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Abstract

Due to the complexity of biological processes, developing model-based strategies for monitoring, optimization and control is

nontrivial. Hybrid neural models, combining mechanistic modeling with artificial neural networks, have been reported as

powerful tools for bioprocess applications. In this paper, a systematic literature review is presented focused on the application

of hybrid neural models to bioprocesses by Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)

over the last 30 years. This analysis showed that hybrid neural modeling has covered a wide range of microbial processes,

animal cells, mixed microbial cultures, and enzyme biocatalysis. Hybrid neural models have been mainly applied for predictive

modeling/process analysis, process monitoring/software sensors, open- and closed-loop control, batch-to-batch control, model

predictive control, intensified design of experiments, process analytical technology, quality-by-design, and more recently, digital

twins. Hybrid modeling experienced a decline in the number of publications after a peak in 2004 and is now surging again.

A “model scale” research gap was identified, which will likely narrow by a better integration with deep learning and systems

biology in the near future. The biopharma sector is currently a major driver but applications to biologics quality attributes

(e.g. glycosylation), new modalities and downstream unit operations are significant research gaps.

1



 

1 

 

 1 

Application of Hybrid Neural Models to Bioprocesses: A Sys- 2 

tematic Literature Review 3 

 4 

1. Roshanak Agharafeie (https://orcid.org/0000-0002-8450-7954); Nova Information Management School 5 

(NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, 1070-312 Lisboa, Portugal.; 6 

D20200461@novaims.unl.pt 7 

2. Rui Oliveira (https://orcid.org/0000-0001-8077-4177); LAQV-REQUIMTE, Nova School of Science and 8 

Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.; 9 

rmo@fct.unl.pt  10 

3. João R. C. Ramos (https://orcid.org/ 0000-0002-6832-6774); LAQV-REQUIMTE, Nova School of Science 11 

and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.; 12 

jr.ramos@campus.fct.unl.pt  13 

4. Jorge M. Mendes (https://orcid.org/0000-0003-2251-3803); Nova Information Management School 14 

(NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, 1070-312 Lisboa, Portugal.; 15 

jmm@isegi.unl.pt 16 

 17 

Corresponding author: Roshanak Agharafeie; Nova Information Management School (NOVA IMS), 18 

Universidade Nova de Lisboa, Campus de Campolide, 1070-312 Lisboa, Portugal.; 19 

D20200461@novaims.unl.pt; Phone Number: +351925991987 20 

 21 
 22 

Keywords 23 

Artificial neural network; Bioprocess; Hybrid model; Systematic literature review 24 

 25 

Abbreviations 26 
 27 

Hybrid artificial neural network (HANN) 28 

Genome-scale Models (GEM) 29 

Monoclonal antibody (mAb) 30 

Design of experiments (DOE) 31 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 32 

Radial Basis Function Network (RBFN) 33 

Non-linear programming (NLP) 34 

Chinese hamster ovary (CHO) 35 

Proportional–integral–derivative controller (PID controller) 36 

Process analytical technology (PAT) 37 

Chemical oxygen demand (COD) 38 

Artificial neural network (ANN) 39 

Genetic algorithm (GA) 40 

Feedforward neural networks (FFNN) 41 

mailto:D20200461@novaims.unl.pt
mailto:rmo@fct.unl.pt
mailto:jmm@isegi.unl.pt
mailto:D20200461@novaims.unl.pt


2 

 

Activated Sludge model (ASM) 42 

Convolutional neural network (CNN) 43 

Long short-term memory neural networks (LSTM) 44 

Particle swarm optimization (PSO) 45 

Nonlinear autoregressive exogenous (NARX) 46 

Backpropagation neural networks (BP-NN) 47 

Quality by design (QbD) 48 

Poly(3-hydroxy alkanoates) (PHA) 49 

Poly-β-hydroxybutyrate (PHB) 50 

Adaptive Moment Estimation Moment (ADAM) 51 

Rectified Linear Unit (ReLU) 52 

Abstract  53 

Due to the complexity of biological processes, developing model-based strategies for monitoring, optimization 54 

and control is nontrivial. Hybrid neural models, combining mechanistic modeling with artificial neural net- 55 

works, have been reported as powerful tools for bioprocess applications. In this paper, a systematic literature 56 

review is presented focused on the application of hybrid neural models to bioprocesses by Preferred Reporting 57 

Items for Systematic Reviews and Meta-Analyses (PRISMA) over the last 30 years. This analysis showed that 58 

hybrid neural modeling has covered a wide range of microbial processes, animal cells, mixed microbial cul- 59 

tures, and enzyme biocatalysis. Hybrid neural models have been mainly applied for predictive modeling/pro- 60 

cess analysis, process monitoring/software sensors, open- and closed-loop control, batch-to-batch control, 61 

model predictive control, intensified design of experiments, process analytical technology, quality-by-design, 62 

and more recently, digital twins. Hybrid modeling experienced a decline in the number of publications after a 63 

peak in 2004 and is now surging again. A “model scale” research gap was identified, which will likely narrow 64 

by a better integration with deep learning and systems biology in the near future. The biopharma sector is 65 

currently a major driver but applications to biologics quality attributes (e.g. glycosylation), new modalities 66 

and downstream unit operations are significant research gaps.  67 

 68 
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1 Introduction 69 

The use of mathematical models for bioprocess monitoring, optimization, and control has a long history in 70 

tandem with the progress in computation power and process analytical technology[1]. Among the many mod- 71 

eling theories applied to bioprocesses, mechanistic modeling has been the preferred approach. As early as mid- 72 

70s, Cooney et al. reported an unstructured bioprocess model (elemental material balances combined with 73 

macroscopic material balances and off-gas analysis) for computer-based bioprocess monitoring and control 74 

[2]. Bioprocess mechanistic modeling has been however hindered by the lack of fundamental knowledge com- 75 

pared to other engineering fields. With the emergence of systems biology in the early 2000s [3], several GE- 76 

nome-scale Models (GEM) have been reconstructed for industrially relevant cell factories. GEMs represent 77 

significant progress in the mechanistic understanding of cell factories but they are incomplete and difficult to 78 

deploy in practice. GEMs are typically large-scale (with 1000s of reactions) with implicit kinetics and regula- 79 

tory processes that are largely unknown. Due to the complexity of biological systems, hybrid mechanistic/ma- 80 

chine learning has emerged as a cost-effective methodology for bioprocess applications [3–7]. Hybrid models 81 

have been classified as semiparametric models as they combine parametric and nonparametric functions in the 82 

same mathematical structure [8]. The parametric functions are derived from knowledge of well-established 83 

mechanisms. They have a fixed mathematical structure and a fixed number of parameters with physical inter- 84 

pretation. On the contrary, the nonparametric functions are entirely derived from process data. They have a 85 

loose structure without physical interpretation. Examples of the latter are artificial neural networks, which 86 

have the job to learn from data the cause-effect relationships lacking mechanistic explanation [4]. Hybrid mod- 87 

eling may thus be seen as a methodology to augment existing but incomplete mechanistic models with machine 88 

learning techniques.  89 
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The bioprocess engineering community has embraced this challenge since the early 90s as measured by the 90 

growing volume of publications on this topic. Recently, some review papers have examined theoretical and 91 

practical challenges directly or indirectly touching the hybrid modeling field. Tsopanoglou et al. recently re- 92 

viewed mechanistic, statistical, and hybrid modeling strategies for monoclonal antibody (mAb) upstream pro- 93 

cessing. They compared these three modeling techniques and emphasized the high potential of hybrid models 94 

in the era of Biopharma 4.0 [9]. Vinzenz et al. (2018) reviewed the state-of-the-art of model-based tools for 95 

experimental design and concluded that combining a hybrid model with the design of experiments (DOE) is a 96 

powerful tool for process development. The resulting “smart DOE” technique reduced the number of iterations 97 

and the overall duration of process validation [10]. Narayanan et al. (2019) reviewed model-based methods for 98 

