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Abstract

Analysis of human emotions from multimodal data for making critical decisions is an emerging area of research.

The evolution of deep learning algorithms has improved the potential for extracting value from multimodal

data. However, these algorithms do not often explain how certain outputs from the data are produced.

This study focuses on the risks of using black-box deep learning models for critical tasks, such as emotion

recognition, and describes how human understandable interpretations of these models are extremely important.

This study utilizes one of the largest multimodal datasets available - CMU-MOSEI. Many researchers have

used the pre-extracted features provided by the CMU Multimodal SDK with black-box deep learning models

making it difficult to interpret the contribution of individual features. This study describes the implications

of individual features from various modalities (audio, video, text) in Context-Aware Multimodal Emotion

Recognition. It describes the process of curating reduced feature models by using the GradientSHAP XAI

method. These reduced models with highly contributing features achieve comparable and even better results

compared to their corresponding all feature models as well as the baseline model GraphMFN proving that

carefully selecting significant features can help improve the model robustness and performance and in turn

make it trustworthy.
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Summary

Analysis of human emotions from multimodal data for making critical decisions is an emerg-

ing area of research. The evolution of deep learning algorithms has improved the potential

for extracting value from multimodal data. However, these algorithms do not often explain

how certain outputs from the data are produced.

This study focuses on the risks of using black-box deep learning models for critical tasks,

such as emotion recognition, and describes how human understandable interpretations of

these models are extremely important. This study utilizes one of the largest multimodal

datasets available - CMU-MOSEI. Many researchers have used the pre-extracted features

provided by the CMU Multimodal SDK with black-box deep learning models making it

difficult to interpret the contribution of individual features. This study describes the impli-

cations of individual features from various modalities (audio, video, text) in Context-Aware

Multimodal Emotion Recognition. It describes the process of curating reduced feature

models by using the GradientSHAP XAI method. These reduced models with highly

contributing features achieve comparable and even better results compared to their corre-

sponding all feature models as well as the baseline model GraphMFN proving that carefully

selecting significant features can help improve the model robustness and performance and

in turn make it trustworthy.
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1 INTRODUCTION

In the recent years, Deep neural network (DNN) has emerged as an important machine learning tool to accomplish high performance on many
learning tasks comparable to humans. However, deep learning models are inherently black-box and outputs are often produced with no interpreta-
tion or explanation to understand the aspects in the input that influenced the decisions of the model. These systems and decisions can be found in
high risk and critical domains such as health, law and order, automotive etc. Given the nature of decisions, it is important for humans to understand
the dominant features contributing to the DNN output in a specific context.

Human emotion recognition is an important and ongoing research area. In human emotion recognition application scenarios, various deep and
shallow models interpret human emotions to provide various services like controlling appliances. In literature, extensive research has been done on
human emotion recognition 1,2. In these research works, one of the largest datasets evaluated is the CMU MOSEI Dataset 3. This massive dataset
contains many real world, un-staged videos depicting human emotions in a multimodal format comprising of audio, video and text modalities. We
observed that many studies 4,5,6,7,8,9 use the same pre-extracted features provided by the CMU-MOSEI Multimodal SDK toolkit. However, it is
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essential that AI be transparent about the reasoning used in order to increase trust, clarity, and understanding of these applications. This study
aims to determine which features influence the prediction capabilities of the model. Subsequently, we attempt to evaluate the effect of reducing
the features to a subset consisting of highly contributing features on the performance of the models.

2 BACKGROUND RESEARCH

2.1 Explainable Artificial Intelligence (XAI)

The success of AI in delivering robust solutions has led to its extensive use in applications such as Emotion Recognition (ER), smart ecosystems,
smart learning, finance, security, etc. This can be attributed to the ability of AI to enable improved productivity, better decision making, reduction
of expenditures, and improved risk management. However, the techniques used for developing these AI solutions such as deep learning often do
not explain how or why the certain output is obtained. These Blackbox/opaque models with large amounts of high-dimensional feature vectors
output a final result without any human intelligible interpretation of the internal logic applied in these processes 10. Lacking such auditability in AI
systems can prove to be ethically risky and hazardous in real-world applications impacting the safety of the users 11.

To develop and deploy trustworthy AI solutions, carefully balancing the trade-off between the prediction and explainability of these systems is
essential. As seen in Figure 1, the explainability of machine learning models is inversely proportional to their prediction accuracies 12. While deep
learningmodels are known for their ability to achieve high prediction accuracieswithminimal need for human intervention, they are accompanied by
the curse of being highly opaque and un-interpretable by humans. Explainable AI (XAI) systems help tackle this by helping the user understand the
behind-the-scenes processing logic of deep learning AI systems using simple, interpretable models 13. XAI methods help decode these inexplicable,
uninterpretable black boxes into transparent, human interpretable glass boxes.

