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Abstract

A safety-critical system is a system in which the software malfunctioning could result in death, injury, or damage to the
environment. Addressing safety concerns early on at the architecture design level is critical to guide the subsequent life cycle
activities to ensure that the eventual system is reliable. A fundamental approach to address safety at the design level is the
adoption of architectural tactics. It is crucial for safety-critical systems to correctly implement the constraints as defined by the
selected safety tactics. This article proposes a systematic approach for assessing the adequacy of test suites of safety-critical
systems based on these architectural safety tactics. We use a case study to evaluate the effectiveness of our approach using
fault-injection techniques. Our study shows that this systematic approach is feasible and effective for test suite assessment of

safety-critical systems.
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A safety-critical system is a system in which the software
malfunctioning could result in death, injury, or damage to
the environment. Addressing safety concerns early on at
the architecture design level is critical to guide the subse-
quent life cycle activities to ensure that the eventual sys-
tem is reliable. A fundamental approach to address safety
at the design level is the adoption of architectural tactics. It
is crucial for safety-critical systems to correctly implement
the constraints as defined by the selected safety tactics.
This article proposes a systematic approach for assessing
the adequacy of test suites of safety-critical systems based
on these architectural safety tactics. We use a case study
to evaluate the effectiveness of our approach using fault-
injection techniques. Our study shows that this systematic
approach is feasible and effective for test suite assessment

of safety-critical systems.
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2 |

1 | INTRODUCTION

Currently, an increasing number of safety-critical systems are controlled by software and rely on the correct operation
of the software. Aircraft flight control, nuclear systems, medical devices are well-known examples of safety-critical
systems. In this context, a safety-critical system is a system in which software malfunctioning could result in death,
injury, or damage to the environment. The software can be considered as safe, which may not lead to a dangerous
or life-threatening event for the system. In the literature several studies have discussed the methods, techniques,
processes, tools, and models to make the software safe [1}[2](3].

System safety engineering applies engineering and management principles, criteria, and techniques to optimize
all aspects of safety within the constraints of operational effectiveness, time, and cost throughout all phases of the
system life cycle [4}[5]. Software safety can be addressed at different levels in the software development life cycle.
Addressing safety concerns early on at the software architecture design level is crucial because quality characteristics
such as safety cannot be included after the software implementation. An essential approach to address safety at the
design level is the adoption of architectural tactics [6]. A tactic is a design decision for realizing quality goals at the
architectural level. A safety tactic can be introduced for realizing safety. Wu and Kelly propose, for example, a set of
tactics for software safety [7]. Based on the point at which faults are addressed for ensuring safety, we can categorize
safety tactics as fault avoidance, fault detection, and fault tolerance safety tactics [8]. Safety-critical systems usually
use a combination of these tactics to address the required safety concerns.

Once a safety-critical system is designed, it is crucial to analyze it for safety requirements before starting the
implementation, installation, and operation phases. It is critical to ensure that the potential faults can be identified
and cost-effective solutions are provided to avoid or recover from the failures. One of the most critical issues is
investigating the effectiveness of the applied safety tactics to safety-critical systems. Several scenario-based software
architecture analysis approaches [9,[10} [11] exist in the literature to analyze the architecture’s quality. Unfortunately,
these approaches are general purpose and do not directly consider safety concerns, thus fail to provide an in-depth
analysis of the safety tactics.

In this article, we adopt a fault-based testing approach to analyze the effectiveness of the test suite of safety-
critical systems using safety tactics. The novelties of this study are pointed out as follows: (1) building a systematic
fault-based testing approach for assessing test suite adequacy based on architectural tactics and (2) developing DSL
and tool for the proposed fault-based testing approach. An essential aspect in fault-based testing is mutation analysis
which involves modifying a program under test to create variants (a.k.a., mutants) of the program. To apply fault-based
testing for assessing the test suite, we first present a metamodel and a domain-specific language that models several
safety views and the relation to the code. Mutants are generated for the potential hazards and the corresponding
tactics. The approach results in the impact analysis of a test suite on the applied tactics. The proposed approach
is illustrated using an industrial case study in the avionics domain. The case study demonstrates an important part
of the aircraft control platform used in the developed avionics systems. With the case study, our tool allowed us to
automate this process by removing manual steps for generating the mutations and running test cases. It also helped
us ensure the safety concerns were properly addressed in the test cases by focusing on the safety tactics.