Industry 4.0 emphasizing the potential of hybrid modeling to fulfill Industry 4.0 challenges [11]. Rajulapati et 99 

al. reviewed the hybrid modeling field in a systems engineering perspective [12]. There are different ways to 100 

combine mechanistic models with machine learning into hybrid structures with particular identification chal- 101 

lenges [12]. Serial and/or parallel hybrid structures may be static or dynamic, each of them requiring different 102 

training methods.  103 

With improved data repositories by new data lakes in the biomanufacturing industry, more opportunities will 104 

likely be created for machine learning and hybrid modeling in particular. Managing and taking advantage of 105 

hybrid neural models, traditional data, and big data may have a prominent role in the deployment of industry 106 

4.0 [13]. In this study, we present a systematic literature and meta-analyses (PRISMA) explicitly focused on the 107 

application of hybrid neural network (HANN) models to bioprocesses. HANNs are a subclass of hybrid mod- 108 

els that combine artificial neural networks with mechanistic models. Although other machine learning tech- 109 

niques have been combined with mechanistic modeling, artificial neural networks have been by far the 110 
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preferred technique in a hybrid modeling context. The following fundamental research questions guided the 111 

present literature review: 112 

Q1: In which bioprocesses have HANNs been applied? 113 

Q2: In which process steps could HANNs be applied and what is the potential benefit? 114 

Q3: What is the state-of-the-art of HANNs applications to bioprocesses? 115 

 116 

From the answers to these questions, a research gap analysis is performed and future directions are pointed 117 

out. 118 

 119 

2 Hybrid artificial neural network (HANN) modeling 120 

HANNs combine parametric functions based on knowledge of well-established mechanisms with artificial 121 

neural networks in the same mathematical structure[8]. Many different hybrid model architectures have been 122 

published. The vast majority of HANNs reviewed here are well-represented or are extensions of the general 123 

bioreactor hybrid model represented in Figure 1[14–19]. This model is briefly reviewed for context.  124 

A stirred tank bioreactor is typically modeled by a system of ordinary differential equations (ODEs) derived 125 

from macroscopic material balances and/or intracellular material balances, taking the following general form: 126 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝜗, 𝑢, 𝑡)               (1a), 127 

𝑦 = ℎ(𝑥, 𝜗)                (1b),  128 

with 𝑡 the independent variable time, 𝑥(𝑡) the process state vector, 𝑢(𝑡) the vector of exogeneous inputs, 129 

𝜗(𝑡) a vector of variables with unknown defining functions, and 𝑦(𝑡) a vector of observable variables. These 130 

equations are of parametric nature with fixed structure stemming from prior knowledge. Some process varia- 131 

bles lack mechanistic basis (e.g. biologic kinetics or physiochemical properties of molecular species pertaining 132 

to the state vector 𝑥(𝑡)) are defined as loose nonparametric functions, 𝜗(∙). HANN models use artificial 133 

neural networks to describe 𝜗(∙) as function of the process state, 𝑥(𝑡), exogeneous inputs, 𝑢(𝑡) and process 134 
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time, 𝑡. As shown in this review, shallow feedforward neural networks (FFNNs) (with 3 layers only) have 135 

found wide use in hybrid modeling. Taking the general case of deep FFNNs with arbitrary number of nh 136 

hidden layers, the HANN model is completed with the following equations: 137 

𝐻0 = 𝑔(𝑥, 𝑢, 𝑡)                (2a) 138 

𝐻𝑖 =   𝜎 (𝑤𝑖 ∙ 𝐻𝑖−1 + 𝑏𝑖), 𝑖 = 1, … , 𝑛ℎ            (2b) 139 

𝜗(∙) = 𝑤𝑛ℎ+1 ∙ 𝐻𝑛ℎ + 𝑏𝑛ℎ+1                  (2c) 140 

A non-linear pre-processing function, 𝑔(𝑥, 𝑢, 𝑡), may be used to compute the FFNN inputs to improve the 141 

training. The 𝜎(∙) represents the nodes transfer function in the hidden layers. The nodes connection weights 142 

𝑤 = {𝑤1, 𝑤2, … , 𝑤𝑛ℎ+1} and 𝑏 = {𝑏1, 𝑏2, … , 𝑏𝑛ℎ+1} are calculated during the training of the model. Most 143 

HANN studies adopted a training methodology based on the Levenberg-Marquardt optimization, indirect sen- 144 

sitivity equations, cross-validation and tanh activation function. Recently, hybrid deep approaches have been 145 

proposed based on deep multilayered FFNNs, adaptive moment estimation algorithm (ADAM), semidirect 146 

sensitivity equations, stochastic regularization and rectified linear unit (ReLU) activation functions in the hid- 147 

den layers. For further details, the reader is referred to Pinto et al., 2022[19]. Lastly, the general bioreactor 148 

model (Eqs.1-2) may be easily adapted to a wide range of unit operations described by systems of ODEs.  149 

3  Systematic literature review 150 

This review focuses on the application of HANNs to bioprocesses. The preferred reporting items for system- 151 

atic reviews and meta-analyses (PRISMA) methodology were adopted [20]. For bibliometric analysis, the Men- 152 

deley application allowed the extraction of metadata and the elimination of duplicates. For network analysis, 153 

the VOSviewer software tool (V1.6.18) has been applied to visualize the dataset's extracted information and 154 

obtain quantitative and qualitative outcomes. The collection of articles obeyed to the following principles (see 155 

appendix for details): 156 

-  Select articles from two databases, Scopus and Web of Science, based on the algorithms. 157 
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-  Collect the documents of some well-known authors on this topic and refine them by keyword screening 158 

-  Select relevant articles cited by other articles (backward citation). 159 

3.1  PRISMA Flow Diagram 160 

The articles were selected based on a selection algorithm (Appendix 1) and the PRISMA flow diagram in- 161 

structions [21], which are divided into four categories: 162 

- Scopus: The algorithm initially retrieved 368 publications from the Scopus database and after screening 82 163 

relevant cases were obtained. 164 

- Web of Science (WoS): The algorithm initially retrieved 201 publications from the WoS database, and after 165 

screening 79 relevant cases were obtained. 166 

- From the well-known authors’ search, 685 publications were extracted, and at the final screening step 53 167 

relevant cases were obtained. 168 

- From the backward citation, 69 relevant cases were obtained. 169 

After merging the articles and deletion duplicates, 162 publications were selected for analysis (Figure 2). 170 