Figure 1 Explainability v/s Prediction Accuracy of ML Models 12

Interpretable machine learning techniques are grouped into two categories: intrinsic and post-hoc methods 14. Intrinsic interpretability: Using
simple interpretable models which are self-explanatory from their internal structure. Examples of such include decision trees, linear models, etc 14.
Post-hoc interpretability: Complex black-box models can be interpreted after model training (post hoc) using a model-agnostic surrogate model 14.
Model-agnostic methods work by changing the input of the machine learning model and measuring changes in the prediction output 14,15. The
surrogate can either be global or local. The global surrogate model approximates the overall prediction of the black-box model, whereas the Local
surrogate model explains individual predictions of the black-box model 14,15. Figure 2 provides an overview on the above discussed methods.

2.2 Emotion Recognition Overview

Understanding and responding to emotions is an integral part of human communication. Emotions thus play a crucial role in Human-Computer
Interaction (HCI). Therefore, extensive research has been conducted to develop intelligent systems capable of recognising and understanding
human emotions as organically and efficiently as possible using Emotion Recognition (ER) algorithms. ER finds its applications in both simple day-
today systems including smart mirrors, customer satisfaction, gaming, chat-bots, smart home solutions as well as more complex, critical systems
such as healthcare, criminal activity detection, mental health monitoring, emotion recognition of drivers for maintaining road safety, etc. Such
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Figure 2 Common Explainable AI (XAI) and interpretable Machine Learning (ML) techniques. Adopted from 14,16

critical applications of ER can be extremely sensitive to the final results obtained from the ER process. Incorrectly detecting emotions in such
scenarios can be extremely hazardous and cause serious repercussions. Hence meticulously modelling the ER process and making the black-box
machine learning models explainable to and interpretable by humans is crucial.

2.3 Unimodal v/s Multimodal Emotion Recognition

Recognizing emotions is not a straightforward task. Emotions are naturally perceived by humans using a fusion of various cues like facial expres-
sions (visual), voice modulation (acoustic), words spoken(Textual). Unimodal ER techniques can prove insubstantial 1 in scenarios like sarcasm - the
sarcastic expression of a disappointed smiling face could be classified as “happy” if the only focus is the visual cue. We hence focus exclusively on
using multiple modalities (bimodal and trimodal ER) as opposed to single modalities (unimodal ER) to infer the appropriate emotion from a video
as the multimodal ER technique reflects nuances of real emotional perception and makes the ER system more robust and reliable 18.

2.4 CMU MOSEI Dataset

CMU MOSEI (Multimodal Opinion Sentiment and Emotion Intensity) 3 is the largest emotion recognition and sentiment analysis dataset available
with 23,453 video segments from 3228 distinct videos featuring 1000 subjects talking about 250 diverse topics. This open-source dataset is
comprised of natural (un-staged) videos procured from platforms like Youtube and have been quality-checked 14 judges across all three modalities
(audio,visual and textual). Our analysis uses the pre-extracted features available in the CMU-Multimodal SDK 19. The visual features were extracted
at 30Hz, 35 features per timestep. After extracting facial action units and several facial landmarks, the final visual embeddings were extracted
by utilizing deep learning frameworks such as FaceNet, Deep-Face, and SphereFace. Using static facial images, Emotient FACET was employed to
extract the six emotions (happy, sad, angry, surprise, disgust, fear). Covarep was employed to extract 74 CMUMOSEI audio features per timestep
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Figure 3 Flowchart to determine which explainable methods to use, adopted from 17. The highlighted path describes the reason for selecting SHAP
as our method for this study.

such as 12 MFCCs, pitch, maxima dispersion quotients, etc. to portray emotions described by speech tonality. 300 textual features were extracted
using GloVe embeddings.

In our research on the CMU-MOSEI dataset, we came across multiple papers 4,5,6,7,8,9 using the pre-extracted features provided by the CMU-
Multimodal SDK 19 . Most of these papers used the same 74 audio and 35 visual features as the baseline paper 3.

Figure 4 Feature Splits used in this study include pre-extracted features acquired from CMU MultimnodalSDK 19 and features extracted from
scratch inspired by 20
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As for the textual modality, we came across a multitude of papers shifting to using BERT for extracting textual features rather than using the
provided GloVe embeddings 21,22,23,24. BERT or Bidirectional Encoder Representations from Transformers is a transformer-basedmodel widely used
for extracting high-quality textual embeddings. Conventional word embeddings like GloVe construct a single word vector for each unique word
whereas BERT uses a bidirectional attention mechanism to recognize contextual information. Moreover, the pre-trained BERT model proves to be
convenient with its pre-encoded language information which facilitates quicker development using high-quality features even with the availability
of smaller training data.