The remainder of the article is organized as follows. In Section 2, we present the required background information
for understanding the overall approach. Section 3 provides a case study that we use to illustrate our fault-based testing
approach. Section 4 presents the metamodel and domain-specific language for software safety tactics. In Section 5,
we present the proposed fault-based testing approach. Section 6 presents our tool that implements the corresponding
approach. In Section 7, we illustrate the proposed approach and the tool using the industrial case study. We present

DSL evaluation in Section 8. Section 9 presents the related work, and Section 10 concludes the paper.
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2 | PRELIMINARIES

2.1 | Safety Tactics

Several studies [7}[12][13] proposed architectural tactics or patterns for supporting safety design. Safety tactics are
organized in [7}[13] based on fault avoidance, fault detection, and fault containment.

Fault avoidance aims to prevent faults from occurring in the system. Simplicity and Substitution are fault avoid-
ance tactics. Fault detection focuses on monitoring the system and identifying faults when they occur in the system.
Condition Monitoring, Sanity Check, and Comparison are tactics for fault detection. Fault containment seeks to limit
the impact of the fault and prevent propagation of the fault. Fault containment includes Redundancy, Repair, Degra-
dation, Voting, Override, and Barrier tactics. In this study, we refer to and reuse the tactics discussed in the literature

[131. Tableshows the safety tactics along with their descriptions.

2.2 | Fault-Based Testing

Fault-based testing is one of the testing approaches which aims to analyze, evaluate, and design test suites by using
fault data. Mutation testing is one of the common forms of fault-based testing. It aims to design new test cases by
analyzing the quality of the existing test cases. Mutation testing involves modifying a program under test to create
variants of the program. Variants are created by making small changes in the program following a pattern. Mutation
operators are the patterns to change the program’s code, and each variant of the program is called a mutant. A test
suite is applied to both a mutant and the original program code. If the original code and mutant behave differently,
the test suite can detect the change between the original and the mutant program. However, if the original code and
mutant behave the same, the test suite is not adequate to detect the difference, and it needs to be improved.

Mutation analysis consists of the following three steps [14]:

1. Mutation operator selection relevant to faults.
2. Mutant generation.

3. Distinguishing mutants by executing the original program and each generated mutants with the test cases.

After test cases are executed on mutated programs, the mutation score is calculated using the number of live mutants
and the number of killed mutants. If the behavior/output of a mutant differs from the original program, the mutant is
killed. Otherwise, the mutant is alive. The mutation score is calculated using equation . If a mutant’s behavior is the
same as the original program, the mutant is equivalent. Mutation score [15] is used to evaluate the adequacy of the
test cases. The mutation score shows the effectiveness of test cases in terms of their ability to detect injected faults.
A higher mutation score means a higher quality of test cases.

. #of killed mutants = 100
MutationScore = . (1)
# of total mutants — # of equivalent mutants

3 | CASE STUDY

This section describes a case study to illustrate our approach in subsequent sections. The case study is taken from

an open-source software called Openpilot [16] implemented using Python and C++. Based on this study [17], it



Safety Tactic
Simplicity
Substitution

Sanity Check

Condition Moni-

toring

Comparison
Diverse

Redundancy

Replication

Redundancy

Repair

Degradation

Voting

Override

Barrier

Category
Fault Avoidance

Fault Avoidance

Fault

Detection

Fault

Detection

Fault
Detection

Fault

Containment

Fault

Containment

Fault

Containment

Fault
Containment

Fault

Containment

Fault

Containment

Fault

Containment

TABLE 1 List of Safety Tactics

Description
Keep the system as simple as possible to avoid faults.