3.2 Statistical analysis of the PRISMA output 171 

In this literature review, we analyzed 162 journal and conference papers published before 18th February 2022. 172 

The first report was in 1992, with a distinctive peak in 2004 (15 papers) followed by a decline. The number 173 

of papers is surging again (Appendix 2-Figure 4).  174 

The first ten document sources that have published the highest number of articles, their ranking, publisher, 175 

and H-Index are summarized in Table 1(Appendix 2). Among the 162 papers, the ten most cited papers per 176 

year are listed in Table 2 (Appendix 2). 177 

It is also apparent in the subject area analytical report of Scopus that over the three decades, two subjects, 178 

“chemical engineering” and “Biochemistry, Genetics, and Molecular Biology” stand out with the highest num- 179 

ber of publications. “Energy” and “Environmental Science” are two subjects that have attracted more attention 180 

since 2000. As expected, in the second decade (2001-2010), research on computer science subjects has grown 181 

significantly to develop methods in this field (Appendix 2-Figure 5). 182 
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 183 

3.3 Keywords Analysis  184 

The author´s keywords (included in the keyword section of the article) were analyzed at first. Additionally, 185 

indexed keywords (Indexed keywords are chosen by the database and are standardized to vocabularies derived 186 

from thesauri) were also analyzed because some articles did not specify the author’s keywords. Keyword 187 

analysis and visualization were performed with the help of VOSviewer. Firstly, the cooccurrence of authors´ 188 

keywords was analyzed with the full counting method and two times occurrences (in two different papers) as 189 

the minimum. Then, similar keywords were harmonized, and finally uninformative keywords were omitted, 190 

such as hybrid model, artificial neural network, and modeling. As a result, 29 author´s keywords were obtained 191 

(Appendix 2-Figure 6) (Appendix 2-Table 3). 192 

The visualization showed that hybrid models were first applied to the production of antibiotics. Then, it 193 

continued with wastewater treatment, ethanol production, design of experiments (DoE), process analytical 194 

technology (PAT), and quality by design (QbD). Recently some subjects, such as biopharmaceuticals and big 195 

data, have appeared. The “E. coli”, “Bordetella pertussis”, and “Bacillus Thuringiensis” are microorganisms 196 

that appeared in this analysis. 197 

3.3.1 Keywords Occurrence Over Publication Year 198 

The co-occurrence of all 359 keywords (author´s keywords and indexed keywords) was analyzed over time. 199 

Figure 3 (Appendix 2) summarizes all keywords’ occurrence over publication year. Due to the large number 200 

of keywords, three time periods were considered. 201 

3.3.1.1  Keywords occurrence from 1992 until 2000 202 

In this period,157 keywords were identified, which were reduced to 22 by the previously described keyword 203 

analysis algorithm. Based on the information output of keywords occurrence by year overlay visualization 204 

(Appendix 2-Figure 7), the HANN modeling was mainly applied to fermentation and enzymatic reaction in 205 

this period. Antibiotics and ethanol were the most frequent keywords referring to products. Saccharomyces 206 

cerevisiae and Zymomonas Mobilis were two microorganisms that appeared in this period. Computer 207 
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simulation, Kalman filtering, functional link networks, and heuristic methods were combined/compared with 208 

the HANNs to control the process or to optimize and/or to estimate process parameters. 209 

 210 

3.3.1.2  Keywords occurrence from 2001 until 2010 211 

In this period, 728 keywords were identified, and then reduced to 63 by keyword analysis. Some new keywords 212 

appeared such as recombinant proteins, immunoglobulin g1, interlukin2, hydroxybutyrate, mammalian cell, 213 

CHO, cell culture, and system biology. Wastewater, immobilized enzyme, and fungal culture are other key- 214 

words that appeared during this period (Appendix 2-Figure 8).  The “E. coli”, “Saccharomyces cerevisiae”, and 215 

“yeast” are subject microorganisms that appeared in this period. 216 

 217 

3.3.1.3 Keywords occurrence from 2011 until February 2022 218 

In this period, 935 keywords were identified, and then reduced to 53 by keyword analysis. New keywords 219 

appeared such as the design of experiments, critical process parameters, process analytical technology, digital 220 

twins, and big data. These are now hot topics for the application of hybrid models to bioprocesses. Moreover, 221 

fuzzy neural network, genetic algorithm, deep neural network, and intensified design of experiment are key- 222 

words that appeared in this period. This result suggests a growing interlink between the areas of machine 223 

learning and hybrid modeling (Appendix 2-Figure 9). The “E. coli”, “Bordetella pertussis”, “yeast”, “microal- 224 

gae”, and “Saccharomyces cerevisiae” are subject microorganisms that appeared in this period.  225 

 226 

4 Discussion 227 

 228 

4.1 The onset of hybrid modeling 229 

The first HANN application to bioprocesses was reported by Psichogios and Ungar (1992), where the au- 230 

thors compared hybrid modeling, Kalman filtering, non-linear programming (NLP), and standalone neural 231 

networks for predictive modeling and state estimation in a fed-batch bioreactor [4]. The HANN model 232 
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consisted of a feedforward neural network (FFNN) (with a single hidden layer) connected with a system of 233 

ordinary differential equations derived from macroscopic material balances (well represented by the general 234 

bioreactor hybrid model of Fig. 1). The indirect training method using the sensitivity equations was intro- 235 

duced in this study, which allowed to train the FFNN by error backpropagation in a similar fashion to a 236 

standalone FFNN. The authors concluded that extended Kalman filtering and NLP estimation performed bet- 237 

ter than the hybrid approach when a detailed mechanistic model is available. If however, the mechanistic 238 

model is incomplete or unreliable, then the hybrid model outperformed the Kalman filtering and NLP esti- 239 

mation. The key messages of this pioneering study were: 1) effective indirect training of the FFNN using the 240 

sensitivity method, 2) hybrid models are more flexible (better interpolation) than standalone mechanistic 241 

models, and 2) hybrid models have better generalization properties and are easier to interpret than standalone 242 

neural network models.  243 

Shortly after, Thompson and Kramer (1994) conducted a study in which they applied a hybrid model to a 244 

fed-batch penicillin fermentation. The hybrid model consisted of a Radial Basis Function Network (RBFN) 245 

connected in parallel with a mechanistic kinetic model to calculate specific kinetic rates. The RBFN worked 246 

as residual model to correct the output of the fundamental kinetic model. The kinetic rates were then fed to 247 

the bioreactor material balance equations (connected in parallel with the kinetic models). This pioneering 248 

study has framed hybrid models as parallel and/or serial semiparametric mathematical structures that may 249 

grow in complexity depending on prior knowledge. They also concluded that less data is required for param- 250 

eter estimation, and more accurate and consistent prediction of the hybrid model are obtained in comparison 251 

to the standalone mechanistic or neural network models [6]. 252 

Schubert et al. (1994) studied the application of hybrid models for state and parameter estimation, feed rate 253 

optimization (open-loop control problem), and closed-loop control of a fed-batch baker's yeast process. While  254 

Psichogios and Ungar[4] and Thompson and Kramer[6] used synthetic data, Schubert et al. (1994) addressed a 255 

real-life problem. The hybrid model consisted of a simultaneously serial and parallel structure composed of a 256 

