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Abstract

Unsupervised, data-driven methods are commonly used in neuroscience to automatically decompose data into interpretable

patterns. These patterns differ from one another depending on the assumptions of the models. How these assumptions affect

specific data decompositions in practice, however, is often unclear, which hinders model applicability and interpretability. For

instance, the hidden Markov model (HMM) automatically detects characteristic, recurring activity patterns (so-called states)

from time series data. States are defined by a certain probability distribution, whose state-specific parameters are estimated

from the data. But what specific features, from all of those that the data contain, do the states capture? That depends on

the choice of probability distribution and on other model hyperparameters. Using both synthetic and real data, we aim at

better characterising the behaviour of two HMM types that can be applied to electrophysiological data. Specifically, we study

which differences in data features (such as frequency, amplitude or signal-to-noise ratio) are more salient to the models and

therefore more likely to drive the state decomposition. Overall, we aim at providing guidance for an appropriate use of this

type of analysis on one or two-channel neural electrophysiological data, and an informed interpretation of its results given the

characteristics of the data and the purpose of the analysis.
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Figure 1: Analysis workflow  

 
 

Figure 1: Scheme of the workflow, including data, analysis type and goals of each block. 
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Figure 2: Sensitivity analysis on the observation models 

 

 
 

Figure 2: a. Example of signals used (stationary sinusoids), each defined by frequency, amplitude 
and noise variance. b. The plots show how the AR (left) and the TDE (right) models can tell apart 
two signals that differ only in frequency by an amount of ∆f Hz (test frequency minus training 
frequency), for different values of their amplitude and of their noise content. The measure used is 
the logarithm of the likelihood ratio between train and test signal (given a fixed test signal and models 
trained on many training signals). Each solid line of the plot represents analyses for noise variance 
equal to 0.5, and each dotted line corresponds to noise variance equal to 1.0. By manipulating 
amplitude and noise variance, the plots show how the models perform for different signal to noise 
ratio (SNR) values. Here, AR order P=3, and TDE lags L=21, in steps of S=1; signal length T=10 
seconds (25000 data points) c. AR and TDE sensitivity to amplitude, expressed as ∆a for the AR 
model (training amplitude minus test amplitude) and as training amplitude in proportion to the target 
test amplitude (denoted as train/test) for the TDE model, for different values of frequency and of 
noise variance. Order, lags and signal length set as in b. 
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Figure 3: HMM experiments on one-channel non-stationary data 

 

Figure 3: a. Example of signal varying in frequency (instantaneous frequency shown in the middle 
panel) and amplitude (instantaneous amplitude in the bottom panel). b. Example of the probabilistic 
state time courses and state power spectra of HMM-MAR and HMM-TDE applied to the signal in a. 
Here, transition probability matrix prior δ = 10k, HMM-MAR order P=3, HMM-TDE lags L=15 (in steps 
of S=3). c. Cross validated explained variance of the HMM states predicting the ground truth 
frequency of non-stationary signals (like in a), for 20 repetitions of the experiment, for different values 
of the average state switching rate, manipulated via δ (order and lags set as in b). d. Similarly to a: 
example of a synthetic signal varying mostly in amplitude. e. Example of probabilistic state time 
courses and state power spectra of HMM-MAR and HMM-TDE applied to the signal in d. Here, δ = 
10k, P=3, L = 15, S=3. f. Cross validated explained variance of the HMM states predicting the ground 
truth amplitude of the signals as a function of the average state switching rate (varying δ, order and 
lags set as in e), for 20 repetitions of the experiment. 
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Figure 4: HMM experiments on two-channel data with periodic coherence 

 
 

Figure 4: a. Example of the synthetic signals; instantaneous frequency is shown in the middle 
panel, and instantaneous correlation in the bottom panel. b. On the left, examples of the state 
time courses of HMM-MAR (top panel) and HMM-TDE (bottom panel) applied to the signal in a; 
shown also the corresponding state power spectra (middle) and coherence (right). Here, δ = 10k, 
HMM-MAR order P=3, and the HMM-TDE lags L=15, with S=3. c. Cross validated explained 
variance (CVEV) of the HMM states predicting the ground truth instantaneous frequency of the 
channels (average explained variance across channels, left) and channel correlation (right) for 10 
repetitions of the experiment and for different values of the state switching rate, manipulated 
through δ. Order and lags set as in b. 
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Figure 5: Analysis on LFP data 

 

 
 

Figure 5. a. LFP data, with two LFP channels (chosen such that their activity was not very correlated) 
from the hippocampus of a mouse during resting state, downsampled to 250 Hz and the spectral 
content of the two channels. b. Example of HMM-MAR state time courses, as well as the state power 
spectra and the state coherence. c. Similar to b., for HMM-TDE. The models are trained on 30 mins 
of data with three states (here, HMM-MAR order P=5, HMM-TDE, lags L=15, S=3, δ=100k). 
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Figure 6: Analysis on MEG data 

 

 
 
 

 

 

 

 

 

Figure 6. a. The data for this analysis are 2 MEG channels from the motor cortex of 8 (human) 
subjects who performed a simple finger tapping task. Data were downsampled to 200 Hz and 
band-filtered between 1 and 48 Hz. The spectral content of the two channels is also shown. b. 
Example of HMM-MAR state time courses, around a button press, marked by a black vertical line 
(left); the corresponding state power spectra (middle); and the probability of states around the 
button press (response-evoked state probability, rightmost panel). c. Same as in b., for the HMM-
TDE model. The models are trained on 20 mins of recordings with three states. For the HMM-
MAR we used order P=3, and for the HMM-TDE we used L=1, with S=1; δ=100000 in both cases. 
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ABSTRACT 
 

Unsupervised, data-driven methods are commonly used in neuroscience to automatically 70 
decompose data into interpretable patterns. These patterns differ from one another depending on 
the assumptions of the models. How these assumptions affect specific data decompositions in 
practice, however, is often unclear, which hinders model applicability and interpretability. For 
instance, the hidden Markov model (HMM) automatically detects characteristic, recurring activity 
patterns (so-called states) from time series data. States are defined by a certain probability 75 
distribution, whose state-specific parameters are estimated from the data. But what specific 
features, from all of those that the data contain, do the states capture? That depends on the 
choice of probability distribution and on other model hyperparameters. Using both synthetic and 
real data, we aim at better characterising the behaviour of two HMM types that can be applied to 
electrophysiological data. Specifically, we study which differences in data features (such as 80 
frequency, amplitude or signal-to-noise ratio) are more salient to the models and therefore more 
likely to drive the state decomposition. Overall, we aim at providing guidance for an appropriate 
use of this type of analysis on one or two-channel neural electrophysiological data, and an 
informed interpretation of its results given the characteristics of the data and the purpose of the 
analysis. 85 
 

Keywords: Unsupervised learning, hidden Markov models, computational modelling, 

electrophysiological data, data analysis, neuroscience. 
 
