the critical term, we have to obtain the following result.

Lemma 3.3. Suppose that (K) and (f1)− (f3), then limλ→+∞ c
λ
K = 0. In particular, there

exists a constant λ∗ > 0 such that

cλK < c∗ ,
q∗ − q
q∗q

S
q∗
q∗−q , ∀λ > λ∗ (3.12)

Proof. In view of the proof of Lemma 3.1-(ii), one derives limt→+∞ J
λ
K(tv) = −∞ and then

there is a constant tλ > 0 such that maxt>0 J
λ
K(tv) = JλK(tλv), So, 〈(JλK)′(tλv), tλv〉 = 0,

tqλ‖v‖
q
V,q + tpλ‖v‖

p
V,p = λ

∫
RN
K(x)f(tλv)tλvdx+ tq

∗

λ

∫
RN
|v|q∗dx. (3.13)

Dividing tqλ on both sides of (3.13), then we can apply (f5) to show that tλ is bounded with
respect to λ. Up to a subsequence if necessary, there is a constant t0 ∈ [0,+∞) such that
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tλ → t0 as λ→ +∞. We claim that t0 ≡ 0. If not, we can suppose that t0 > 0 and then

lim
λ→+∞

(
λ

∫
RN
K(x)f(tλv)tλvdx+ tp

∗

λ

∫
RN
|v|p∗dx

)
= +∞

which together with (3.13) yields a contradiction. Hence, t0 ≡ 0 holds, that is, limλ→+∞ tλ →
0. Let γ0(t) = tv, then γ0 ∈ ΓλK and by (3.1),

0 < cλK ≤ max
t>0

JλK(tv) = JλK(tλv) ≤ tqλ
q

+
tpλ
p
→ 0 as λ→ +∞

showing the desired result. The proof is complete. �

Lemma 3.4. Suppose that (K) and (f1)− (f4), then every sequence {un} ⊂ E satisfying
(3.7) is bounded in E for all λ > λ∗.

Proof. Let {un} ⊂ E be a sequence satisfying (3.7). In view of (3.2), one has

cλK + on(1) = JλK(un)− 1

q
〈(JλK)′(un), un〉

=
q − p
pq

∫
RN

[
|∇un|p + V (x)|un|p

]
dx+

λ

q

∫
RN
K(x)

[
f(un)un − qF (un)

]
dx

+
q∗ − q
qq∗

∫
RN
|un|q

∗
dx

≥ q − p
pq
‖un‖pV,p

showing that {‖un‖V,p} is bounded. To end the proof, it suffices to conclude that {‖un‖V,q}
is bounded. Arguing it by the contradiction, we can suppose that ‖un‖V,q →∞ as n→∞.
Set vn = un/‖un‖V,q, then ‖vn‖V,q ≡ 1 for each n ∈ N. By Lemma 2.2, one of the following
alternatives occurs:

Vanishing: limn→∞ supy∈RN
∫
BR(y)

|vn|qdx = 0 for all R > 0;

Non-Vanishing: there are β > 0 and R < +∞ such that

lim
n→∞

sup
y∈RN

∫
BR(y)

|vn|qdx = β.

In what follows, we’ll verify that {vn} satisfies neither Vanishing nor Non-Vanishing. This
is a contradiction. Thus, {‖un‖V,q} is bounded.

If the Vanishing occurs, then vn → 0 in Ls(RN) for every s ∈ (q, q∗) by Lemma 2.3. Let

t0 , S
q∗

q(q∗−q) > 0, then we can apply (K) and (f1)− (f2) to obtain

lim
n→∞

λ

∫
RN
K(x)F (t0vn)dx = 0, ∀λ > 0. (3.14)

Proceeding as the proof of Lemma 3.2, there is a constant tn ∈ (0, 1) such that JλK(tnun) =
maxt∈(0,1) J

λ
K(tun) and 〈(JλK)′(tnun), tnun〉 = 0. For some sufficiently large n ∈ N, t0

‖un‖V,q
∈
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(0, 1) since ‖un‖V,q →∞ as n→∞. By (3.3) and (3.7), we have