Use more reliable components which are well-proven in safety domain

to avoid faults.

Check whether a system state or value remains in a valid range defined

in system specification.

Check whether a system value remains in a valid range compared to
a more reliable reference value. Reference value is computed at run-
time and it is based on system input values and is not pre-known value

from the system specification.

Compare the outputs of redundant systems to detect faults.

Develop redundant components using different implementations

based on the same system specification.

Develop redundant system using the same implementation.

Bring a failed system back to its normal and healthy state and restore
it.

Brings a system with an error into a state with reduced functionality
in which the system still maintains the core safety functions.

Mask the failure through choosing a correct result from redundant sys-

tems.

Choose the output of redundant subsystems by preferring one subsys-

tem or one output state over another.

Protect a subsystem from influences or influencing other subsystems.
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is one of the most popular open-source software in the safety-critical system domain. Openpilot is open-source
driver assistance system developed by Comma.ai. It has Automated Lane Centering, Forward Collision Warning and
Lane Departure Warning functionalities supporting a variety of car makes and models. It also has Driver Monitoring
capability to alert distracted and asleep drivers. Openpilot consists of different components to communicate with
the car and sensors, decide on the state of gas, brake, and steering, and process the sensor data to provide a safer
driving experience for the drivers. Their high-level component diagram is given in [18]. In this study, we focus on
Driver Monitoring capability which evaluates the data coming from sensors and generates alerts for drivers for a safer
driving experience.

In Figurem we presented the high-level component diagram of Openpilot that we focused on this study. The
overall component diagram for the Openpilot can be found in [18]. AlertManager is a module to process and manage
the alerts. Events is a base module which defines events and alerts in Openpilot environment. Controlsd is a main
module to combine wide range of inputs from sensors and car state and produces car-specific Controller Area Network
(CAN) messages. CAN is a communication protocol. Electrical units and devices in the car is communicated through
CAN messages. Controlsd communicates with AlertManager to publish proper alerts to the user based on the inputs
it receives.

Openpilot

Events AlertManager

Controls

FIGURE 1 High-level architectural diagram of the case study

For the case study, we select displaying an alert to user when an unusual event occurs. As explained in [19], to ensure
the safety of the driver, hazards and safety requirements should be identified and addressed accordingly. Hazard is
a potentially dangerous situation that can result in or contribute to an accident [5]. For the case study, the hazards
is displaying an incorrect alert or no alert to the user. The possible causes of this hazard are a loss of/error in the car
sensors, a loss of/error in communication with the car sensors, an error in the display device, and incorrect evaluation
of the data coming from sensors. Car accident is identified as the possible consequence of this hazard. The severity
of the hazard is catastrophic since the possible consequence of the hazards is a car crash. Based on this hazard, we
define the safety requirements in Table|2|

Openpilot uses several safety tactics in their implementation to meet the defined safety requirements. In order
to implemented SR5, they use Sanity Check tactic by checking the event type to decided whether it is an alert or
not. If it is not an alert, they do not show it to the user. To implement SRé, they use Condition Monitoring and Sanity
Check tactics to monitors the alerts’ state and to decide which alert has a high priority to be shown to the user. Table

[Blsummarizes the rest of the applied tactics for the case study, along with the safety requirements.



Safety

Explanation

Requirement

SR1
SR2

SR3
SR4

SR5
SRé

SR7

Events should be evaluated at least from two different components.

If only one of the components produces an event, the incoming event should be evaluated

and a warning should be generated.

If both components cannot produce an event, the error should be generated.

The two events should be compared and if they are not same, always the event coming

from the selected source should be displayed along with a warning.

If an event is not an alert, do not show it as an alert.

If there are multiple alerts that occurring at the same time, show the most recent and high

prioritized event as a current alert.

If an alert is not active, even if it is the most recent and high prioritized one do not show it

as a current alert.

TABLE 2 Safety Requirements for the selected hazards

Safety
Req.