 90 

1. INTRODUCTION 
 
In empirical neuroscience, we often use supervised methods of analysis to investigate the 
mechanistic underpinnings of cognitive processing. These are supervised in the sense that they 
assume a certain preconception of the patterns of interest, and search for their expressions in the 95 
data accordingly. Some examples are decoding analysis (King and Dehaene, 2014; Quiroga and 
Panzeri, 2009; Haynes and Rees, 2006), analyses of evoked response potentials (ERP; Picton et 

mailto:laurama@cfin.au.dk
http://dx.doi.org/10.13039/100006662


al., 2000; Herrmann and Knight, 2001; Kotchoubey, 2005) and methods to characterise 
oscillations (Buzsáki and Draguhn, 2004; Donoghue et al., 2020; Donodhue et al., 2022). Overall, 
supervised approaches rely on prior knowledge and definitions of the features of interest, which 100 
could potentially be incomplete or imprecise.   
  
An alternative approach is the use of data-driven, unsupervised models to automatically extract 
patterns from brain data without a prior definition of such patterns. For example, a clustering 
algorithm run on the time series data would automatically find a collection of patterns that was not 105 
defined beforehand, and it is then the researcher’s task to determine what these patterns might 
mean neurobiologically. While unsupervised methods are potentially less biased and therefore 
can have a better chance of finding new information, they may also be more difficult to interpret. 
For this reason, it is important to, at least, have a clear understanding of what elements in the 
data are more salient for the chosen unsupervised algorithm, in order to elucidate what a given 110 
decomposition is really capturing.    
   
We focus on the Hidden Markov Model (HMM; Rabiner, 1989), that have been used to investigate 
various domains, such as resting state dynamics in wakefulness (Vidaurre et al., 2017; 
Vidaurre et al., 2018; Karapanagiotidis et al., 2020; Baker et al., 2014; Shappel et al., 2019) and 115 
sleep (Stevner et al., 2019), perceptual processing (Vidaurre et al., 2019), memory replay 
(Higgins et al., 2021) and higher-order cognition (Baldassano et al., 2018). These studies are 
examples of how the HMM can automatically identify patterns of activity (so-called states) without 
the need of providing beforehand a stringent, explicit definition of what would constitute a 
meaningful pattern. But what aspects of the data are more salient to the model, i.e., what is really 120 
driving the state inference? That depends on the choice of the observation model, which is the 
probability distribution used to represent the states. Two different observation models might have 
different views of saliency (meaning that different modulations in the data are considered more 
important for different models), and therefore behave differently. Often, the choice of one model 
over another is left to trial and error. While empirical comparisons have been made in the past 125 
between different observation models for specific purposes (Quinn et al., 2019), no study has 
rigorously investigated what specific features within the data are the different state definitions 
most sensitive to. We reason that a better understanding of the various alternatives is important 
to fully leverage the benefits of this type of unsupervised analysis and interpret their outputs.   
  130 
Specifically, focusing on raw, low-dimensional (one or two channels) electrophysiological data, 
we explore two types of HMM: the HMM-MAR, where the states are multivariate autoregressive 
models (Vidaurre et al., 2016); and the HMM-TDE (time-delay embedded), where the states 
correspond to autocovariance patterns in the signal (Vidaurre et al., 2018). High-dimensional 
data, where the focus is on finding complex network-level modulations (and where the HMM-TDE 135 
is preferred due to the difficulties of the HMM-MAR to scale up —see Vidaurre et al., 2018) are 
not considered here.   
  
We first use synthetic data to investigate how sensitive the two observation models are to 
variations in frequency, amplitude, signal-to-noise ratio, and amount of data. Then, we analyse 140 
how these characteristics affect the estimation of the states in the HMMs. Finally, we examine the 
behaviour of the models on two different real data modalities, LFP from mice in resting state and 
MEG from humans performing a simple motor task. In summary, our results show what to expect 
from the HMM states according to data conditions and analysis settings. On these grounds, we 
provide some recommendations on which model to use depending on the data and the purpose 145 
of the analysis.  
 



2. MATERIALS & METHODS 
 
Using both real and simulated electrophysiological data, this study investigated the behaviour of 150 
two varieties of the HMM: the HMM-MAR (Vidaurre et al., 2016) and the HMM-TDE (Vidaurre et 
al., 2018). First, a sensitivity analysis on the observation models (MAR and TDE) was conducted, 
with respect to different data features and model hyperparameters. Secondly, the full HMMs' 
behaviour was assessed, using both synthetic and real electrophysiological data: LFP data from 
a mouse hippocampus (during wakeful resting) and MEG data of human subjects performing a 155 
simple button press task. A schematic of the study is shown in Figure 1. 

 
2.1 Data 
 

2.1.1 Synthetic data 160 
 
Synthetic, stationary, one-channel signals 
 
We tested the stand-alone observation model sensitivity to different data features using single-
sinusoidal (stationary) signals, defined by frequency f, sampling frequency F, signal length T, 165 
amplitude a, plus some random Gaussian noise, parametrised by its variance v. While F was kept 

constant, a range of values was established for the other features, and stationary sinusoids 

were sampled with all the combinations of the different features’ values. Specifically, f ranged 

from 0.5 to 45 Hz in steps of 0.02 Hz, a ranged between 0.5 and 10.5 (arbitrary units) in steps of 
0.5 for the MAR model, and between 0.5 and 25 in multiplicative steps (proportions of 5.0) for the 170 
TDE model, v was either 0.5 or 1.0, and T was 2, 5, 10 or 15 seconds. F was 250 Hz in all cases 
(see Figure 2a for some examples). 
 
Synthetic, non-stationary, one-channel signals  
 175 
We used synthetic, non-stationary, one-channel signals to explore how the HMM-MAR and HMM-
TDE segmented the time series into states visits (i.e., how they defined states and assigned a 
state probability per data point). The non-stationary oscillatory signals were created in such a way 
that signals had time varying frequency (ranging between 0.1 and 45.0 Hz) and amplitude 
(ranging between 0.1 and 10.0).  Note that this generative model is more general (i.e., with more 180 
degrees of freedom) than the HMM, which assumes signals with quasi-stationary periods of 
sustained oscillations. Specifically, the instantaneous frequency f(t) and instantaneous 
amplitude a(t) were generated as two independent random walks, bounded within the chosen 
frequency and amplitude ranges, and where the step size at each time point was drawn from a 
normal distribution. The non-stationary, oscillatory signals were synthesized as a unique session 185 
of T=50000 data points, with sampling frequency F = 250 Hz, and noise variance v = 1.0 
(see Figure 3a for an example), and then fed to the HMMs. The simulated session was 
then divided into N=100 trials of tN=500 timepoints each, to ease a cross-validation scheme for 
our prediction analysis (see Section 2.3.2 for details). 
 190 
Synthetic, non-stationary, two-channel signals 
 
The HMMs were then tested on two-channel data showing time-varying between-channel 
coherence (to simulate simplified functional connectivity in the data). In particular, the two 
periodically coherent channels, 𝑥1 and 𝑥2, were generated combining three independent, non-195 
stationary, one-channel signals (sampled as detailed above) a, b and c, as follows:  
 