JλK(t0vn) = JλK
( t0
‖un‖V,q

un
)
≤ max

t∈(0,1)
JλK(tun) = JλK(tnun) = JλK(tnun)− 1

q
〈(JλK)′(tnun), tnun〉

=
q − p
pq

tpn

∫
RN

[
|∇un|p + V (x)|un|p

]
dx+

λ

q

∫
RN
K(x)

[
f(tnun)tnun − qF (tnun)

]
dx

+
q∗ − q
qq∗

tq
∗

n

∫
RN
|un|q

∗
dx

≤ q − p
pq

∫
RN

[
|∇un|p + V (x)|un|p

]
dx+

λ

q

∫
RN
K(x)

[
f(un)un − qF (un)

]
dx

+
q∗ − q
qq∗

∫
RN
|un|q

∗
dx

= JλK(un)− 1

q
〈(JλK)′(un), un〉 = JλK(un) + on(1)

= cλK + on(1). (3.15)

On the other hand, by using (1.4) and (3.14), we obtain

JλK(t0vn) =
tq0
q
‖vn‖qV,q +

tp0
p
‖vn‖pV,p − lim

n→∞
λ

∫
RN
K(x)F (t0vn)dx− tq

∗

0

q∗
|vn|q

∗

q∗

≥ tq0
q
− tq

∗

0

q∗Sq∗/q
+ on(1)

=
q∗ − q
q∗q

S
q∗
q∗−q + on(1). (3.16)

Obviously, there is a contradiction to Lemma 3.3 by (3.15) and (3.16). Thus, the Vanishing
cannot occur.

If the Non-Vanishing occurs, then there exists a sequence {yn} ⊂ RN such that∫
BR(yn)

|vn|qdx =
β

2
> 0. (3.17)

Without loss of generality, we can suppose that there exist an R > R and {yn} ⊂ ZN such
that ∫

B
R

(yn)

|vn|qdx ≥
β

2
> 0. (3.18)

Indeed, for each n ∈ N, there is {yn} ⊂ ZN such that

BR(yn) ⊂ BR+
√
N(yn),

which together with (3.17) gives (3.18) if R , R+
√
N . Setting vn(x) = vn(x+ yn), there

exists a nontrivial function v ∈ E such that vn ⇀ v in E. Let Ω = {x ∈ RN : v 6= 0}, then
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m(Ω) > 0 and |un| → +∞ as n → ∞ in Ω. Since V (x) is ZN -periodic, combing (K) and
(f3), one has

lim inf
n→∞

∫
RN

K(x)F (un)

‖un‖qV,q
dx ≥ K∞ lim inf

n→∞

∫
RN

F (un)

‖un‖qV,q
dx

= K∞ lim inf
n→∞

∫
RN

F (un)

‖un‖qV,q
dx ≥ K∞ lim inf

n→∞

∫
Ω

F (un)

|un|q
|vn|qdx = +∞.

(3.19)

Since JλK(un)→ cλK as n→∞ and ‖un‖V,p is bounded, by means of (3.19), we have

0 = lim sup
n→∞

JλK(un)

‖un‖qV,q
≤ 1

q
− λ lim inf

n→∞

∫
RN

K(x)F (un)

‖un‖qV,q
dx = −∞,

a contradiction. The proof of this lemma is complete. �

As stated in the Introduction, in the process of looking for ground state solutions of Eq.
(1.1), we have to establish the existence of ground state solutions of Eq. (1.3). To achieve
this purpose, we need the associated functional Jλ∞ : W 1,p

V (RN) ∩W 1,q
V (RN) → R of Eq.

(1.3) defined by

Jλ∞(u) =
1

q
‖u‖qV,q +

1

p
‖u‖pV,p − λK∞

∫
RN
F (u)dx− 1

p∗

∫
RN
|u|p∗dx

and the ground state energy

mλ
∞ , inf

u∈Nλ∞
Jλ∞(u),

where
N λ
∞ =

{
u ∈ E\{0} : 〈(Jλ∞)′(u), u〉 = 0

}
.

Now, we give the proof of Proposition 1.5 as follows.