SR1

SR 2

SR3

SR 4

SR5

SRé6

SR7

TABLE 3 Applied Safety Tactics to Case Study

Safety Tactic & Category

Replication Redundancy (Fault

Containment)

Condition Monitoring (Fault De-
tection)
Voting (Fault Containment)

Condition Monitoring (Fault De-
tection)

Repair (Fault Containment)

Comparison (Fault Detection)
Override (Fault Containment)

Sanity Check (Fault Detection)

Sanity Check (Fault Detection)
Comparison (Fault Detection)

Sanity Check

ment)

(Fault Contain-

Tactic Description

The events are evaluated by two different Alert Managers

where both has the same logic to evaluate events.

The health of both Alert Managers should be periodically mon-
itored to see whether they are healthy or not. If one of them
is failing, the event from the other manager will be displayed.

The health of both Alert Managers should be periodically mon-
itored to see whether they are healthy or not. If there is a fail-
ure on any of the managers, they will be put in repair mode.
If both of them are failing, an error will be generated and no

alert will be shown.

If the events produced by each Alert Manager are not same,
always show the event coming from Alert Manager 1 and dis-
play a warning.

The given event is checked if it is meets the criteria for repre-

senting an alert in the Openpilot environment.

All the existing alerts’ states are monitored and validated
against the pre-defined criteria to decide which alert is going
to be shown to the user.

Monitor the alert’s state and if it is not active do not show it

to the user.



120

121

122

123

124

125

126

rcommands:

Safety-Critical Architecture To Code Relations

1

|
| rreportsFault relates
\ ) |
. 1 - . 1.F or . .. Implementation relations | ArchitectureTo
i == i Safety-Crifical | is ele:r;em Non-Safety- is element Relations 0.* | CodeRelation
Flement w‘dusﬁ Element of Critical Element of

k P DY
ER B / \
applies has T~ / AN
| implements Module-Class | | Class-Test Case
‘L - |’eql"!’€"\€"ls‘\\\ Relations Relations
applics Safe State }—r{ State ‘
* is element

15 requ irement
of

Safety
Requirement |

1. %

e l': Safety | | Fault Detection a\mda\\\ 0
2l Tactic Tactic ———detect: . includes
o =] Fault

__tolerates™
J\‘ Operator =+——

AND OR

Tault Avoidance N £ T
* [ Tactic i — L Hazard < derived from—|
d ~_ FTA Node T”:aumdB_\ 1

1
|| Fault Tolerance [~
Tactic 1.

Safety Tactic Hazard

FIGURE 2 Metamodel for Safety DSL

4 | DSL FOR SAFETY

This section presents the metamodel and domain-specific language (DSL) for software safety to represent safety-
related concepts. After a thorough domain analysis, our earlier work [8] derived a metamodel to express safety design
concepts. In this work, we enhanced the earlier metamodel to support our fault-based testing approach. We updated
the previous metamodel by adding Architecture To Code Relation part to show concepts and relations used in the fault-
based testing approach to generate mutations and running test cases. We present the updated metamodel in Figure

The first part (Safety-Critical) of the metamodel includes the concepts present in the architecture design. Three
types of architectural elements are distinguished as Monitoring Element, Safety-Critical Element, and Non-Safety Critical
Element. Monitoring Element monitors one or more Safety-Critical Elements by checking their status. If there is a
problem in a Safety-Critical Element, the Monitoring Element can react by stopping/starting/restarting/initializing the
related Safety-Critical Element. Safety-Critical Element presents the element which includes safety-critical operations.
A Safety-Critical Element can consist of one or more Safety-Critical Elements. We represented this relation in the figure
using is element of. A Safety-Critical Element has States, including Safe State. If a fault is detected, which can lead to
a hazard in the system and there is a safe state, the system can take itself to the safe state to prevent the hazard. In
this regard, we have defined Safe State for defining safe states for Safety-Critical Elements. A Monitoring Element or
Safety-Critical Element applies Safety Tactics in order to ensure the safety of the system.