FFNN (with 12 inputs, single hidden layer with 10 nodes and 3 outputs), dynamical ordinary differential 257 
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equations and a fuzzy expert system to decide on which process conditions the FFNN predictions are reliable. 258 

This pioneering study pointed out for the first time to the need of reliability monitoring of the neural network 259 

outputs outside the training domain and to adjust the model accordingly. A simple rule-based expert system 260 

was adopted for this purpose. It was concluded that process optimization and control based on hybrid models 261 

have a higher benefit/cost ratio than other methodologies [22,23].  262 

4.2 Microbial culture 263 

In the early years, hybrid models were mainly applied to traditional microbial processes such as Baker’s yeast 
264 

[22,23], antibiotics production[24] and beer/bioethanol production [25–29]. Preusting et al. (1996) addressed the 265 

historical penicillin process at the production scale[24]. The hybrid model structure was similar to Schubert et 266 

al. (1994)[22], using an expert system to weight the outputs of the neural network and fundamental kinetic 267 

model depending on the reliability of the FFNN. This model was used to optimize (open-loop control problem) 268 

the large-scale production of penicillin using the HYBNET software.  269 

Simutis et al. (1998) developed a simple hybrid model of S. cerevisiae showing successful predictive modeling 270 

of Diacetyl formation during beer production in a production plant[30]. In the study by da Silva Henriques et 271 

al (1999) a hybrid model for the alcoholic Zymomonas mobilis fermentation was developed[28]. The model 272 

consisted of a 3-layers FFNN (describing the kinetic rates) connected in series with macroscopic mass-balance 273 

equations. Meleiro et al. (2000) applied a hybrid model for dynamic modeling and control of an industrial- 274 

scale S. cerevisiae fermentation process for bioethanol production. They combined a 3-layers FFNN with 275 

macroscopic material balances and simple Monod-type kinetics. The hybrid model provided online estima- 276 

tions of key process state variables and kinetic parameters based on reliable and easily accessible measure- 277 

ments. It enabled the implementation of efficient automatic control strategies [25]. Recently, hybrid modeling 278 

of bioethanol production was revisited by Da Silva Pereira et al. (2021)[31]. Bioethanol was produced by a 279 

flocculating yeast grown on cashew apple juice. A hybrid model was built consisting of three shallow FFNN 280 

combined with mass balance equations (biomass, substrate, and product). Particle swarm optimization (PSO) 281 
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was adopted to optimize bioethanol production (open-loop/dynamic optimization problem) at aid of the hybrid 282 

model, thereby achieving high yield and productivity.  283 

Hybrid modeling of the Pichia pastoris yeast for recombinant protein production was first addressed by Fer- 284 

reira et al. (2014) Ferreira[17]. The authors applied a serial hybrid model (3-layers FFNN combined with ma- 285 

terial balance equations in series) for dynamic modeling of P. pastoris GS115 expressing scFv in a pilot 50L 286 

bioreactor. The hybrid model was subsequently employed for iterative batch-to-batch control showing a four- 287 

fold titer improvement after 4 optimization cycles. Batch-to-batch control using hybrid models and evolution- 288 

ary programming was addressed in a simulation study by Teixeira et al. (2006)[32]. Constraining the optimiza- 289 

tion design space depending on the reliability of the FFNN was shown to be essential to ensure stable conver- 290 

gence to the global optimum. Another important point is that the hybrid model should not include “wrong” 291 

mechanisms or otherwise an off-set to the global optimum is observed. Recently, hybrid modeling of P. pas- 292 

toris was revisited by Pinto et al. (2022) using state-of-the-art deep learning methods[19]. FFNN networks with 293 

varying depths and rectified linear unit (ReLU) nodes were combined with material balance equations in the 294 

form of deep hybrid models. Deep learning techniques, namely the adaptive moment estimation method 295 

(ADAM), stochastic regularization and depth-dependent weights initialization were evaluated in a hybrid 296 

modeling context. The semi-direct training method was proposed to reduce the CPU time of the sensitivity 297 

equations, which then become independent of the size and depth of the neural network. The CPU time for 298 

training deep HANN models was significantly reduced.  299 

Recombinant E. coli was addressed by von Stoch et al. (2016,2017), who introduced the methodology of 300 

intensified design of experiments (iDoE) coupled with dynamic hybrid modeling[33,34]. This approach was 301 

applied to an industrial E. coli process expressing a therapeutic protein. iDoE is a dynamic design of experi- 302 

ments based on intraexperiment step changes of design factors (such as pH, temperature and feed rates) and 303 

dynamic modeling. Contrary to standard DoE, different combinations of process conditions are explored step- 304 

wise in the same experiment. A serial hybrid dynamic model (FFNN + Material balance equations) was 305 

adopted to captured the dynamic relationship between step-wise variations of design factors and process 306 
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response variables. The authors concluded that intraexperimental variations of process conditions could reduce 307 

the number of experiments by a factor, which in limit would be equivalent to the number of intraexperimental 308 

variations per experiment. Bayer et al. (2020) further explored the iDoE methodology in a 20L fed-batch E. 309 

coli process expressing hSOD. The hybrid model could accurately predict the endpoint biomass concentration 310 

and product titer as well as the respective time-resolved trajectories [35]. These studies emphasized the potential 311 

of hybrid modeling to address the challenges of Process Analytical Technology (PAT) and Quality by Design 312 

(QbD) in the biopharma sector.  313 

Hybrid modeling of biopolymers production by bacteria has been addressed in several studies [36–39]. One of 314 

the first studies addressing Polyhydroxyalkanoates (PHA) production by bacteria was reported by Peres et al 315 

(2004)[39]. A competitive hybrid structure was applied where a gating system was trained with the expectation 316 

maximization (EM) algorithm to learn in which regions of the input space the FFNN performs better than the 317 

competing mechanistic model. This hybrid approach was further detailed in a follow-on paper applied to 318 

baker’s yeast[40]. Production of Poly-β-hydroxybutyrate (PHB) by Ralstonia Eutropha has been addressed by 319 

Patnaik et al. (2008)[41]. The authors demonstrated the superiority of the hybrid model (H-model) to the neural- 320 

cum-dispersion model (D model) and to the neural network model (N-model). Recently, Luna et al. developed 321 

a HANN model with four layers of five nodes to describe the continuous production of PHA by Pseudomonas 322 

Putida GPo1[42]. The hybrid model was shown to describe the process in a wide range of operating conditions, 323 

including single and dual nutrient-limited growth conditions. 324 

 325 

4.3 Animal cell culture 326 

Animal cells are ubiquitous in the biopharmaceutical industry and are getting momentum in the hybrid mod- 327 

eling community [7,35,43–47]. One of the first hybrid modeling studies of mammalian cell culture was reported 328 

by Dors et al. (1995)[48]. Fu and Barford (1996) reported one the first consistent HANN model applications to 329 

animal cells' monoclonal antibody production. The HANN model predicted substrate consumption, toxic by- 330 

product accumulation, cell growth, cell composition, and metabolic product formation [49]. They reached a 331 
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better result compared to the standalone mechanistic model or artificial neural network model. Teixeira et al. 332 