2.5 Problem with pre-extracted features

The CMUMOSEI dataset is one of themost popular datasets used formultimodal emotion recognition. It has been heavily referencedwith 129 cita-
tions on Scopus from which 35 papers 25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 directly utilize CMU MOSEI
features in their application, most of which utilize deep-learning architectures for their analysis. This existing research on the CMUMOSEI dataset
however does not explore the explainability of the CMUMOSEI features. The pre-extracted features provided by the CMUMOSEI SDK have not
been named/described. For applications directly using CMU features in their application or devices, it is highly important to understand/interpret
these anonymous features - how they were generated, what they truly symbolize, or how they contribute to the final results. There has been prior
research to make the pre-extracted features interpretable by using shallow-learning methods 3,60. However, these features when used with deep-
learning models, are essentially black-box features that we have no information about and hence cannot be used to comprehend the behavior of
the models. We, therefore, felt the need to devise a way to understand the behavior of these features and the impact of their attributions in our
deep-learning model. Using an XAI model to explain and interpret the attribution of features of each modality can help to improve the understand-
ing of the feature significance and help us decide which modality contributes the most to ER. This can ultimately lead to improved robustness and
performance accuracy in detecting the appropriate emotion and consequently minimize the hazards involved in wrongly identifying emotions in
many scenarios such as criminal investigations, mental health monitoring, etc.

3 METHODOLOGY

Our experiments used deep-learning to recognize emotions using the audio, visual and textual modalities by utilizing the pre-extracted audio-visual
features by combining them with the pre-extracted GloVe as well as newly extracted BERT features. We used an early fusion mechanism to fuse
the three modalities which were then passed through a Bi-LSTM for emotion classification. We used a two-layered bidirectional LSTM having a
hidden layer with 256 neurons inspired by 20 (Figure 5).

Figure 5 Our Early Fusion with BiLSTM model 20

The first set of experiments involved training the Bi-LSTM model with early-fused 409 trimodal features including the pre-extracted 74 audio
(A1-A74) and 35 visual (V1-V35) and 300 textual GloVe features (T1-T300) from the CMU Multimodal SDK 19. Taking inspiration from 21,22,23,24,
we then extracted 768 BERT features per sentence by fine-tuning the pre-trained Base BERT model (provided by the Huggingface Transformers
library). We then fused these 768 BERT textual features (T1-T768) with the pre-extracted 74 audio (A1-A74) and 35 visual (V1-V35) features and
trained new Bi-LSTM models using these 877 features.
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Our ultimate aim was to interpret our models using XAI at the feature-level to find the importance of each individual feature with respect to
their contribution to the model output also known as Primary Attribution. We needed to choose a suitable XAI method for our primary attribution
analysis from the vast array of existing XAI methods.

17 suggest the use of suitable explainable AI methods depending on the type of data used as illustrated in Figure 3. The data consumed by our
model is tabular. While counterfactual explanations for a black-box model help understand how the smallest change to the feature values changes
the prediction to a predefined output 14, we needed to understand the overall global feature contribution for the model. We hence decided to use
SHAP or SHapley Additive exPlanations method to interpret our model.

SHAP (SHapley Additive exPlanations) is a post-hoc model-agnostic method that explains individual predictions by assigning each feature an
importance value for a particular prediction 61 62. The Shapley value attribution method is inspired by a cooperative game theory concept. It takes
each permutation of the input features and individually adds them to the provided baseline. In this process, the output difference after adding
each of the features corresponds to the contribution of that feature, and the average of these differences across all permutations determines the
attribution. Due to the multiple permutations involved, using a larger number of features makes this method computationally intensive 63.

Figure 6 SHAP (SHapley Additive exPlanations) pipline for explaining single predictions 62

To interpret the importance of the attribution of these features to the final classification results, we tested our models with GradientSHAP
method provided by the Captum library.

3.1 Captum and GradientSHAP

Captum 63 is an open-source XAI library for PyTorch which helps with the explainability and interpretability of various AI models. Captum provides
algorithms for evaluating attribute (feature, neuron and layer) importance and support for multimodality inputs such as text, audio and video 63.
This study focuses on identifying the significant effects of input modality by examining the attribution value (relevance or contribution) of the input
features to the deep neural network. Captum provides two categories of attribution methods, perturbation and gradient-based.

1. Perturbation-based Methods: Compute the attribution value for an individual or a set of input features by perturbing (removing, masking
or altering) them before performing a forward pass 64. Finally, calculate the difference between the new and original output 64.