𝑥1ሺ𝑡ሻ = ሾ1 − 𝜌ሺ𝑡ሻሿ𝑎ሺ𝑡ሻ + 𝜌ሺ𝑡ሻ𝑐ሺ𝑡ሻ ,   𝑥2ሺ𝑡ሻ = ሾ1 − 𝜌ሺ𝑡ሻሿ𝑏ሺ𝑡ሻ + 𝜌ሺ𝑡ሻ𝑐ሺ𝑡ሻ , 
 
where ρ(t) modulates the channels similarity at each time point, and was generated as a smooth 200 
square wave (between 0 and 1) with a 4 seconds (1000 points) period. This way, when ρ(t) = 
1 the two channels were equal to c(t) and therefore maximally coherent; however, when ρ(t) = 
0, the two channels corresponded, respectively, to a(t) and b(t), which were independently 
generated —but, crucially, not forced to be strictly uncorrelated, and hence they could still exhibit 
some residual correlation due to sampling variability. In this sense, ρ(t) was not a real measure 205 
for coherence, and we adopted instead the two channels’ instantaneous empirical correlation r(t), 
computed within a sliding window, as a surrogate measure of the ground-truth channels' 
coherence. The sliding window’s size was chosen such that r(t) matched best ρ(t) = 1, i.e., when 
the two channels were actually the same signal, and their ground-truth coherence was known. 
Again, the data were generated as a continuous session of T=50000 points (see example 210 
in Figure 4a), fed to the HMMs and then reshaped into N=100 trials of tN = 500 points for the 
prediction analysis (see below).  
 

2.1.2 Real data 
 215 
LFP data 
 
Wakeful resting state data were collected for 30 mins from a mouse’s hippocampus, using 
intracranial (Neuropixel) recordings. We used two channels from the array of 385 neuropixel 
electrodes for our tests. These data are part of a yet unpublished dataset, but are available upon 220 
request. 
 
In detail, C57BL6/J male mice were first anesthetized with isofluorane (1% in oxygen) and placed 
in a stereotaxic apparatus (Kopf, California). A craniotomy was performed, centered in AP: -3.2, 
ML: 3 coordinates from bregma. Then, a head fixation crown (Neurotar, Helsinski) was implanted 225 
and secured with UV curating cement. Finally, a ground wire was implanted in the superficial 
layers of the cerebellum. The exposed craniotomy was covered with silicone (Kwik-cast, WPI) for 
protection. Meloxicam (5 mg/kg) were injected subcutaneously for three days after the surgery for 
pain and inflammation relief. The animals were allowed to recover for five days with food and 
water ad libitum. Then they were handled twice a day and placed in the head fixing apparatus for 230 
increasing times (10 mins to 40 mins), for 6 days to reduce stress. In the 7th day, the animal was 
head-fixed, and the silicone removed from the craniotomy. Then, a Neuropixel 2b probe was 
inserted at 1μm/second. The probe was inserted a total of 4 mm corresponding to the first 385 
recording sites of the probe. These spanned secondary visual cortex and ventral dentate gyrus. 
After 15 mins, LFP data was filtered (0.5-1000 Hz), amplified and digitized (2.5 kHz). Data was 235 
acquired for 30 mins, while the animal was in resting state, in darkness. For our analyses, we 
used 2 channels, chosen such that their activity was not very correlated, from the hippocampus 
of one mouse and downsampled the data to 250 Hz. 
 
MEG data 240 
 
The MEG data used in this study were collected by O’Neill et al. (2015), where eight subjects 
were instructed to perform a button press with the index finger of their left hand using a keypad, 
roughly every 30 seconds and without counting the time in between button presses. Total 
scanning time was 1200 seconds per subject. The data were acquired using a 275 channel CTF 245 
whole-head system (MISL, Conquitlam, Canada) at a sampling rate of 600 Hz with a 150 Hz low 
pass anti-aliasing filter. Synthetic third order gradiometer correction was applied to reduce 
external interference. The data were converted to SPM8 and downsampled to 200 Hz. We used 



the same preprocessing pipeline as in Vidaurre et al., (2016). After the removal of artifacts related 
to eye-blink and heartbeat with Independent Component Analysis (ICA; Hyvärinen and Oja, 250 
2000), the data were band-pass filtered between 1 and 48 Hz, and source-reconstructed to the 
two primary motor cortices (M1). 
 
 

2.2 Models 255 
 

2.2.1 The Hidden Markov Model (HMM) 
 

The Hidden Markov Model (HMM) is a family of probabilistic models describing time series data 
as a sequence of K states (Rabiner, 1989). Each state corresponds to a different probability 260 
distribution (also known as observation model), belonging to a pre-specified family of probability 
distributions (e.g., Gaussian). The HMM inference estimates, in a data-driven fashion, the state 
parameters, the probability of each state being active per time point (state time course), the 
transition probability matrix (i.e., the probability of changing from one state to another, and of 
remaining in the same state), and the initial state probabilities (i.e., the probability of each state 265 
at trial start).  
 
Here two types of HMM were explored, the HMM-MAR (Vidaurre et al., 2016) and the HMM-TDE 
(Vidaurre et al., 2018), each with a different observation model (see below). Both are implemented 
in the HMM-MAR toolbox, publicly available on GitHub1. In our analyses, we manipulated:  270 
 

- The respective model hyperparameters: the order P for the HMM-MAR and the lags 
structure for the HMM-TDE, defined by the width L and the inter lags steps S (see below for 
definitions).  

- The prior probability of remaining in the same state as opposed to moving to another state, 275 
parametrised by the Dirichlet distribution concentration parameter2, denoted as .  

- The number of states K. 
 
We used non-parametric estimations of the state spectra and coherence3.    
 280 
2.2.2 Observation Models 
 

Multivariate Autoregressive (MAR) observation model 
 
Given a multichannel time series 𝒚, the MAR model model the signal at each data point 𝒚𝒕 as a 285 
linear combination of previous time points ሺ𝒚𝒕−𝟏, … , 𝒚𝒕−𝑷ሻ, given the generative model 
 

𝑃ሺ𝒚𝒕ሻ ∼ 𝑁൫σ 𝑦𝑡−𝑗
𝑃
𝑗=1 𝑊𝑗 , 𝜎𝟐൯ , ∀𝑡 

 
where 𝑾 are the autoregressive coefficients, σ2 is the noise variance, and P is the autoregressive 290 
order, which determines the spectral resolution of the model. For a given choice of P, Bayesian 
inference is used here to estimate 𝑾 and σ2, given the data.  