(2005) developed a hybrid model for BHK-21 cultures expressing the fusion glycoprotein IgG1-IL2[50]. The 333 

model consisted of a simultaneously serial and parallel structure for dynamic predictive modeling. A shallow 334 

FFNN was connected in parallel with a fundamental kinetic model. The experience measure technique was 335 

adopted to automatically switch between the fundamental model and FFNN predictions depending on the 336 

reliability of the latter. The hybrid model was used to optimize the feeding strategy (dynamic optimization / 337 

open-loop control problem) of glucose and glutamine. Later on, Teixeira et al (2007) extended the hybrid 338 

model to incorporate knowledge of the metabolic network using the concept of elementary flux modes[15]. The 339 

resulting hybrid model predicted simultaneously extracellular concentrations and intracellular fluxes. The 340 

model was adopted for on-line optimizing control, which delivered a 10% titer increase in relation to the 341 

control experiment. This was one of the first attempts to include metabolic detail in hybrid models. Recently, 342 

Maton et al. (2022) applied a similar elementary flux modes hybrid model to a hybridoma HB-58 cell line[51]. 343 

Aehle et al. (2010) developed a serial hybrid model for on-line estimation of viable cell concentration in fed- 344 

batch CHO cultures[52]. The authors concluded that the hybrid model outperformed other data-based and 345 

model-based techniques. Narayanan et al. (2019) developed a serial hybrid model (FFNN with one hidden 346 

layer connected to material balances) for a CHO fed-batch process (81 batches in a 3.5-liter bioreactor) [53]. 347 

They used the mass balance equation as the mechanistic part of the hybrid model to predict the process varia- 348 

bles (substrate and metabolite concentration, cell density, and product concentration). The hybrid model re- 349 

vealed a superior capability to predict CHO dynamics using only the initial and process conditions as inputs, 350 

in comparison to other statistical modeling methods. Kotidis et al. (2020) developed a complex serial hybrid 351 

model to describe N-glycosylation of recombinant proteins in CHO cultures [54]. The hybrid model utilized the 352 

extracellular concentration of metabolites and certain amino acids as inputs. A metabolic module calculated 353 

the specific growth rate and the specific antibody production rate. These rates were then fed to a nucleotide 354 

sugar donors module that calculated the respective intracellular concentration. The nucleotide sugar donors 355 

concentrations were then inputted to a 4-layers FFNN, which calculated glycans distribution. The overall hy- 356 

brid model successfully simulated the glycoforms distribution of four different proteins (two IgGs and two 357 
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fusion proteins, EPO-Fc and Fc-DAO) expressed in three CHO cell lines (GS-CHO, CHO–K1, CHO–S). This 358 

study was one of the first addressing hybrid modeling of glycosylation. As follow up of the previous E. coli 359 

study, Bayer et al (2021) applied the same iDoE/hybrid modeling approach to reduce the validation burden of 360 

CHO cultures in a PAT and QbD context[55]. They also investigated the transferability of hybrid modeling 361 

along process scales (300 mL shaker-scale and 15 L bioreactor). The authors concluded that the hybrid model 362 

trained on 300 ml bolus feeding shake flask DoE could be used to correctly estimate the cell behavior and 363 

product formation in a 15 L stirred-tank bioreactor. 364 

4.4 Mixed Microbial Cultures 365 

Mixed microbial cultures (MMC) are of widespread use in waste treatment plants commonly termed as acti- 366 

vated sludge. Reducing wastewater treatment costs has long been of interest, and modeling has proven an 367 

essential tool to optimize wastewater treatment plants (WWTP). Due to the intrinsic complexity of WWTP, 368 

some researchers combined a hybrid artificial neural network with other methods or models to estimate and/or 369 

control process parameters. Côté et al (1995) reported one of the first studies where a hybrid model was applied 370 

to a WWTP[56]. A mechanistic model was combined with a three-layer FFNN in parallel. The job of the FFNN 371 

was to extract cause-effect patterns from the mechanistic model residuals, thereby correcting its outputs (re- 372 

sidual modeling strategy). The parallel coupling of the mechanistic model with the FFNN provided more 373 

accurate simulations of five key variables of the activate sludge process. Zhao et al. (1997) developed a hybrid 374 

dynamic model of a Sequencing Batch Reactor (SBR) consisting of a simplified mechanistic model and a 375 

FFNN connected in parallel also following the residual modeling approach[57]. Anderson et al. (2000) applied 376 

different hybrid mechanistic/FFNN models for dynamic modeling of WWTPs and process control[58]. They 377 

concluded that hybrid models do not necessarily produce superior control results. Sung Lee et al. (2002) ap- 378 

plied a parallel hybrid model to a full-scale WWTP[59]. The authors reported more accurate predictions with 379 

good extrapolation properties of the hybrid model compared with other modeling approaches. Fang and Dai 380 

(2003) developed a simple hybrid model for chemical oxygen demand (COD) prediction [60]. Azwar et al. 381 

(2006) proposed a hybrid FFNN/Proportional Integral controller of dissolved oxygen concentration in a SBR 382 

[61]. The hybrid control scheme consisted of a basic FFNN controller in parallel with a proportional integral 383 
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(PI) controller. This approach was shown to outperform other nonhybrid control schemes. Peres et al. (2006) 384 

reported a hybrid modular model applied to a phosphorous removal WWTP[62]. The hybrid model consisted 385 

of a mixture of experts (ME) network and a gating system connected in series with material balance equations. 386 

This serial/parallel hybrid structure with competing expert networks was trained with the EM algorithm. The 387 

final ME network was shown to better represent the cellular kinetics structure, which resulted in higher accu- 388 

racy and generalization capacity of the hybrid model. Xiao et al. (2020) developed a hybrid model of dark 389 

fermentation for biohydrogen production. A NARX-BP hybrid neural network consisting of a two-stage model 390 

was developed, which combined NARX (nonlinear autoregressive exogenous) and BP-NN (Back propagation 391 

neural networks). The model could predict biogas production with high accuracy[63]. Cheng et al. (2021) pro- 392 

posed a complex hybrid model that combined the Activated Sludge model (ASM) (knowledge-based model) 393 

and deep neural networks (data-based model) [64]. For the latter, a convolutional neural network (CNN) was 394 

combined with a long short-term memory network (LSTM). The CNN was used to extract data spatial features 395 

whereas the LSTM was used to extract temporal features. The integration of knowledge- and data-based mod- 396 

els in parallel was achieved with a FFNN model connected in series. This complex hybrid model was applied 397 

to a sewage treatment plant. It showed an improvement in the prediction accuracy in comparison with the 398 

typical existing models. The authors could also prove the hybrid model's stability by applying it to different 399 

datasets. This paper is one of the first hybrid modeling studies incorporating state-of-the-art deep neural net- 400 

works and the ADAM training method.  401 

 402 

4.5 Enzymatic bio-catalysis 403 

Enzyme reaction mechanism can be quite complex and difficult to model mechanistically. A few studies ap- 404 

plied HANNs to enzymatic conversion processes. van Can et al. (1998, 1999) addressed the problem of enzy- 405 

matic conversion of penicillin G to 6-ami-nopenicillanic acid (6APA) and phenyl acetic acid (PhAH) by the 406 

enzyme penicillin acylase[65,66]. The extrapolation properties of hybrid models combining FFNNs, white-box 407 

kinetics and macroscopic material balance equations were investigated. It was concluded that when the 408 
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macroscopic material balances are correctly formulated, the identification data only have to cover the ampli- 409 

tude domain of the rate terms without taking into account the future frequency domain of the complete model. 410 