2. Gradient-based Methods: Compute the attribution values for all input features on a single forward and backward pass 64. However, unlike
the perturbation-based methods, attributes can not always be directly related to changes in output.

GradientSHAP available in Captum is a gradient algorithm used to compute SHAP values to evaluate the primary attribution of models. In
gradient SHAP, each input sample is subjected to multiple Gaussian noise additions, a random point is selected along the path between baseline
and input, and the gradient is computed based on the chosen random points. The algorithm assumes that the input features are independent and
the explainingmodel is linear between the provided baselines and input features. It results into attributions approximating SHAP values that denote
the expected value of gradients * (inputs - baselines) 63.

We employed GradientSHAP and experimented with various subsets (top5, top10, top15, top20, top25) of the features with highest absolute
attribution values. From these subsets, we empirically established that the optimal subset of features is top 20 features to obtain performance
results close to all feature models while being inclusive of all modalities to find the most highly contributing features. We hence found out the
top 20 features with the greatest absolute attribute values (check figure 7 and section 4.1 for reference). To gauge and validate the contribution
of these top 20 features towards the classification results, we used these 20 features to train new models. We then tested these newly trained
reduced feature models and compared their performance with the models trained with all features (Section 4.2).
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Figure 7GradientSHAP Attribute Values for the features of the emotion Disgust from the Bimodal (A,V) model sorted from highest to lowest (refer
table 1)

4 RESULTS

The results obtained from these experiments were as follows. The modalities have been referred to with their initials to keep the document concise
- A for Audio, V for Visual and T for Textual.

4.1 Top 20 Features based on GradientSHAP Attribute Importance

The tables 1, 2, 3, 4, 5, 6, 7 list the top twenty features with the highest absolute attribution scores along with the percentage contribution pf
the respective modalities involved as well as the modality which dominates for 7 different bimodal and trimodal models. As observed from these
findings, the dominant modality was found to be Text for the majority of the experiments followed by Video (Visual) and Audio which was found
to be the least dominating modality when considering the top 20 features. Please check the ?? for visual illustration of the contribution of various
modalities in terms of Top 20 Features.

4.2 Discussing the Results obtained by All Feature Models v/s Top 20 Feature Models

We evaluate the models based on the metrics used by our baseline paper 3 - F1 Score and Weighted Accuracy. The Weighted Accuracy metric
(figure 8) is used to avoid any discrepancies caused due to the imbalance in the CMU-MOSEI dataset 3.
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Table 1 Bimodal (Audio, Video) Analysis
Emotion Top 20 Features Audio Video Dominant

Modality

Fear A1, V34, V5, V9, V7, A65, A12, A63, V14, V13, V17, V1,
V10, A67, A13, A9, A66, V23, A64, V33

45% 55% VIDEO
Sad A1, A12, V7, V9, V6, V3, V14, V1, V4, V29, V22, V24,

V13, A20, V23, A19, V2, V34, A39, A28
30% 70% VIDEO

Angry A1, A12, V9, V1, V8, V10, V23, V6, A13, V2, V4, V17,
V29, V7, A14, A19, V33, V25, A18, V5

30% 70% VIDEO
Disgust A1, A22, V8, V9, A40, A12, V4, A38, V3, V17, V5, V25,

A37, A16, A14, A29, A18, V20, A35, A13
60% 40% AUDIO

Happy A1, A12, V9, V4, V6, V7, V19, V10, V1, V15, V14, V23,
V5, V26, V20, V16, V8, V17, A13, V30

15% 85% VIDEO
Surprise A12, A1, V4, V8, A20, V3, A13, A39, A29, A42, A27,

A28, V21, V14, A43, V17, A22, V19, A30, V2
60% 40% AUDIO

Figure 8Weighted Accuracy Formula where N is the total number of negative labels while P is the total number of positive labels. TP represents
True Positives while TN represents True Negatives.

4.2.1 F1 Scores

We compare the F1 scores obtained by reduced feature models with Top 20 Features (Table 9) against the models trained with with All Features
(Table 8). The F1 score results for the Bimodal(A,V) analysis show that the Top 20 feature model outperformed the All Feature model in 3 emotions
(Disgust, Happy and Surprise) while being very close for the remaining three emotions (Sad, Angry and Fear).

Comparing all versus top 20 features for GloVe models, we observe that for Bimodal(T,A) analysis, we achieved the same F1 scores for 4 out of
6 emotions, except Sad and Happy, for which results obtained by using top 20 features were still very close to those obtained by using all features.
For Bimodal(T,V), the F1 score performance of top 20 feature model was the same for 2 (Fear, Suprise) out of six emotions, slightly worse for 3
(Sad, Angry Disgust) and slightly better for the Happy class as compared to the All Features model. For the Trimodal analysis, the All Feature model
outperformed the Top Twenty features model in 4 (Sad, Angry, Disgust, Happy) out of 6 emotion classes while obtaining exactly same F1 scores
for Fear and Disgust.