 

In the HMM-MAR, each state’s probability distribution is represented by a set of coefficients 𝑾ሺ𝒌ሻ 

per state k, as per: 295 

 
1 https://github.com/OHBA-analysis/HMM-MAR 
2 In the HMM-MAR toolbox, this is specified with the DirichletDiag option.  
3 Function hmmspectramt() in the toolbox. 

https://github.com/OHBA-analysis/HMM-MAR


 

𝑃ሺ𝒚𝒕ȁ𝑥𝑡 = 𝑘ሻ ∼ 𝑁 ቀσ 𝑦𝑡−𝑗
𝑃
𝑗=1 𝑊𝑗

ሺ𝑘ሻ
 , 𝜎𝟐ቁ, ∀ 𝑡, 

 
where 𝑥𝑡  is a hidden variable indicating the state active at time point t; 𝑥𝑡  is also estimated from 
the data.  300 
 
When dealing with one-channel signals, we will just refer to the MAR model as autoregressive 
model or AR (and, correspondingly, HMM-AR).  
 
Time-Delay Embedded (TDE) observation model 305 
 
Instead of modelling the probability of observing every time point of the data, the TDE models the 
the autocovariance of the signal around time point t. The relevant hyperparameter here is the lag 
structure, defined by L (the width of the signal’s window to consider at each time point) and S 
(how many steps separate each lag), as per [-L, -L+S, …, 0, …, L-S, L]. Mathematically, given 310 
the expansion 𝒀𝒕 = ሺ𝒚𝒕−𝑳, … , 𝒚𝒕, … , 𝒚𝒕+𝑳 ሻ,  the model is defined as Gaussian: 

 
𝑃ሺ𝒀𝒕ሻ ∼ 𝑁ሺ0, 𝜮ሻ, ∀𝑡,  

where 𝜮 is the autocovariance of the signal encoding linear relations across regions and time 
points within the window around t. The HMM-TDE is then defined as  315 
 

𝑃ሺ𝒀𝒕ȁ𝑥𝑡 = 𝑘ሻ ∼ 𝑁൫0, 𝜮ሺ𝒌ሻ൯.  

 
 

2.3 Analyses 320 
 
Two types of analysis were performed: first, a sensitivity analysis on the observation models with 
respect to data features, as well as amount of training data and model hyperparameters; and 
second, a prediction analysis on the full HMM distributions assessing the generality of the 
estimation of the content of the states, as well as a permutation testing analysis to confirm the 325 
results. 
 

2.3.1 Sensitivity analysis on the observation models 
 
The sensitivity of the two observation models, MAR and TDE, to different data features was 330 
tested: specifically, we assessed how the manipulation of frequency, amplitude and noise 
variance, as well as amount of data and model hyperparameters (the order for the MAR P and 
the TDE lags manipulated by L, while S was kept to 1) affected the estimations of 𝑾 
and 𝜮 respectively. Two independent sets of synthetic stationary data (as described in Section 

2.1.1) were generated, both containing signals with all the above-mentioned feature 335 
combinations. One set was used for training the models and one for testing them. Since this 
analysis involved one-channel stationary signals, we will refer to the MAR model as AR. For every 
signal y from the training set, the model coefficients 𝑾 (for the AR) and 𝜮 (for the TDE) were 
estimated. We will refer to these as 𝑾ሺ𝒚ሻ, and 𝜮ሺ𝒚ሻ. The trained models were then tested on one 

target signal z from the test set. The capacity of the models to describe this test signal was 340 
measured by means of the log-likelihood ratio (of trained vs tested signal): this gave an indication 
of how similar training and test signals were, according to the trained models. Being model-
dependent, the log-likelihood ratio expresses the sensitivity of each model with respect to each 
feature.  
 345 



For the AR model, the likelihood of the target test signal z to be distributed as a training signal y 
is:  

𝐿ሺ𝒛ȁ𝑾ሺ𝒚ሻሻ = ς 𝐿ሺ𝑧𝑡 ȁ 𝑾ሺ𝒚ሻሻ𝑡 = ς
1

ξ2𝜋𝜎2
exp ቂ

−ሺ𝑧𝑡−𝜇𝑡ሻ2

2𝜎2 ቃ𝑡  , 

 

where  𝜇𝑡 = σ 𝑧𝑡−𝑗𝑊ሺ𝑦ሻ𝑗
𝑃
𝑗=1   is the prediction from the autoregressive model, and σ is the noise 350 

standard deviation, also estimated from the data.  
 
For the TDE model, given 𝒁𝒕 = ሺ𝒛𝒕−𝑳, … , 𝒛𝒕, … , 𝒛𝒕+𝑳ሻ, the likelihood of 𝒁𝒕 to be distributed according 

to 𝑁ሺ0, 𝜮ሺ𝒚ሻሻ, for a training signal y, is:  
 355 

𝐿൫𝒁𝒕ห 𝜮ሺ𝒚ሻ൯ =  
1

ඥ2 𝜋 ȁ𝜮ሺ𝒚ሻ ȁ
 exp ቂ−

1

2
 𝒁𝑡

  𝑇   𝜮ሺ𝒚ሻ−1  𝒁𝑡   ቃ ,  

 
where ȁ𝜮ሺ𝒚ሻ ȁ indicates the determinant of 𝜮ሺ𝒚ሻ. Then, the likelihood across time points becomes:  

 
𝐿ሺ𝒛ȁ𝜮ሺ𝒚ሻሻ =  ς 𝐿ሺ𝒁𝒕 ȁ 𝜮ሺ𝒚ሻሻ𝑡 . 360 
 
Finally, considering the likelihood of target signal z to be parametrised by a model trained on 𝒛 
(i.e., a training signal with the same features), 𝐿ሺ𝒛ȁ𝑾ሺ𝒛ሻሻ and 𝐿ሺ𝒛ȁ𝜮ሺ𝒛ሻሻ, the log-likelihood ratios 

are defined as:  
 365 

 log ൤
𝐿൫𝒛 ห 𝐖ሺ𝐲ሻ൯

𝐿൫𝒛 ห 𝑾ሺ𝒛ሻ൯
൨ and log ൤

𝐿൫𝒛 ห 𝜮ሺ𝒚ሻ൯

𝐿൫𝒛 ห 𝜮ሺ𝒛ሻ൯
൨. 

  
The log likelihood ratio is therefore a measure of the precision of the model in describing the test 
signal, given the training signal. If the log likelihood ratio of the model trained on y vs z is low (i.e. 
a large negative number), then the parameters of the model fitted to y do not describe well the 370 
test data z, and, consequently, the two signals are regarded as different according to the 
assumptions of the model; on the other hand, if the log likelihood ratio is close to zero, both the 
models trained on y and z describe well the test data and, therefore, that the two signals cannot 
be distinguished given the model definition and assumptions. 
 375 
2.3.2 HMM analyses on synthetic data 
 
The previous analyses were designed to compare the observation models as stand-alone 
distributions. Next, these were assessed within the HMM framework. Specifically, the HMM states 
were assessed by regressing the state time courses on the ground-truth data features —380 
instantaneous frequency f(t), amplitude a(t) and between-channel correlation r(t). In order to use 
a cross validation scheme, the data, simulated as a unique session of T=50000 points, 
were partitioned into trials of equal length. The cross validation was hence performed at the trial 
level, grouping the trials into 10 folds (using 9 for training and the remaining 1 for testing, in turns). 
This yielded a measure of accuracy —cross-validated explained variance (CVEV)— per feature, 385 
describing how well the HMM states captured that feature. The accuracy of the models in 
capturing each feature was tested as a function of the observation model hyperparameters and 

of the prior probability of remaining in the same state, hyperparametrised by  (see above). To 

confirm the reproducibility of the results, each analysis was repeated 20 times. 
 390 
A permutation testing analysis was conducted (10000 permutations) to further validate the effects 
of the prediction analyses, where the null hypotheses are of the sort of “the HMM states do not 
capture amplitude”. The permutations were also performed across trials.  