Proof. Obviously, the critical points of Jλ∞ are weak solutions of Eq. (1.3), and vice versa.
Similar to Lemma 3.1, we can see that Jλ∞ also admits a (C) sequence at the level

cλ∞ = inf
γ∈Γλ∞

max
t∈[0,1]

Jλ∞(γ(t)),

where the set of paths is defined as

Γλ∞ ,
{
γ ∈ C

(
[0, 1], E

)
|γ(0) = 0, Jλ∞(γ(1)) < 0

}
.

Let {un} ⊂ E be a (C)cλ∞ sequence of Jλ∞, similar to Lemma 3.4, {un} is bounded in E
for all λ > λ∗. Up to a subsequence if necessary, there exists a function u ∈ E such that
un ⇀ u in E, un → u in Lsloc(RN) and un → u a.e. in RN . Proceeding as Lemma 3.4, the

Vanishing cannot happen for |un|qq. Therefore, there are β̃ > 0, {ỹn} ⊂ RN and R̃ < +∞
such that ∫

BR̃(ỹn)

|un|qdx ≥ β̃.

Arguing as in the proof of Lemma 3.4, without loss of generality, we can suppose that the
sequence {ỹn} ⊂ ZN if increasing R̃ > 0 large enough.
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Set ũn = u(·+ ỹn), then ‖ũn‖ = ‖un‖ is bounded and there exists a function 0 6= ũ ∈ E
such that ũn ⇀ ũ in E, ũn → ũ in Lsloc(RN) with q ≤ s < q∗ and ũn → ũ a.e. in RN in
the sense of a subsequence. Since Jλ∞ and (Jλ∞)′ are translation-invariant with respect to
{ỹn} ⊂ ZN , {ũn} is still a (C)cλ∞ sequence of Jλ∞. Proceeding as [2, Lemma 3.4], (Jλ∞)′ is

weakly sequentially continuous in E−1 and thus (Jλ∞)′(ũ) = 0. We deduce that (Jλ∞)′(ũ) = 0
and ũ 6= 0. It follows from (3.2) and the Fatou’s lemma that

mλ
∞ ≤ Jλ∞(ũ) = Jλ∞(ũ)− 1

q
〈(Jλ∞)′(ũ), ũ〉

=
q − p
pq

∫
RN

[
|∇ũ|p + V (x)|ũ|p

]
dx+

λ

q

∫
RN
K∞
[
f(ũ)ũ− qF (ũ)

]
dx

+
q∗ − q
qq∗

∫
RN
|ũ|q∗dx

≤ lim inf
n→∞

{
q − p
pq

∫
RN

[
|∇ũn|p + V (x)|ũn|p

]
dx+

λ

q

∫
RN
K∞
[
f(ũn)ũn − qF (ũn)

]
dx

+
q∗ − q
qq∗

∫
RN
|ũn|q

∗
dx

}
= lim inf

n→∞

[
Jλ∞(ũn)− 1

q
〈(Jλ∞)′(ũn), ũn〉

]
= cλ∞. (3.20)

Similar to (3.2), we can exploit (f4) to conclude that cλ∞ = mλ
∞ which together with (3.20)

gives that Jλ∞(ũ) = mλ
∞. The proof is complete. �

Now, we are in a position to present the proof of Theorem 1.1.

Proof of Theorem 1.1. Without loss of generality, there exists a set of positive measure
on which K(x) > K∞. Otherwise, Proposition 1.5 is the special case of Theorem 1.1. By
the assumptions on the potential K(x), we infer that cλK < cλ∞. In fact, by Proposition 1.5,
the level cλ∞ = mλ

∞ is attained at a ground state solution uλ∞ of the limit Eq. (1.3) for all
λ > λ∗. We then deduce that JλK(tuλ∞) < Jλ∞(tuλ∞) for all t > 0, from this we have that

cλK = inf
u∈E\{0}

max
t≥0

JλK(tu) ≤ max
t≥0

JλK(tuλ∞) = JλK(tuλ∞) < Jλ∞(tuλ∞)

≤ max
t≥0

Jλ∞(tuλ∞) = mλ
∞ = cλ∞, ∀λ > λ∗,

where t > 0 is unique and satisfies that tuλ∞ ∈ N λ
K (see [23, Chapter 4] for details).