For BERTmodels, we observe that for Bimodal(T,A), the Top 20 Features model performed slightly better than the All Features model in 3 (Angry,
Disgust, Happy) out of 6 emotion classes. The F1 scores of Top 20 Features were still very close to those obtained by the all feature model for
the remaining three emotions (surprise, fear, sad). For Bimodal(T,V), the F1 score performance of top 20 feature model was the same for fear and
slightly better for angry and disgust but slightly worse for the remaining 3 emotions (sad, happy, surprise) as compared to the all feature model. For
the Trimodal analysis both the models had the same F1 score for fear and surprise, the top twenty model performed better for angry and worse
for sad, disgust and happy classes.

Our reduced feature models with Top 20 Features were able to obtain better F1 scores than the baseline GraphMFN model (using all 409
features) 3 for 4 out of 6 emotions (Sad, Angry, Disgust and Happy). For the emotion class Sad, our BERT Bimodal (T,A), BERT Trimodal and Bimodal
(A,V) outperformed the baseline. Three of our Top 20 features models BERT Bimodal(T,A), BERT Bimodal(T,V) and BERT Trimodal outperformed
the baseline for the emotions Angry and Disgust. For the emotion Happy, four of our models including BERT Bimodal(T,A), BERT Bimodal(T,V),
BERT Trimodal and Bimodal(A,V) outperformed the baseline. Surprisingly, all six of our Top 20 Features models obtained better F1 scores than the
baseline GraphMFN 3.
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Table 2 GloVe Bimodal (Text, Video) Analysis
Emotion Top 20 Features Text Video Dominant

Modality

Fear T158, T225, T101, V17, T25, T146, T84, V3, T90, T132,
V7, T62, V21, T156, T200, T261, T293, T229, T210,
T250

80% 20% TEXT

Sad V3, V9, V7, T28, T44, T156, V4, T251, V14, T233, T160,
T267, T214, T192, T123, V17, T212, T117, T84, V24

65% 35% TEXT
Angry T71, T36, T271, T143, T232, T293, T170, T282, T241,

V21, T98, T246, T214, T34, T105, T49, T260, T136,
T119, V1

90% 10% TEXT

Disgust T232, T206, T271, T160, T143, T170, T214, T71, T256,
T8, T28, T156, T101, T197, T36, T261, T223, T158,
T240, T260

100% 0% TEXT

Happy T82, T143, V4, T105, T251, V7, T152, T271, V2, T267,
T12, T36, T185, T28, T96, T49, T15, T230, T232, T240

85% 15% TEXT
Surprise T202, T167, T282, T249, T182, T293, T16, T287, T121,

T191, V7, T220, T156, T20, T242, T265, T79, T70, T14,
T274

95% 5% TEXT

Table 3 BERT Bimodal (Text, Video) Analysis
Emotion Top 20 Features Text Video Dominant

Modality

Fear V34, V1, V23, T763, V8, V7, T675, V5, T27, T720, T149,
V4, V33, T606, V9, T370, T68, T564, T335, T468

55% 45% TEXT
Sad V7, V4, V9, V8, V23, V6, V14, V24, V5, V13, T323, V2,

V34, V19, V17, V3, V29, T723, V10, T288
15% 85% VIDEO

Angry V4, V1, V8, V3, V7, V21, V9, T79, T713, V15, T675,
T244, T623, V10, V24, T763, V19, T149, T70, T142

45% 55% VIDEO
Disgust V17, V34, V8, V29, V23, V1, V2, V7, V21, T675, T135,

T125, T133, T623, V5, T96, T699, T571, T53, T90
50% 50% TEXT , VIDEO

Happy V4, V7, V9, V1, V6, V19, V10, V15, V23, V25, V16, V20,
T44, T763, V8, V34, V24, T26, T203, T507

25% 75% VIDEO
Surprise V8, V9, V14, V2, T181, V5, T271, V12, T12, V28, T763,

T402, T121, T708, T234, T711, T41, T623, T573, V10
60% 40% TEXT

4.2.2 Weighted Accuracies

We compare the weighted accuracies obtained by reduced feature models with Top 20 Features (Table 11) against the models trained with with
All Features (Table 10). The Weighted Accuracies obtained in the Bimodal(A,V) analysis show that the Top 20 feature model outperformed the All
Feature model in 2 emotions (Disgust and Happy), tied for the emotions Fear and Surprise while being very close for the remaining two emotions
Sad and Angry.