The second part of the metamodel includes the concepts related to applied safety tactics in the design. We have
identified the well-known safety tactics as fault avoidance, fault detection, and fault tolerance. Fault avoidance tactic
aims to prevent faults from occurring in the system. When a fault occurs, the fault is detected by applying fault
detection tactics. Fault tolerance is the ability of the system to continue correctly and maintain a safe operational
condition when a fault occurs. Therefore, applied Safety Tactic can be Fault Avoidance Tactic, Fault Detection Tactic, or
Fault Tolerance Tactic to deal with faults.

The third part of the metamodel includes the concepts which are related to hazards in the system. A Hazard
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Hazard View Openpilot_HazardView{
Elements {
hazard displayingAnIncorrectAlertTolUser;

safetyRequirement doNotDisplayNonAlertEvents;
safetyRequirement showHighPriAndMostRecentAlert;
safetyRequirement doNotShowExpiredAlerts;

consequence carAccident;

}
Relations {
doNotDisplayNonAlertEvents,
showHighPriAndMostRecentAlert,
doNotShowExpiredAlerts derivedFrom displayingAnIncorrectAlertToUser;

displayingAnIncorrectAlertToUser causedBy incorrectAlert;

FIGURE 3 An example definition of a hazard using our DSL

describes the presence of a potential risk situation that can result or contribute to the mishap. A Hazard causes some
Consequences. Safety Requirements are derived from identified Hazards. For the safety-critical systems, a thorough
hazard analysis should be done to discover potential hazards and identify their root causes. Fault Tree Analysis [1] is
one of the most well-known and widely used methods for hazard analysis. It aims to analyze a design for possible faults
that could lead to hazards in the system using Boolean logic. We define FTA Node, Operator, and Fault to conducting
Fault Tree Analysis. FTA Nodes, Faults, and Operators are the elements of a fault tree. Operator is used to conduct

Boolean logic. Operator can be AND or OR. One or more FTA Nodes cause a Hazard.

The last part of the metamodel is ArchitectureToCodeRelations defined in the fault-based testing process for mutant
generation and test case run steps. As presented in Figure[2] ArchitectureToCodeRelations consists of Implementation
Relations which can be Module-Class Relation or Class-Test Case Relation. Module-Class Relation describes which Safety-
Critical Elements defined in Safety-Critical View consists of which classes in the program code. Class-Test Case Relation
defines which classes in the program code should be tested with which test cases. Based on the safety metamodel
presented in Figurewe provide a domain-specific language (DSL) to represent the concepts in the safety domain.
The EBNF grammar [20] of this DSL is presented in@ In Figure we present an example definition of a hazard using
our DSL. It illustrates the hazards "displaying an incorrect alert or no alert to the user" and "violating maintaining a

safe distance" from the case study that we explained in Section[3]

5 | FAULT-BASED TESTING APPROACH

In the previous sections, we describe the metamodel and the corresponding DSL for modeling safety-critical archi-
tectural concerns and their relation to the implementation. Following up on this, Figure 4] shows the process of our
fault-based testing approach. Our fault-based testing (FBT) approach leverages the DSL, and we use mutation testing

to evaluate the test suite’s quality. Within our approach, we enhanced the classical method for mutation testing with



140 o providing a guideline for how to select and decide on mutation operators for applied safety tactics
150 e automating the mutation generation (for implementation-level mutations), and test case execution
151 o defining a scope for the testing process by only focusing the safety requirements and the safety tactics
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FIGURE 4 Process of Proposed Fault-Based Testing Approach
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The approach consists of several steps: identifying safety requirements and safety tactics, building a safety model
and mutation model, generating mutants, running the test suite on the generated mutants, and evaluating the results.
To build a safety model and mutation model, we first need to define the safety concerns in the system. For this, we
start our process by identifying safety requirements and safety tactics. In the following, we explain our proposed
approach in detail.