Silva et al. (2008) developed a hybrid model of penicillin G acylase immobilized in chitosan for the production 411 

of amoxicillin [67]. Three kinetic models were compared, namely a mechanistic, a semi-empiric, and a hybrid– 412 

neural model. It was shown that the hybrid model could accurately predict the reaction rates for conditions 413 

where the semi-empiric model failed (e.g. at low substrate concentrations occurring at the end of the fed-batch 414 

industrial process). This study did not explicitly consider the reaction-diffusion problem typically occurring 415 

in immobilized catalysis. 416 

4.6 Downstream applications 417 

The keyword analysis in this study clearly shows that only a few hybrid modeling publications have addressed 418 

downstream unit operations. One of the early studies was that by Piron et al. (1997), who applied a parallel 419 

hybrid model to cross-flow microfiltration in a baker’s yeast process[68]. The hybrid model consisted of a static 420 

FFNN connected in parallel with a dynamic material balance equation. They concluded that a recurrent neural 421 

network provided better approximation of process dynamics than the hybrid model and questioned the validity 422 

of the material balance equation. Rajabzadeh et al. (2012) estimated the filtration time and total solid concen- 423 

tration in the biomass leachate in permeate flux during reverse osmosis[69]. They applied a FFNN with four 424 

neurons in a single hidden layer. The standard Levenberg−Marquardt algorithm was chosen to train the FFNN. 425 

The model predicted more than 80% rejection efficiency of calcium, magnesium, phosphorus, and silica (for 426 

three types of biomass leachate samples) in the reverse osmosis permeate. Nagrath et al. (2004) applied hybrid 427 

models to represent complex preparative chromatographic systems, thereby significantly reducing the compu- 428 

tational time required for simulation and optimization [70]. Other recent applications of hybrid models in chro- 429 

matography are optimization, cleaning, and resin aging [43,47,71]. Narayanan et al. (2021) compared a HANN 430 

model with a mechanistic lumped kinetic model. They applied these models to in-silico data, and the results 431 

showed a higher prediction accuracy of the HANN model[72]. 432 
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 433 

4.7 Research Gap 434 

Based on information extracted from Scopus analysis (Figure 4), the publications number shows a peak in 435 

2004 followed by a decline and recovery. HANN modeling is surging again with expected high growth in the 436 

near future. Neural networks applications to bioprocesses have shown similar publication dynamics, with an 437 

explosion in the 80s/early 90s followed by a prolonged decline. The resurgence of neural networks was trig- 438 

gered by advances in deep learning techniques, particularly the ADAM method with stochastic regularization 439 

that enabled efficient training of deep neural networks with innovative configurations such as the CNN and 440 

the LSTM. Most of the hybrid modeling studies so far applied simple shallow neural networks. With a signif- 441 

icant delay, hybrid modeling is now incorporating some of the advances in deep learning[19,64]. Pinto et al 442 

(2022) recently compared traditional shallow hybrid modeling (using the Levenberg-Marquardt training cou- 443 

pled with the indirect sensitivities, cross-validation and tanh activation function) with a novel hybrid deep 444 

modeling approach (using ADAM training, semidirect sensitivities, stochastic regularization, multiple hidden 445 

layers and ReLU activation functions)[19]. A clear advantage of adopting hybrid deep models both in terms of 446 

predictive power and in terms of computational cost in relation to the shallow hybrid case is shown in this 447 

study A significant result was that for the same problem the hybrid deep approach systematically generalized 448 

better than the shallow hybrid model. An “explosion” of hybrid deep modeling will likely be observed in the 449 

near future incorporating state-of-the-art neural network architectures and deep learning algorithms. As for 450 

the neural network reseach gap, published hybrid modeling studies also seem to be limited to relatively simple 451 

mechanistic models. There seems to be an overall “model scale” research gap. Large-scale hybrid models 452 

embodying complex and highly dimensional mechanistic models are almost absent in the literature. The pen- 453 

etration of systems biology techniques in routine bioprocess operation will likely challenge novel hybrid mod- 454 

eling methods and applications in the future. Genome-scale models (GEMs) of industrially relevant cell fac- 455 

tories are continuously improving. Hybrid genome-scale models will likely fill this gap in the near future. An 456 

important tool will be the encoding of hybrid deep models in Systems Biology Markup Language (SBML).  457 
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Hybrid modeling applications in the biopharma sector are currently boosting particularly for Process analytical 458 

technology (PAT)[13,73–75] and quality by design (QbD)[7,34,35,45]. Industry 4.0[13,76], big data[13,77], and digital 459 

twin[47,78] are recently added subjects that introduce new concepts that challenge the application of hybrid 460 

modeling to the digitalization of biopharmaceutical processes. A report from an expert panel discussion of 461 

European academics and industrialists has addressed the drivers, challenges, and enablers of hybrid modeling 462 

applications in the biopharmaceutical industry [45]. Several recommendations were drawn to enhance the ap- 463 

plication of hybrid models for PAT and QbD. One of them was the need to increase the number of industrial 464 

case studies describing the optimization of business relevant process variables. Significant achievements have 465 

been reported on process validation using hybrid models and iDOE for E. coli and CHO culture[33,46]. There is 466 

however a clear gap in the application to new modalities such as cell-based therapies and nucleotide-based 467 

therapies. Most of published studies are still focused on yield and productivity of upstream processes. Very 468 

few studies incorporate critical quality attributes (CQAs) of biotherapeutics related to molecular properties 469 

such as glycosylation patterns [54], charge variants and aggregates. A major future challenge is the implemen- 470 

tation of “platform hybrid models”. Platform hybrid models should bear the capacity to learn with experience 471 

across different molecules and/or therapies. For platform models, a multi-scale vision is need that links the 472 

molecular properties of the target biologic, the cellular biology of the host cell line and the macroscopic scale 473 

of the production equipment. Hybrid modeling is in principle a strong candidate to address such complex 474 

modeling problems filling this gap.  475 

Lastly, the present literature review shows that most applications of hybrid models are found in upstream 476 

operation steps. Few exceptions are found for membrane unit operations and chromatography. There is thus a 477 

noticeable potential to apply hybrid models in downstream processing. Narayanan et al. (2020) noted that this 478 

could be explained by the availability of well-established mechanistic models of many downstream 479 
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processes[11]. Therefore, the benefit/cost ratio of hybrid modeling of downstream processes is potentially lower 480 

than for upstream processes. On the other hand, informative data of some downstream steps (such as lyophi- 481 

lization) is not easily available to academic researchers. Smyth et al. emphasized the difficulties to collect 482 

informative data sets in production facilities due to regulatory constraints [79]. Lab or pilot scale data is more 483 

easily accessible but not necessarily representative of production-scale. Bourlès et al. (2019) did research on 484 

lyophilization scale-up challenges [80]. The authors emphasized that some parameters, such as the vial heat 485 

transfer coefficient and equipment's sublimation capability are important parameters for model-based scale- 486 

up. 487 

 488 

4.8 Study Limitation 489 

This systematic literature review is focused on two databases (Scopus and Web of Science). To choose the 490 

synonyms of “hybrid model” as a search keyword, a large number of common synonyms were chosen that 491 

however do not prevent missing records. For example, synonyms such as "composite model," were not con- 492 

sidered. Although we could only find one paper [81] that contains a "composite model," bioprocess, and neural 493 

network, there might be some limitations in the search algorithm. To mitigate the possibility of missing rele- 494 

vant publications the study was complemented with well-known authors’ search by their names. The well- 495 

known authors’ publication records were then added to the repository of relevant cases. Two additional prob- 496 

lems were identified; 1) Some of the articles did not have the author's keywords (even recent articles). 2) 497 