Comparing all versus top 20 features for GloVe models, we observe that for Bimodal(T,A) analysis, we achieved the same weighted accuracies
for 4 out of 6 emotions, except Sad and Happy, for which results obtained by using top 20 features performed slightly worse (but still very close)
compared to the all feature model. For Bimodal(T,V), the weighted accuracies of top 20 feature model was the same for 2 (Fear and Suprise) out of
six emotions, slightly worse for 3 (Sad, Angry, Disgust) and slightly better for the happy class as compared to the all feature model. For the Trimodal
analysis, the all feature model outperformed top twenty model feature model in 4 (Sad, Angry, Happy and Surprise) out of 6 emotion classes while
giving exactly same F1 scores for Fear and Disgust. The trends with weighted accuracies are exactly the same (identical) as observed with the F1
score comparison between the two Bimodal(T,A), Bimodal(T,V) and trimodal models.
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Table 4 GloVe Bimodal (Text, Audio) Analysis
Emotion Top 20 Features Text Audio Dominant

Modality

Fear A1, A12, T158, T146, A31, T250, A26, T161, T90, T172,
A32, T93, A39, T84, T101, A30, T132, T295, T225, A43

60% 40% TEXT
Sad A1, A12, T73, T156, T280, T160, A39, T192, T104,

T233, T251, T84, T44, T129, T40, T143, T232, A20,
T62, T28

80% 20% TEXT

Angry A1, A12, T143, T71, T271, T36, A18, T256, T232, T293,
T98, T84, T246, T169, T136, T274, A19, T160, A17,
T170

75% 25% TEXT

Disgust A1, T232, T143, T160, T271, A22, T214, T170, T101,
T254, T28, T256, T71, T240, T1, T206, T197, T239,
T36, T106

90% 10% TEXT

Happy A1, T271, T280, T143, T256, T214, T129, T104, T258,
A18, T105, T246, T101, T89, T267, T251, T68, T36,
T185, T146

90% 10% TEXT

Surprise A1, A12, T20, T182, T282, T167, T287, A39, T121,
T143, T202, T44, T16, A20, A43, T212, T73, A13, T241,
T233

70% 30% TEXT

Table 5 BERT Bimodal (Text, Audio) Analysis
Emotion Top 20 Features Text Audio Dominant

Modality

Fear A1, A12, T763, T563, T370, T12, T122, T672, T573,
T733, T691, T434, T378, T79, T766, T27, T720, T222,
T564, T606

90% 10% TEXT

Sad A1, A12, A13, A34, A33, A20, A44, A38, T668, A27,
A28, A43, A8, A35, T669, A32, T118, A39, A5, A42

15% 85% AUDIO
Angry A1, A12, T79, T713, A13, T149, T227, T257, A18, T142,

T594, T222, T420, T391, T70, T571, T630, T192, T665,
T114

80% 20% TEXT

Disgust A1, A12, A22, A17, T161, T560, A33, T121, T94, A40,
A32, T573, T763, A28, A34, T135, T99, T402, T36,
T151

55% 45% TEXT

Happy A1, A12, T44, T162, T377, T206, T413, T26, T763,
T507, T203, T742, T200, T353, T80, T27, T622, T766,
T234, T327

90% 10% TEXT

Surprise A1, T402, T573, T181, T271, T12, T308, A12, T348,
T754, T763, T347, T409, T566, T144, T708, T378,
T471, T694, T755

90% 10% TEXT

For BERT models, we observe that for Bimodal(T,A), the top 20 feature model performed slightly better than the all feature model in 3 (Angry,
Disgust, Happy) out of 6 emotion classes. The weighted accuracies scores of top 20 features were still very close to those obtained by the all
feature model for the remaining three emotions (Surprise, Fear, Sad). For Bimodal(T,V), the weighted accuracy of top 20 feature model was slightly
better for Angry and Happy but slightly worse for the remaining 4 emotions (Fear, Sad, Disgust, Surprise) as compared to the all feature model. In
the Trimodal analysis, the Top Twenty Features model performed better for Angry and Disgust and slightly worse for Fear, Sad, Happy and Surprise
classes. Again, the trends were similar as observed with the F1 score comparison between the Top Twenty Features and All Features models.
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Table 6 GloVe Trimodal Analysis
Emotion Top 20 Features Audio Video Text Dominant