 

2.3.3 HMM analyses on real data 395 
 
The two HMMs were also tested on LFP and MEG real data, comparing the frequency properties 
of the states. For the MEG data, the state temporal information was also contrasted to the 
available task data.  
 400 
 

2.4 Code accessibility 
 
All the code used for the generation of synthetic data and for the analysis of both synthetic and 
real data will be available upon publication on Github4. 405 

 
 
3. RESULTS 
 

3.1 Observation models sensitivity 410 

 
In the first part of this study, a sensitivity analysis was conducted on the two HMM observation 
models (autoregressive and TDE), with respect to data characteristics and model 
hyperparameters. The models were trained and tested on synthetic, stationary sinusoids 
(described in Section 2.1.1, see examples in Figure 2a), and their sensitivity measured by the 415 
log likelihood ratio of train vs. test signal, which we can interpret as a measure of how well the 
models could identify signal differences (see Section 2.3.1).  
 
To test the model sensitivity to frequency, the models were trained on signals that only differed in 
frequency (i.e., with a fixed amplitude and noise variance). We then selected a given target test 420 
frequency and tested the models (trained for multiple frequencies) on the test signal, which had 
the same amplitude and noise variance as the training signals. The procedure was repeated to 
test different amplitude and noise values (Figure 2b). The TDE model showed lower frequency 
resolution than the AR model (note the different x-axes scales in the plots). Generally, decreasing 
amplitude and increasing noise had a similar effect on the sensitivity of the models to frequency. 425 
For the AR model, signal-to-noise ratio (SNR), rather than amplitude or noise variance as 
separate factors, affected its frequency resolution: that is, the smallest detectable frequency 
difference depended on the signals’ SNR. This intuition can be verified analytically by proving that 
the coefficients of two models trained on signals with different amplitude and noise variance, but 
same SNR value, are the same (see Appendix).  430 

To test the model sensitivity to amplitude, the same procedure detailed above was adopted: the 
models were trained and tested on signals that only differed in amplitude, for some fixed values 
of frequency and noise variance (Figure 2c). While the AR model clearly distinguished the full 
range of amplitudes tested, it was more difficult for the TDE to distinguish training and test signal, 
especially when the training amplitude was higher than the test one. Because of this, we tested a 435 
wider range of amplitude differences for the TDE model, where we used multipliers of the target 
test amplitude as training amplitudes (for the AR model, the different training amplitudes were 

 
4 https://github.com/LauraMasaracchia/HMM_explore  

https://github.com/LauraMasaracchia/HMM_explore


linearly spaced). Overall, amplitude resolution was not affected by frequency, as the model 
relative performance was similar for all tested frequencies. 

Frequency and amplitude resolution of the models were further investigated by varying the 440 
amount of training data (manipulating signal length) and the model hyperparameters —see 
Supplementary Figure 1. Briefly, more training data induced a higher resolution on frequency in 
both models, and a higher sensitivity to amplitude in the AR model. Also, a larger lag window in 
the TDE model increased frequency resolution. Neither a higher amount of data, nor a bigger lag 
window significantly changed the TDE sensitivity to amplitude. As for the AR model, since an 445 
autoregressive order of 3 can already capture one fundamental frequency, and because in this 
particular case the data only had one frequency, an increase in the autoregressive order did not 
change the model performance. That is, while a higher autoregressive order could explain more 
complex, multi-frequency spectral patterns, it does not improve the resolution of a single 
frequency.  450 
 
In summary, the AR model accurately described stationary sinusoids with sufficiently high SNR 
and showed high frequency resolution, which was also influenced by the amount of training data. 
The AR model was comparably less sensitive to amplitude than to frequency, and also amplitude 
resolution was influenced by the amount of training data. On the other hand, the TDE model 455 
showed a lower frequency resolution than the AR. This resolution was modulated by the lag 
hyperparameter and by the amount of training data. Finally, the TDE model was less sensitive to 
differences in amplitude, and, unlike the AR, its sensitivity was not symmetric (see Figure 2c); 
this is because, for the TDE (i.e., for the Gaussian distribution), the log-likelihood function (unlike 
the probability density function) is not symmetric with respect to the scale. Manipulations in lags 460 
or amount of training data did not significantly change this behaviour. 
 
 

3.2 HMM inference 
 465 
Next, the HMM-MAR and HMM-TDE capacity to represent dynamic changes in the signal was 
investigated, using synthetic, non-stationary signals with time-varying frequency, amplitude and 
functional connectivity (as described in Section 2.1.1). 

 
3.2.1 Detection of changes in frequency and amplitude 470 
 

The HMM-MAR and the HMM-TDE were first tested on single-channel signals with time-varying 
frequency and amplitude. As mentioned in Section 2.1.1, the generative model of the signals, 
unlike the HMM’s, does not assume quasi-stationary periods of sustained oscillations, and is, 
therefore, more general. While we could have generated data that followed the assumptions of 475 
the HMM, real electrophysiological data is likely to not follow these assumptions, so we opted for 
a more assumption-free generative model. In detail, one-channel, non-stationary signals were fed 
to the HMMs and the resulting state time courses (i.e., the probability of each state being active 
at each time point) were subsequently analysed. In particular, standard regression was used to 
predict the frequency and amplitude time courses from the state time courses, in a cross validated 480 
fashion. The prediction analysis was performed varying the hyperparameter δ (related to the prior 
probability of remaining in the same state, which influences the state switching rate; see above), 
as well as the order for the HMM-MAR and the lags for the HMM-TDE. The procedure was 
performed 20 times per configuration (see Section 2.3.2).  
 485 
When the signals varied in frequency and amplitude (example signal in Figure 3a), both HMM-
MAR and HMM-TDE clearly captured frequency changes, with each of their states representing 



a different frequency band (Figure 3b). Our prediction analysis showed that, for fixed order and 
lags, the state switching rate affects model performance in capturing frequency (see Figure 3c, 
where order P=3, lags structure set to L=15, spaced in steps of S=3): clearly, the models with 490 
faster switching rates (here, the HMM-TDE runs) could explain frequency variance better (up to 
90%), meaning that they better matched the dynamics of the data. For comparison, a separate 
permutation analysis showed that randomly assigned states could explain only 0.0132, ± 0.0130 
of frequency variance (CI = 0.95, p < 0.0001 for all models). The prediction analysis further 
showed that varying the model hyperparameters also had an influence on the performance of the 495 
models and on the state switching rate. More specifically, while δ had a great influence on the 
HMM-MAR performance, widely modulating the state switching rate, the HMM-TDE performance 
and state switching rate were more affected by the lags manipulation than by δ (see 
Supplementary Figure 2a for further details). None of the models could explain amplitude 
variance significantly better than randomly assigned states.  500 
 