5.1 | Identifying Safety Requirements

The first step of our proposed approach is identifying the safety requirements of the system. Safety requirements are
defined based on the hazards and risks in the system [21]. Hazard analysis is performed to identify the hazards in the
system by building a list of all hazards, their causes, consequences, and severity. Hazard severity levels are defined as
catastrophic, critical, marginal, or negligible in [21]. Hazard identification activity is performed with domain experts
(avionics engineers and pilots), system engineers, and safety engineers. The risks in the system are defined by the
estimation of the probability of occurrence of each hazard. In [21], occurrence definitions are classified as frequent,
probable, occasional, remote, or improbable. Based on the hazard severity and hazard occurrence class identification,
risks should be assessed and categorized as high, serious, medium, or low. After the risk definition, a risk assessment
should be conducted using fault tree analysis, event tree analysis, simulation, etc. Safety requirements can be derived
using identified hazards and risks. In the following subsections, we use "maintaining a safe distance with the leading
car" as an example safety requirement. For this requirement, a hazard would be “failing to maintain a safe distance on
autopilot mode for autonomous driving cars”.

5.2 | Identifying Safety Tactics

As a second step, safety tactics should be defined to satisfy identified safety requirements. In Table[T] we provided
the list of well-known safety tactics that can address safety concerns. Safety tactic(s) should be determined to avoid
failures and hazards for each identified safety requirement. Table[T]can be leveraged as a guideline to determine safety
tactics for the hazards defined in the identifying safety requirements step. Based on the example we defined Section
in[5:3] below are the example safety tactics that can be defined to avoid this hazard using Table [T}

e Sanity Check: Check the distance with the leading car and ensure that it stays within the defined threshold
distance.

e Diverse redundancy: Calculate the distance with the leading car from at least two different software components
to reduce the risk of miscalculation.

5.3 | Building Safety Model

The next step is creating a safety model using the safety DSL. We use the safety model to generate mutants and run
test cases. Hazard view, safety tactic view, and safety-critical view should be defined in order to construct a safety
model.

Hazard View
The hazard view should include the safety requirements and the hazards derived from the safety requirements in the

first step of our FBT approach. In addition to hazards, the model should contain failures and faults that the identified
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hazards can cause. Figure [5] shows a simple hazard view for the example hazard we have defined in the previous
subsections.

Safety Tactic View

The safety tactic view consists of the safety tactics identified in the second step of our FBT approach. The safety
tactic view should contain the information on "Sanity Check" and "Diverse Redundancy" tactics we defined in Section
[5:2] Figure[g]shows a simple safety tactic view for the example scenario we have defined.

Safety-Critical View

The safety-critical view describes the architectural components of the system from a safety perspective. Figure [7]
shows a simple safety-critical view for the example scenario we have defined. In this example, since in the system we
apply diverse redundancy tactic, we have two distinct components to calculate the distance between the leading car.

This view also includes other safety-critical, non-safety-critical and other elements in the system.

Implementation Relations View

For the mutant generation and test case execution steps, architecture to code relations should also be defined. Figure
[8]shows a simple architecture to code relationships view for the example scenario we have defined. In this example,
with module-class relations, we indicate that the "distanceCalculatorComponent1" includes "Distance" and "Calcu-
latorComponentA" implementation classes/files. And with class-test case relations, we indicate that the tests for
"Distance" class/file lives in test suite "distanceTests" where the tests for "CalculatorComponentA" lives in test suites

"calculatorTests" and "componentATests",
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Hazard View HazardViewExample{
Elements {
hazard failingToMaintainSafeDistance;

safetyRequirement maintainSafeDistance;
consequence carAccident;

fault lossOfCarSensor;

fault errorInCarSensor;

// more faults ...

faultTree incorrectDistanceCalculation(
// fault tree definition

)i
}

Relations {
maintainSafeDistance derivedFrom failingToMaintainSafeDistance;

failingToMaintainSafeDistance causedBy incorrectDistanceCalculation;

}

FIGURE 5 Hazard View for a sample hazard

SafetyTacticView SafetyTacticsViewExample{
faultContainment redundantDistanceCalculator {
type="DiverseRedundancy"
containedFaults= // faults