Modality

Fear A1, A12, V5, V17, V9, T146, V34, V4, T158,
A31, V14, V7, T101, T54, T10, T132, T90, A32,
T161, T277

20% 35% 45% TEXT

Sad V3, V29, A1, V7, V5, V6, T156, A39, V9,
T73, T251, T233, T104, T44, V24, T160, T129,
T192, T280, A34

15% 35% 50% TEXT

Angry A1, A12, T143, V9, V1, V29, T256, T232, T36,
T71, T246, T271, V8, T98, A18, T293, T169,
V4, T84, T200

15% 25% 60% TEXT

Disgust A1, A12, T232, T143, A22, T160, V29, T271,
V3, T214, T254, T28, T1, V4, T170, T101, V7,
T256, T240, V17

15% 25% 60% TEXT

Happy A1, T280, V17, T271, V22, V4, T256, T129,
V29, T143, T105, T101, T267, T20, T246,
T232, T104, T258, T89, T36

5% 20% 75% TEXT

Surprise A1, A12, T167, T20, T182, T282, A39, T202,
T143, T287, A42, T121, A43, T16, T241, A20,
A27, T50, T28, V14

35% 5% 60% TEXT

Table 7 BERT Trimodal Analysis
Emotion Top 20 Features Audio Video Text Dominant

Modality

Fear A1, A12, V4, T564, V34, T763, V17, T370,
V7, T500, T691, V9, T552, T606, T122, T720,
T563, T68, T60, T555

10% 25% 65% TEXT

Sad A1, A12, V7, V9, V4, V6, V8, V10, V5, V13, V34,
V19, A63, V2, A20, A33, T323, A34, V22, V24

30% 65% 5% VIDEO
Angry A1, V4, V1, A12, V10, V9, V7, V19, V24, T529,

T79, V8, V21, T142, T11, T370, V17, T713,
T524, V15

10% 55% 35% VIDEO

Disgust A1, V3, V17, V34, T125, T161, T291, V5, V18,
T43, T402, T471, T552, T275, T547, V7, T121,
T340, T220, T440

5% 30% 65% TEXT

Happy A1, V4, V9, A12, V7, V19, V1, V6, V10, V15,
V29, V20, V16, T206, T162, V23, T215, T566,
T44, V25

10% 65% 25% VIDEO

Surprise A1, V8, T12, V14, T308, T340, T694, T402,
T165, T685, T337, A12, T496, T754, T627,
T46, T257, T587, T711, T498

10% 10% 80% TEXT

On comparing the weighted accuracies obtained by the Top 20 Features Models with the baseline GraphMFN Model which uses all 409 fea-
tures 3, we observed that three of our reduced feature models BERT Bimodal(T,A), BERT Bimodal(T,V) as well as the BERT Trimodal models were
able to outperform the baseline for the Disgust emotion class. Four of our Top Twenty Feature models - BERT Bimodal(T,A), Bimodal(T,V), BERT
Trimodal, Bimodal(A,V) models were able to outperform the baseline for the Happy emotion class. Overall, our reduced feature models were able
to obtain better weighted accuracies than the baseline for 2 out of 6 emotions.
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Table 8 All Features - F1 Scores
Model Fear Sad Angry Disgust Happy Surprise Average

Baseline 3 89.90 66.90 72.80 76.60 66.30 85.50 76.33
GloVe (T,A) 87.77 66.14 67.02 74.88 60.63 85.99 73.74
BERT (T,A) 87.90 72.40 73.80 84.10 69.00 86.70 78.98
GloVe (T,V) 87.77 66.21 67.82 75.29 65.49 85.98 74.76
BERT (T,V) 87.80 72.40 73.60 84.10 71.60 86.60 79.35
GloVe (A,V,T) 87.77 67.55 67.71 74.88 66.57 86.05 75.09
BERT (A,V,T) 87.80 72.30 73.90 84.20 71.80 86.60 79.43
Bimodal (A,V) 87.80 67.80 70.00 76.00 67.60 86.00 75.87

Table 9 Top Twenty Features - F1 Scores
Model Fear Sad Angry Disgust Happy Surprise Average

GloVe (T,A) 87.77 65.34 67.02 74.88 53.44 85.99 72.41
BERT (T,A) 87.74 71.18 75.89 84.32 69.09 86.62 79.14
GloVe (T,V) 87.77 65.30 67.15 75.24 65.74 85.99 74.53
BERT (T,V) 87.79 66.35 74.91 84.27 71.28 86.38 78.49
GloVe (A,V,T) 87.77 65.56 67.02 74.88 66.25 85.99 74.58
BERT (A,V,T) 87.78 67.11 74.27 83.99 70.36 86.58 78.35
Bimodal (A,V) 87.79 67.58 68.81 76.25 67.75 86.05 75.70

Table 10 All Features - Weighted Accuracy (%)
Model Fear Sad Angry Disgust Happy Surprise Average