To further investigate the extent to which the HMM states could capture amplitude, the same 
analysis was performed on one-channel, non-stationary signals only varying in amplitude (a signal 
example is reported in Figure 3d). This time, coarse changes in amplitude could be captured 
using two states for each model (Figure 3e). The prediction analysis (now regressing the state 505 
time courses on the amplitude time course) for a fixed order and lag choices (as before, P=3, 
L=15, S=3), showed that both models were able to detect amplitude changes in this scenario, but 
the extent to which they could do so depended on how well the state switching rate matched the 
ground-truth dynamics of the data (Figure 3f); for example, the extreme cases when the switching 
rate was close to zero (leftmost in the panel) corresponded to cases when one state dominated 510 
the entire decomposition, driving the CVEV to zero. This is in contrast with the previous analyses, 
where we examined the states as stand-alone distributions, and where the AR model was 
considerably better at capturing amplitude. The difference here is however at the level of the HMM 
inference, with certain HMM-MAR runs not being able to switch states at sufficient speed (or even 
collapsing to a single state) for some choices of δ. For comparison, randomly assigned states 515 
explained 0.0228 ± 0.0227 (CI = 0.95) of the signals’ amplitude, yielding statistical significance 
for all decompositions that did not degenerate onto a single state. The complete analysis results 
can be found in Supplementary Figure 2b. 

 
We also explored the HMM-MAR and HMM-TDE inference for a higher number of states, using 520 
signals that vary both in frequency and in amplitude (Supplementary Figure 3). When increasing 
the number of states, the HMM-MAR started capturing amplitude instead of only frequency 
(Supplementary Figure 3c). In contrast, endowing the HMM-TDE with more states resulted in a 
higher frequency band resolution, but no better sensitivity to amplitude (Supplementary Figure 
3f).  525 
 
In conclusion, both models were more sensitive to frequency than they are to amplitude, but they 
could also capture changes in amplitude when frequency was relatively constant and, in case of 
the HMM-MAR, when endowed with a higher number of states. How well the decomposition 
captured differences in amplitude and frequency depended on the temporal dynamics of the state 530 
time courses (i.e., the state switching rate) and how well they matched the underlying modulations 
in the data. As shown, the switching rate can be manipulated by modifying the observation model 
hyperparameters (e.g. L and P) and the priors of the transition probability matrix (δ). In real 
scenarios, these hyperparameters could be tuned to access different temporal scales in the data.  
 535 
As mentioned, these analyses may seem opposed to the previous section, where the MAR model 
showed to have a higher resolution in both frequency and amplitude. These findings can be 
reconciled by the fact that the MAR has a higher capacity to explain variance in the raw data, and 



thus, when plugged into the HMM inference, might necessitate less state switching (specially, 
when overparametrised). That is, while a high-order single autoregressive model could potentially 540 
explain the data very well and therefore dominate the decomposition, the corresponding state 
time courses would not be effective to describe the time-varying facets of the data, which is what 
our CVEV metric precisely captures. While the same problem could occur for the HMM-TDE as 
well, it is less likely to happen because the number of effective parameters of the TDE (and 
therefore its sentivity to the different features, as shown in the previous section) is lower. 545 
 
3.2.2 Detection of changes in functional connectivity  
 
Next, The HMM-MAR and the HMM-TDE were tested on synthetic two-channel, non-stationary 
signals with time-varying correlation across the entire frequency spectrum (see Section 2.1.1), 550 
which we will refer to as broadband functional connectivity (see Figure 4a for examples of signal 
and between-channel correlation). Again, a regression analysis was used to predict frequency 
and between-channel correlation from the state time courses, varying δ and the observation model 
hyperparameters. The full experiment was repeated 10 times. 
 555 
Here, the HMM-MAR primarily captured frequency information specific to the single channels, 
whereas the HMM-TDE was able to capture broadband functional connectivity, such that one 
state was assigned to the periods of highest correlation between the two channels and the other 
state to periods of lower correlation. This can be qualitatively observed in the state time courses 
(Figure 4b, leftmost panels) with respect to the channel correlations (Figure 4a, bottom panel), 560 
and in the estimation of the state power spectra (Figure 4b, middle panels) and 
the state coherence (Figure 4b, rightmost panels). The prediction analysis quantitatively 
corroborated this, showing that, for fixed order and lags (here, P=3 and L=15, in steps of S=3), 
varying δ to manipulate the state switching rate did not change the HMM-TDE ability to capture 
broadband functional connectivity significantly (Figure 4c, right panel). This analysis also 565 
revealed that the HMM-MAR performance in predicting channel frequency was not very stable 
across runs  (see how scattered the performance is along the y axis in Figure 4c left, regardless 
of the δ parameter). For comparison, a permutation testing analysis resulted in randomly assigned 
states explaining 0.0126 ± 0.0125 (CI=0.95) of the signal frequency variance, and 0.0029 ± 
0.0027 (CI = 0.95) of channel correlation variance; this means that the HMM-TDE did not perform 570 
significantly better than randomly assigned states in capturing frequency, and neither did the 
HMM-MAR in capturing broadband coherence.  
  
We repeated the prediction analysis by varying the model hyperparameters (complete results in 
Supplementary Figure 4), showing again that the HMM-MAR performance and state dynamics 575 
were more affected by changes in δ than HMM-TDE, which was most affected by the lag 
configuration. 
 
But how can these results be reconciled with previous work where the HMM-TDE was 
successfully used to find states with distinct amounts of coherence in different frequency bands 580 
(for example, in Vidaurre et al., 2018; Hirschmann et al,, 2020; Sharma et al., 2021)? First, our 
analyses only used two states, inducing the models to focus on what was most salient to them. 
Note that while we could have used more states, the goal of this paper was precisely to 
characterise saliency. Since the HMM-TDE has less spectral detail than the HMM-MAR, 
broadband coherence resulted to be its most salient feature. Second, power and coherence are 585 
not independent. The HMM-MAR’s states had different spectral signatures in coherence (Figure 
4c, right-bottom panel) also because they reflected their respective spectral signatures in power 
(Figure 4c, middle-bottom panel). We established before that the HMM-MAR has great sensitivity 
to frequency changes, which were present in this data (Figure 4a, middle panel) and hence 



captured by the model. Altogether, our results do not imply that the HMM-TDE is unable to find 590 
spectral-specific changes in coherence, if they existed in the data, but that it would do so with less 
spectral detail than the HMM-MAR and it would instead prioritise broader frequency bands (or 
broadband coherence as in this example).  