Let {un} be a (C)cλK sequence of JλK , for every λ > λ∗, passing to a subsequence, there

exists a function u ∈ E such that un ⇀ u in E, un → u in Lsloc(RN) with q ≤ s < q∗ and
un → u a.e. in RN . In view of the proof of Lemma 3.4, the Vanishing can never occur for
|un|qq. So, there are β > 0, {zn} ⊂ RN and R < +∞ such that∫

BR(zn)

|un|qdx ≥ β.
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Arguing as in the proof of Lemma 3.4, without loss of generality, we can suppose that the
sequence {zn} ⊂ ZN if increasing R > 0 large enough.

By a similar argument in the proof of Proposition 1.5, to finish the proof, it suffices to
prove that u 6= 0. For this purpose, we claim that {zn} ⊂ ZN in bounded in RN . If not,
we assume that for a subsequence |zn| → ∞ as n → ∞. Let’s define vn , un(· + zn) and
then ‖vn‖ = ‖un‖ (since V (x) is ZN -periodic) is bounded in E. Up to a subsequence, there
exists a function v 6= 0 such that vn ⇀ v in E. Next, we verify that (Jλ∞)′(v) = 0. In fact,
since B|zn|/2(0− zn) ⊂ RN\B|zn|/2(0), for all ψ ∈ E, we have∣∣∣∣ ∫

RN
[K(x)−K∞]f(un)ψ(x− zn)dx

∣∣∣∣
≤
∫
B |zn|

2

(0)

[K(x)−K∞]|f(un)||ψ(x− zn)|dx+

∫
RN\B |zn|

2

(0)

[K(x)−K∞]|f(un)||ψ(x− zn)|dx

≤ C|K|∞|ψ|Lq(RN\B|zn|/2(0)) + C|K −K∞|L∞(RN\B|zn|/2(0))|ψ|q → 0, as n→∞,

where we have used |f(un)|q is bounded by (f1)− (f2). So, for all ψ ∈ E, we obtain

〈(Jλ∞)′(v), ψ〉 = 〈(Jλ∞)′(vn), ψ〉+ on(1)

=

∫
RN

[
|∇vn|q−2∇vn∇ψ + |∇vn|p−2∇vn∇ψ + V (x)(|vn|q−2vnψ + |vn|p−2vnψ)

]
dx

− λ
∫
RN
K(x)f(vn)ψdx−

∫
RN
|vn|q

∗−2vnψdx

= 〈(JλK)′(un), ψ(x− zn)〉+ λ

∫
RN

[K(x)−K∞]f(un)ψ(x− zn)dx+ on(1)

= (JλK)′(un), ψ(x− zn)〉+ on(1)→ 0, as n→∞,

indicating that (Jλ∞)′(v) = 0, where we have used the fact that V (x) is ZN -periodic in the
third equality. However, by means of V (x) is ZN -periodic in in (V ) and K(x) ≥ K∞ in
(K) and Fatou’s lemma,

cλK + on(1) = JλK(un)− 1

q
〈(JλK)′(un), un〉

=
q − p
pq

∫
RN

[
|∇un|p + V (x)|un|p

]
dx+

λ

q

∫
RN
K(x)

[
f(un)un − qF (un)

]
dx

+
q∗ − q
qq∗

∫
RN
|un|q

∗
dx

≥ q − p
pq

∫
RN

[
|∇un|p + V (x)|un|p

]
dx+

λ

q
K∞

∫
RN

[
f(un)un − qF (un)

]
dx

+
q∗ − q
qq∗

∫
RN
|un|q

∗
dx

=
q − p
pq

∫
RN

[
|∇vn|p + V (x)|vn|p

]
dx+

λ

q
K∞

∫
RN

[
f(vn)vn − qF (vn)

]
dx
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+
q∗ − q
qq∗

∫
RN
|vn|q

∗
dx

= Jλ∞(vn)− 1

q
〈(Jλ∞)′(vn), vn〉 ≥ Jλ∞(v)− 1

q
〈(Jλ∞)′(v), v〉+ on(1)

= Jλ∞(v) + on(1)

which contradicts with the fact that cλK < cλ∞. The proof is finished. �
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[18] N. Papageorgiou, V. D. Rădulescu, Noncoercive resonant (p,2)-equations, Appl. Math. Optim. 76
(2017) 621-639.
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