Baseline 3 62.00 60.40 62.0 69.10 66.30 53.70 62.35
GloVe (T,A) 50.00 50.69 50.00 50.00 60.29 50.00 51.83
BERT (T,A) 50.20 58.50 57.60 72.30 68.70 52.10 59.90
GloVe (T,V) 50.00 50.77 50.64 50.52 65.14 50.04 52.85
BERT (T,V) 50.20 58.70 57.30 72.20 71.30 51.90 60.27
GloVe (A,V,T) 50.00 51.94 50.62 50.00 66.61 50.18 53.22
BERT (A,V,T) 50.20 58.50 57.70 72.30 71.40 51.90 60.33
Bimodal (A,V) 50.00 52.10 52.80 51.40 67.30 50.00 53.93

Table 11 Top Twenty Features - Weighted Accuracy (%)
Model Fear Sad Angry Disgust Happy Surprise Average

GloVe (T,A) 50.00 50.03 50.00 50.00 56.09 50.00 51.02
BERT (T,A) 49.94 56.47 61.75 72.76 68.76 51.71 60.23
GloVe (T,V) 50.00 50.00 50.11 50.44 65.39 50.00 52.66
BERT (T,V) 50.00 50.83 59.12 71.85 71.36 51.08 59.04
GloVe (A,V,T) 50.00 50.20 50.00 50.00 66.12 50.00 52.72
BERT (A,V,T) 50.06 51.48 59.34 73.08 69.97 51.54 59.24
Bimodal (A,V) 50.00 51.88 51.59 51.85 67.65 50.00 53.83

Overall, the reduced featuremodels curated by using the top twenty features obtained by interpreting the all feature list using the GradientSHAP
algorithm were able to achieve weighted accuracies and F1 scores which were comparable to the ones achieved by their corresponding all feature
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models. In some scenarios, especially for the angry, happy and disgust classes, the top twenty feature model even achieved better performance
than our all-feature models. They also outperformed the baseline GraphMFN model 3 in 4 out of 6 emotion classes in terms of F1 scores and 2 out
of 6 emotion classes in terms of weighted accuracies.

5 CONCLUSION

This study throws light on the hazards posed by using black-box AI/deep-learning models for critical tasks in Trustworthy systems like Emotion
Recognition and explains the importance of making these models explainable/interpretable to humans. It focuses on interpreting the importance
of individual features from various modalities (audio, video, text) in Context-Aware Multimodal Emotion Recognition. In the process, we highlight
the problems of using pre-extracted anonymous features and employ a relevant XAI method called GradientSHAP for evaluating these features.
The XAI method implementation leads to finding a subset consisting of Top Twenty Features for various models described in section 4.1. We then
compare the performance results of these lighter, reduced feature models in terms of F1 scores and weighted accuracies with their corresponding
all feature models as well as the baseline model GraphMFN 3. The results show that these smaller models with the advantage of being lighter to
train and test. achieve comparable results to their all-feature counterparts and even outperform some of them. They also outperform the baseline
model in 4 out of 6 emotion classes in terms of F1 scores and 2 out of 6 emotion classes in terms of weighted accuracies.

One of the limitations of this study is the use of a post-hoc XAI method for interpretability. Even though Model-agnostic (or post-hoc) methods
allow interpreting complex machine learning models without understanding their underlying mechanism, they do face the challenge of striking a
balance between flexibility and interpretability 65.

The success of these reduced feature models suggests that employing XAI methods to interpret black-box deep-learning models can help us to
carefully select high-quality, highly contributing features that can help curate trustworthy AI systems. It is hoped that this research will contribute
to a deeper understanding of evaluating significant features using explainable methods (rather than blindly using all pre-extracted features) and
unlock their potential to improve the performance and robustness of the system.
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Figure 9 Bimodal Audio and Video Contribution(s) Based on Gradient SHAP Values for Top 20 Attributes

Figure 10 Bimodal Text (BERT) and Audio Contribution(s) Based on Gradient SHAP Values for Top 20 Attributes
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Figure 11 Bimodal Text (BERT) and Video Contribution(s) Based on Gradient SHAP Values for Top 20 Attributes

Figure 12 Trimodal Audio, Video and Text (BERT) Contribution(s) Based on Gradient SHAP Values for Top 20 Attributes
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Figure 13 Bimodal Text (GloVe) and Audio Contribution(s) Based on Gradient SHAP Values for Top 20 Attributes

Figure 14 Bimodal Text (GloVe) and Video Contribution(s) Based on Gradient SHAP Values for Top 20 Attributes
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Figure 15 Trimodal Audio, Video and Text (GloVe) Contribution(s) Based on Gradient SHAP Values for Top 20 Attributes
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