 
In summary, for bivariate signals exhibiting intermittent periods of high correlation, the first feature 595 
of focus for HMM-TDE was broadband connectivity, while the HMM-MAR was more sensitive to 
detailed frequency modulations and less to broadband connectivity. 
 
3.2.3 Real data 
 600 
We ran the two HMM were then on two real datasets: LFP data from mice in wakeful rest, and 
MEG data of humans performing a simple motor task (source-reconstructed onto two motor cortex 
parcels); see Section 2.1.2 for details. 
 
When applied to the LFP data, the state time courses of HMM-MAR and HMM-TDE were relatively 605 
well correlated, with an average correlation of 0.5, for the various tested configurations (number 
of states K=2,3,4, HMM-MAR order P=3,5,7,9; HMM-TDE lags L=3,5,15,21 in steps of 1, δ = 1k, 
10k, 100k, 1m, 10m), indicating that the decompositions had overlapping properties; see Figure 
5a for the spectral properties of the data. However, we found that the HMM-TDE inference 
exhibited much less uncertainty, namely that the HMM-TDE inference assigned very high 610 
probabilities to one state at each time point, while the HMM-MAR inference often had mixed 
probabilities; see state time courses and state properties of HMM-MAR and HMM-TDE in Figure 
5bc. In particular, the HMM-TDE assigned probability of ~1.0 to 90% of the time points on 
average, while for the HMM-MAR less than 20% of the points had a state with probability near to 
1.0. This instability likely follows from the rich frequency content of high-quality LFP combined 615 
with the higher spectral sensitivity of the HMM-MAR.  
 
When applied to MEG data (see Figure 6a for a spectral characterisation of the data), Vidaurre et 
al. (2016) previously showed that the HMM-MAR could capture task-related information without 
the model having prior knowledge of the task. Here, we ran the HMMs subject by subject and, 620 
similarly to Vidaurre et al. (2016), computed the response evoked state probability (i.e., the 
average probability of each state to be active within a window around the finger tapping event), 
alongside with the state power spectra. Since the channels were made orthogonal in order to 
correct for signal leakage (Brookes et al., 2012) their coherence was greatly diminished (and not 
considered here). Like with the LFP data, the two HMM variants differed in the uncertainty of the 625 
state assignments, with the HMM-TDE assigning probabilities more sharply than the HMM-MAR 
(see Figure 6b and c, leftmost panels, for an example of the HMM-MAR and HMM-TDE state 
time courses). Still, both the HMM-MAR and HMM-TDE captured task information well; 
specifically, one state showed increasing probability of being active in the 2 seconds before the 
button press and has a drastic drop 1-2 seconds after, while another state had a specular 630 
behaviour, with very low probability of being active before the button press and a sharp increase 
2-4 seconds after (see Figure 6b and c, rightmost panels, with the response-evoked state 
probabilities for HMM-MAR and HMM-TDE respectively). Figure 6 shows the results for one 
exemplary subject; see Supplementary Figure 5 for the other subjects. 
 635 
In conclusion, here the state spectral properties were not as different between two models as in 
the synthetic simulations, but the HMM-TDE performed in a more stable way in the sense of 
having a higher certainty in the state time courses estimation.  

 



 640 

4. DISCUSSION 
 
In this study, focusing on electrophysiological data with one or two channels —both real and 
simulated, we explored in detail the behaviour of two types of HMMs: the HMM-MAR (Vidaurre et 
al., 2016) and the HMM-TDE (Vidaurre et al., 2018). We excluded other models that are instead 645 
run on amplitude time series derived from, for instance, a Fourier transform (Baker et al., 2014). 
Using synthetic data, we first measured the sensitivity of the two observation models to different 
data features in a stand-alone manner. Then, we studied what dynamic aspects of the data drive 
the inference of the HMMs. Finally, we confronted the models with real MEG and LFP data. 
 650 
Our sensitivity analysis of the standalone observation models showed that the MAR is more 
sensitive to frequency than it is to amplitude, and that it has a higher frequency resolution than 
the TDE observation model. We also found that it is harder for the TDE model to distinguish 
amplitude, and that its amplitude resolution is not symmetric (that is, the TDE is more sensitive to 
a testing amplitude that is higher than the training amplitude, and less sensitive to a testing 655 
amplitude that is lower than the training amplitude). The HMM analyses on single-channel signals 
with non-stationary properties showed that both the HMM-MAR and HMM-TDE preferentially 
capture changes in frequency when the signal is varying both in frequency and in amplitude. 
Except for degenerate solutions, the HMM-MAR could capture changes in amplitude when the 
signal did not vary much in frequency, or when the model was endowed with a high number of 660 
states. The HMM-TDE successfully captured amplitude reliably when the signal was only varying 
in amplitude, provided that the changes in amplitude were large enough. HMM-TDE showed 
generally more robust states dynamics than the HMM-MAR. Finally, we found that their 
performance depended on their hyperparameter configuration (on both the prior probability of 
remaining in the same state and on the model-specific hyperparameters). On two-channel 665 
synthetic data with transient periods of high functional connectivity (in the sense of between-
channel correlation), we found that the HMM-MAR focuses first on representing frequency-
specific changes at the expense of broadband functional connectivity (here, correlation), while 
the HMM-TDE clearly prefers focusing on broadband changes in functional connectivity above 
and beyond fine-grained fluctuations in the frequency content of the signals. Overall, we can 670 
conclude from these results that the HMM-MAR is the most appropriate model when the main 
goal of the analysis is detecting detailed changes in the frequency of the signal, or amplitude if 
the frequency is relatively stationary (for example as a result of filtering), while the HMM-TDE may 
be more appropriate in multi-channel data when the focus is on capturing spectrally-wide changes 
in functional connectivity, and, in general, when the MAR model is overparametrised and the 675 
inference collapses onto one single state.  
 
While the balance in sensitivity to frequency and amplitude for the different models was 
unambiguously characterised in our single-channel experiments, it is important to note that our 
analyses are to some extent contingent to the generative model used to sample the data and its 680 
assumptions. In particular, our generative model (as described in Section 2.1.1) for pairs of 
channels did not explicitly model spectrally fine-grained changes in coherence, and instead 
manipulated spectrally broadband changes. Here, the HMM-TDE was clearly focusing mostly on 
changes in functional connectivity, but the HMM-MAR would have probably been more sensitive 
to connectivity if the ground-truth generative model were targeted at producing frequency-specific 685 
changes in coherence. While our generative model for sampling data is a reasonable 
approximation of actual empirical data in terms of their spectral properties, the sensitivity of the 
two models to connectivity will in the end be determined by how much explained variance in the 



real data is attributable to changes in coherence vs. changes in power, and how this variance is 
spectrally distributed (i.e., coarse vs. fine-grained).  690 
 