Although some articles had keywords, the databases' search engines could not find them. It seems that doing 498 

a systematic literature review and automatically choosing keywords may have some bugs in categorization. 499 

5. Conclusions 500 

In this paper, a systematic literature review on the application of hybrid neural models to biological processes 501 

is presented using the PRISMA method, which shows a structured vision of the research developed on the 502 

subject. Statistical analysis regarding the number of articles, subject area of interest, and keywords occurrence 503 

in the last 30 years was performed. Hybrid neural network modeling has covered a wide range of microbial, 504 
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animal cells, mixed microbial, and enzyme biocatalysis in different industries such as wastewater treatment, 505 

clean energy, biopolymers, and biopharmaceutical manufacturing. Hybrid models were mainly applied for 506 

process analysis, process monitoring, open- and closed-loop control, batch-to-batch control, model predictive 507 

control, intensified design of experiments, process analytical technology, and quality-by-design. Some recent 508 

“hot” topics such as big data, deep learning, industry 4.0, and digital twins are major drivers of hybrid model- 509 

ing applications mainly in the biopharma sector. These topics will likely drive hybrid models to incorporate 510 

deep neural networks, deep learning methods, and systems biology tools in the near future. A significant re- 511 

search gap is identified in the application of hybrid models to downstream operations. Some very recent pub- 512 

lications have addressed membrane processes and chromatographic processes. There is significant potential 513 

for research in applying hybrid models to filtration, adsorption, chromatography, membrane separation, ly- 514 

ophilization, and many more. Closing this gap will likely enable hybrid models to evolve towards plant-wide 515 

digitalization platforms integrating multiple up- and down-stream operations as the next big step in the future. 516 
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Figures 776 

 777 

Figure 1- General deep hybrid model for bioreactor systems. The model has parametric functions (functions f(.) and h(.)) with fixed mathematical 778 

structure (typically material/energy balance equations). Some process properties lacking mechanistic explanation are modelled by a feedforward 779 

neural network (FFNN) as function of the process state, x, exogenous inputs, u, and time, t. FFNN is a nonparametric function with loose struc- 780 

ture that must be identified from process data given the absence of explanatory mechanisms for that particular part of the model. The model is 781 

dynamic in nature with state vector, x, and observable outputs, y. 782 

 783 

Figure 2-PRISMA flow diagram summarizes the selection of the articles based on the algorithm (Appendix 1). 784 
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 786 

Figure 3-All Keywords (author´s keywords and indexed keywords) Occurrence Over the Years 787 
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Appendixes 795 

Appendix 1- Algorithm for article selection 796 

For this systematic literature review, the relevant articles were selected based on a computerized search, back- 797 

ward citation, and some well-known authors' works. 798 

1.1. Algorithm for selection of articles from Scopus database 799 

The paper selection algorithm from the Scopus database started with keyword screening in the “title, abstract, 800 

and keywords” of documents. Firstly, the advanced search performed by keywords; ("gray-box model*" OR 801 

"hybrid neural model*" OR "hybrid semiparametric model*" OR "hybrid semi-parametric" OR "hybrid neural 802 

network*" OR "hybrid mechanistic model" OR "hybrid white box model" OR "hybrid black box model" OR 803 

"hybrid parametric model" OR "hybrid nonparametric model" OR "Hybrid Artificial Neural Network" OR 804 

"Hybrid Process Model") AND (bioproc* OR biopharma* OR biofuel OR bioreact* OR ferment* OR bio- 805 

logic* OR biopolym* OR bioseparation* OR wastewater OR cell OR microorganism OR yeast OR bacteria 806 

OR mammal* OR animal OR "systems biology" OR bioinformatics OR biotech* OR biomass OR "Esche- 807 

richia Coli" OR "Recombinant Protein" OR "Recombinant Protein prod*" OR "e.coli" OR "microbial fuel" 808 

OR "biologic* wastewater treatment" OR bioethanol OR biodiesel) and retrieved 368 publications. 809 

In the next step, some records were excluded based on the irrelevance of the subject areas (“Psychology”, 810 

“Economics, “Econometrics and Finance”, “Dentistry”, “Health Professions”, “Business, Management and 811 

Accounting”, “Social Sciences”, “Neuroscience”, “Physics and Astronomy”, “Earth and Planetary Sciences”) 812 

which resulted in 56 excluded documents and 312 publications. 813 

Afterward, some records were excluded based on the irrelevance of the keywords (“Pattern Recognition”, 814 

“Blood”, “Photovoltaic Cells”, “Diagnosis”, “Sewage Pumping Plants”, “Nerve Cell Network”, “Neurons”, 815 

“Fuel Cells”, “Electrodes”, “Sewer”, “Forestry”, “Geometry”, "PID Controllers", "Paget Bone Disease", "Par- 816 

tial Discharges",  "Plasmid",  "Power Control", "Power Spectral Density",  "Pressure Effects",  "Pressure 817 

Filter",  "Pressure Filters",  "Program Processors", "Battery State Of Charge", "Behavior-finding", 818 
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"Behavioral Research", "Behaviour", "Blood Glucose",  "Blood Pressure", "Blood Pressure (BP)", "Blood 819 

Pressure Estimation", "Blood Pressure Measurement", "Blood Pressure Monitoring", "Bone", and the outcome 820 

was 93 excluded documents and 219 eligible publications (At this step, if we doubted whether the keyword 821 

was related to the topic or not, we would have reviewed the abstract of the articles containing the keyword). 822 

Then the resulting documents were refined by the document´s type (“Book chapter”, “Review paper”, “con- 823 

ference review paper”, and “Letter”) and 17 documents were excluded because of the document type, and 202 824 

papers were remaining articles. Finally, 82 relevant cases were obtained by manually reviewing the abstracts 825 

and contents of eligible publications (120 were excluded). 826 

1.2. Algorithm for selection of articles from Web of Science database 827 

The paper selection algorithm from the Web of Science database also started with keyword screening in the 828 

Topic (title, abstract, and keywords) of documents and retrieved a total of 201 publications. Regarding the 829 

differences between Scopus and Web of Science, we refined the documents by the Web of Science Categories 830 

and excluded the irrelevant categories; “Telecommunication”,” Computer Science Hardware Architecture”, 831 

“Radiology Nuclear Medicine Medical Imaging”, “Transportation Science Technology”, “Oceanography”, 832 