Having a greater sensitivity to the different features present in the data may however come at a 
price. Whereas the HMM-MAR is more sensitive to detailed spectral content than the HMM-TDE, 
this can also result in greater estimation volatility or observation model overfitting (where one 
state dominates most of the time series): for example, in the LFP experiment, the state time 695 
courses for the HMM-MAR often showed great uncertainty about which state is active at each 
time point, as opposed to the HMM-TDE, which was much more stable; also see Figure 4c (left 
panel), where the HMM-MAR’s capacity to explain frequency showed large variability even when 
using similar hyperparameters. Volatility and variability can translate in lower reproducibility of the 
results, since small changes in the data are more likely to elicit larger changes in the resulting 700 
estimates. This has made the HMM-TDE the model of choice in several applications of the HMM 
in electrophysiological data (Khawaldeh et al., 2022; Bai et al., 2021; Higgins et al., 2021; Sharma 
et al., 2021). The cause of HMM-MAR greater instability is likely due to the nonlinearity of neural 
oscillatory signals, in the sense that the phase of the oscillations does not progress at linear steps, 
and, therefore, the shape of the wave is often irregular and asymmetric (that is, the instantaneous 705 
frequency of the signal varies irregularly from time point to time point; Huang et al., 2009). Since 
both the TDE and the MAR models are linear, the only way to accurately model abrupt changes 
in instantaneous frequency is through the state time courses. For this reason, over-parametrised 
models with excessive sensitivity can be more volatile, and can even exhibit quick state switches 
within single oscillatory phase. Whereas these estimates are technically not incorrect, they lend 710 
to more complex interpretations.  
 

 

5. CONCLUSION 
 715 
Unsupervised methods of analysis provide a useful tool for discovery and are freer of researcher 
bias than other methods. But, at the same time, they can be a black box in the sense that we do 
not precisely know what aspects of the data they capture. Here we focused on an unsupervised 
method often applied to electrophysiological data, the hidden Markov model. Our aim is 
characterise precisely what aspects in the data, such as frequency or amplitude modulations and 720 
functional connectivity, drive an HMM estimation. Using synthetic as well as real (LFP and MEG) 
data, we characterised the behaviour of two different types of HMM (the HMM-MAR and the HMM-
TDE). In summary, we showed that both HMMs preferentially capture frequency modulations, but 
the HMM-MAR does it in more detail —this, in turn, results in more stable estimations for the 
HMM-TDE. For the same reason, the HMM-TDE is more effective in capturing functional 725 
connectivity modulations in relatively broad frequency bands. We note that the HMM is not a 
biophysical model, and different parametrisations or model choices offer just alternative 
perspectives of the data. On these grounds, none of these can be said to be biologically more or 
less valid than the others —only more or less practically useful given the characteristics of the 
data and the research goal. 730 
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FIGURES LIST 
 
Figure 1: Analysis workflow  
Scheme of the workflow, including data, analysis type and goals of each block. 
 855 
Figure 2: Sensitivity analysis on the observation models 
a. Example of signals used (stationary sinusoids), each defined by frequency, amplitude and noise variance. b. 
The plots show how the AR (left) and the TDE (right) models can tell apart two signals that differ only in frequency 
by an amount of ∆f Hz (test frequency minus training frequency), for different values of their amplitude and of 
their noise content. The measure used is the logarithm of the likelihood ratio between train and test signal (given 860 
a fixed test signal and models trained on many training signals). Each solid line of the plot represents analyses 
for noise variance equal to 0.5, and each dotted line corresponds to noise variance equal to 1.0. By manipulating 
amplitude and noise variance, the plots show how the models perform for different signal to noise ratio (SNR) 
values. Here, AR order P=3, and TDE lags L=21, in steps of S=1; signal length T=10 seconds (25000 data points) 
c. AR and TDE sensitivity to amplitude, expressed as ∆a for the AR model (training amplitude minus test 865 
amplitude) and as training amplitude in proportion to the target test amplitude (denoted as train/test) for the TDE 
model, for different values of frequency and of noise variance. Order, lags and signal length set as in b. 
 
Figure 3: HMM experiments on one-channel non-stationary data 
a. Example of signal varying in frequency (instantaneous frequency shown in the middle panel) and amplitude 870 
(instantaneous amplitude in the bottom panel). b. Example of the probabilistic state time courses and state power 
spectra of HMM-MAR and HMM-TDE applied to the signal in a. Here, transition probability matrix prior δ = 10k, 
HMM-MAR order P=3, HMM-TDE lags L=15 (in steps of S=3). c. Cross validated explained variance of the HMM 
states predicting the ground truth frequency of non-stationary signals (like in a), for 20 repetitions of the 
experiment, for different values of the average state switching rate, manipulated via δ (order and lags set as in 875 
b). d. Similarly to a: example of a synthetic signal varying mostly in amplitude. e. Example of probabilistic state 
time courses and state power spectra of HMM-MAR and HMM-TDE applied to the signal in d. Here, δ = 10k, 
P=3, L = 15, S=3. f. Cross validated explained variance of the HMM states predicting the ground truth amplitude 
of the signals as a function of the average state switching rate (varying δ, order and lags set as in e), for 20 
repetitions of the experiment. 880 
 

Figure 4: HMM experiments on two-channel data with periodic coherence 
a. Example of the synthetic signals; instantaneous frequency is shown in the middle panel, and instantaneous 
correlation in the bottom panel. b. On the left, examples of the state time courses of HMM-MAR (top panel) and 
HMM-TDE (bottom panel) applied to the signal in a; shown also the corresponding state power spectra (middle) 885 
and coherence (right). Here, δ = 10k, HMM-MAR order P=3, and the HMM-TDE lags L=15, with S=3. c. Cross 
validated explained variance (CVEV) of the HMM states predicting the ground truth instantaneous frequency of 
the channels (average explained variance across channels, left) and channel correlation (right) for 10 repetitions 
of the experiment and for different values of the state switching rate, manipulated through δ. Order and lags set 
as in b. 890 
 

Figure 5: Analysis on LFP data 
a. LFP data, with two LFP channels (chosen such that their activity was not very correlated) from the 
hippocampus of a mouse during resting state, downsampled to 250 Hz, and the spectral content of the two 
channels. b. Example of HMM-MAR state time courses, as well as the state power spectra and the state 895 
coherence. c. Similar to b., for HMM-TDE. The models are trained on 30 mins of data with three states (here, 
HMM-MAR order P=5, HMM-TDE, lags L=15, S=3, δ=100k). 
 
Figure 6: Analysis on MEG data 
a. The data for this analysis are 2 MEG channels from the motor cortex of 8 (human) subjects who performed a 900 
simple finger tapping task. Data were downsampled to 200 Hz and band-filtered between 1 and 48 Hz. The 
spectral content of the two channels is also shown. b. Example of HMM-MAR state time courses, around a button 
press, marked by a black vertical line (left); the corresponding state power spectra (middle); and the probability 
of states around the button press (response-evoked state probability, rightmost panel). c. Same as in b., for the 
HMM-TDE model. The models are trained on 20 mins of recordings with three states. For the HMM-MAR we 905 
used order P=3, and for the HMM-TDE we used L=1, with S=1; δ=100000 in both cases. 
 