“Cardiac Cardiovascular Systems”, “Engineering Civil”, “Information Science Library Science”, “Geography 833 

Physical”, “Physics-Condensed Matter”, “Optics”, “Imaging Science Photographic Technology”, “Forestry”, 834 

and “Robotics” and resulted in 35 excluded documents and 166 publications for further analysis. 835 

Then the resulting documents were refined by the document´s type (“Review Articles”, “Meeting Abstracts”, 836 

and “Letter”) and 5 documents were excluded. Finally,79 relevant cases were obtained by manually reviewing 837 

the abstracts and contents of eligible publications (82 publications were excluded).  838 

1.3. Algorithm for selection of articles from Authors’ work 839 

Authors whom we reviewed their works were “Carrondo, M.J.T.”, “Simutis, R.”, “Lübbert, A.”, “Oliveira, 840 

R.”, “Galvanauskas, V.”, “von Stosch, M”, “Teixeira, A.P.”, “Peres, J.”, “Gnoth, S.”, “Sokolov, M.”, “Feyo 841 

de Azevedo, S.” and 685 publications were extracted from their works. The documents were refined by key- 842 

words screening ("hybrid model*", "hybrid neural*", "hybrid artificial neural*", "hybrid gray box*", "hybrid 843 
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semi-parametric*", "hybrid mechanistic*", "hybrid black box*", "hybrid white box*", "hybrid parametric*", 844 

"hybrid nonparametric*") in “title, abstract and keywords” and 135 were sought for retrieval. Then 24 docu- 845 

ments were excluded because of the document type (“Book chapter”; 12, “Review paper; 11”, and “Short 846 

Survey”; 1) and 111 papers were remaining articles. Finally, 53 relevant cases were obtained by manually 847 

reviewing the abstracts and contents of eligible publications.  848 

1.4. From the backward citation, 69 papers were obtained. 849 

The results of merging the papers from computerized search, well-known authors’ work, and the backward 850 

citation were 283 publications. After omitting the duplicated papers, 162 papers were selected for this study 851 

(Figure 1). We put all articles in a list in Scopus to have the opportunity to use the analytical reports of Scopus. 852 

 853 
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 860 
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 863 
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Appendix 2- Tables and Figures 864 

2.1 Tables 865 

Table 1- Specifications of the first ten document sources that have published the highest number of articles 866 

No. Source Title Source Type Documents Country Publisher H-Index Quartiles 

1 Computers And Chemical Engineering Journal 14 United Kingdom Elsevier BV 139 Q1 

2 Computer Aided Chemical Engineering Book Series 11 Netherlands Elsevier 25 Q4 

3 Bioprocess And Biosystems Engineering Journal 10 Germany Springer Verlag 68 Q2 

4 Biotechnology And Bioengineering Journal 9 Germany Wiley-VCH Verlag 189 Q1 

5 Journal Of Biotechnology Journal 7 Netherlands Elsevier 156 Q2 

6 Biotechnology Progress Journal 6 United States Wiley-Blackwell 129 Q2 

7 
Brazilian Journal of Chemical Engineer-

ing 
Journal 6 Brazil Braz. Soc. Chem. Eng. 52 Q3 

8 IFAC-Papers Online Journal 5 Austria IFAC Secretariat 72 Q3 

9 AIChE Journal Journal 4 United States Wiley-Blackwell 173 Q1 

10 

Applied Biochemistry and Biotechnol-

ogy Part A Enzyme Engineering And Bi-

otechnology 

Journal 4 United States Humana Press 119 Q2 

 867 

Table 2- The ten most cited per year articles 868 

No Authors Title Year Source title 
Cited 

by 

Cited 

/year 

1 Wang et al. 

A machine learning framework to improve ef-

fluent quality control in wastewater treatment 

plants 

2021 
Science of the Total Envi-

ronment 
36 36 

2 Sansana et al. 
Recent trends on hybrid modeling for Indus-

try 4.0 
2021 

Computers and Chemical 

Engineering 
30 30 

3 von Stosch et al. 
Hybrid semi-parametric modeling in process 

systems engineering: Past, present and future 
2014 

Computers and Chemical 

Engineering 
189 24 

4 Narayanan et al. 

Hybrid Models for the simulation and predic-

tion of chromatographic processes for protein 

capture 

2021 
Journal of Chromatog-

raphy A 
20 20 

5 Psichogios et al. 
A hybrid neural network‐first principles ap‐

proach to process modeling 
1992 AIChE Journal 589 20 

6 Gargalo et al. 

Towards smart biomanufacturing: a perspec-

tive on recent developments in industrial 

measurement and monitoring technologies for 

bio-based production processes 

2020 

Journal of Industrial Mi-

crobiology and Biotech-

nology 

37 19 

7 Zhang et al. 

Hybrid physics-based and data-driven model-

ing for bioprocess online simulation and opti-

mization 

2019 
Biotechnology and Bioen-

gineering 
45 15 

8 Thompson et al. 
Modeling chemical processes using prior 

knowledge and neural networks 
1994 AIChE Journal 415 15 

9 Narayanan et al. 

A new generation of predictive models: The 

added value of hybrid models for manufac-

turing processes of therapeutic proteins 

2019 
Biotechnology and Bioen-

gineering 
44 15 

10 Narayanan et al. 

Hybrid-EKF: Hybrid model coupled with ex-

tended Kalman filter for real-time monitoring 

and control of mammalian cell culture 

2020 
Biotechnology and Bioen-

gineering 
27 14 
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 869 

Table 3- Top 29 keywords with at least two times occurrences 870 

No keyword occurrences total link strength 

1 optimization 14 8 

2 fed batch 11 6 

3 fermentation 10 4 

4 control 7 4 

5 estimation 6 5 

6 dynamic models 5 5 

7 ethanol 5 3 

8 genetic algorithm 4 2 

9 penicillin g 4 4 

10 adaptive control 3 3 

11 E. coli 3 3 

12 QbD 3 5 

13 artificial intelligence 2 2 

14 Bacillus thuringiensis 2 2 

15 big data 2 2 

16 biopharmaceuticals 2 2 

17 Bordetella pertussis 2 1 

18 cephalosporin c production 2 0 

19 chromatography 2 1 

20 DOE 2 2 

21 downstream processing 2 1 

22 immobilized enzyme 2 4 

23 intensified design of experiments 2 5 

24 optimal control 2 2 

25 PAT 2 4 

26 poly-β-hydroxybutyrate 2 1 

27 upstream bioprocess development/optimization 2 5 

28 wastewater 2 2 

29 β-lactamic antibiotic 2 4 

 871 
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 873 
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2.2 Figures 876 

 877 

 878 
Figure 4-Trend of articles number 879 
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 882 

Figure 5-subject areas of interest over the years based on the Scopus analytical reports 883 
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 886 

Figure 6- Author´s keywords occurrence analysis by year overlay visualization 887 
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 889 

Figure 7- All keywords occurrence from 1992 until 2000 by year overlay visualization 890 
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Figure 8- All keywords occurrence from 2001 until 2010 by year overlay visualization 894 
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 896 
Figure 9- All keywords occurrence from 2011 until 2021 by year overlay visualization 897 
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