};

faultDetection safeDistanceCheck {
type="SanityCheck"
detectedFaults= // faults

};
}

FIGURE 6 Safety Tactic View for the example scenario



Safety-CriticalView SafetyCriticalViewExample{
Elements {

safety-critical distanceCalculatorComponentl{
criticalitylLevel=B;
implementedSafetyRequirements= maintainSafeDistance;
implementedTactics= redundantDistanceCalculator;

Y

safety-critical distanceCalculatorComponent2{
criticalitylLevel=B;
implementedSafetyRequirements= maintainSafeDistance;
implementedTactics= redundantDistanceCalculator;

hF

// other elements

}
Relations {
// elements relations

}

FIGURE 7 Safety-Critical View for the example scenario

ImplementationRelations {
Module-Class Relations{
distanceCalculatorComponentl composesOf
distanceCalculatorComponent2 composesOf

{Distance, CalculatorComponentA }
{Distance, CalculatorComponentB }

}

Class-Test Case Relations{
Distance testWith = {distanceTests};
CalculatorComponentA testWith = {calculatorTests, componentATests};
CalculatorComponentB testWith = {calculatorTests, componentBTests};
Y
H

FIGURE 8 Architecture to Code Relationships View for the example scenario
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5.4 | Mutant Generation

In order to generate mutants, we need to know what part of the system needs to be changed and how its behavior is
going to be changed. With safety models, we already define what part of the system needs to be changed by focusing
on safety tactics and the safety-critical components in the system. We introduce a mutation model for each safety
tactic to define the behavioral change. Each mutation model describes the possible ways of changing the behavior
of the applied safety tactic. Using these models, the mutation generation can be achieved. Each row in Table [4]
explains a mutation model for well-known safety tactics listed in Table[T] Each mutation model is defined based on
the tactic properties column. If the safety tactic is addressed on the implementation (code) level, the mutation is also
applied on implementation-level. Where if the safety tactic is addressed on the component level, the mutation is
applied at architectural-level. Table[]also includes common mutation operators related to each implementation-level
mutation model. If we take the example safety tactics we defined in Section[5.2} Sanity Check tactic requires having
a range check on a system state or value to check their validity. The mutation model for this tactic would be on the
implementation-level where we mutate the tactic implementation by adding or removing the arithmetic, relational and
conditional operators. If we consider Diverse Redundancy tactic, it requires having redundant components which they
have different implementations. The mutation model for this tactic would be on the architectural-level where we add
redundant components to have each component have the same implementation. Table[]can be used as a guideline to
build mutation models for each safety tactic defined for the given safety-critical system. The relations between safety
tactics, mutation models and mutation operators in Table[]are addressed in our tool which is presented in Section[8]

There are several tools in the literature to generate implementation-level mutants. MutPy is [22] is one of the
mutation testing tool for Python 3.3+ for generating implementation-level mutants automatically. We use MutPy's
guideline while selecting the proper mutation operators for the safety tactics that we applied to our case study. We
have a code generation process where it provides an automated way for creating implementation-level mutations. The
code generation process uses the mapping between safety tactic and MutPy mutation operator presented in Table[4]
For the code generation process, we have leveraged the code generator provided by Xtext framework [23]. Xtend [24]
is part of the Xtext framework, and it is used for model-to-model or model-to-text transformation. We used Xtend
to generate a code from our safety model (model-to-text transformation). The code generator is part of the tool we
developed which is presented in Section[8] For the code generation process, we need the parts of the program code
are going to be mutated and what type of mutation is going to be applied. The code generation process extract this
information from the safety model of the system. Below are the steps for generating implementation-level mutations

within our tool.

1. Find applied safety tactic(s) for each safety requirement using the hazard and safety tactic view. Create a mapping
between safety requirement and associated safety tactics.

2. Find safety-critical modules for each safety tactic using the safety-critical view and create a mapping between
them.

3. Find implementation files/classes for each safety-critical modules from implementation relations view and create
mapping between them.

4. Find test suites for each implementation file/class from implementation relations view and create mapping be-

tween them.

Pseudo code for mutant generation:

for each safety requirement in safety model do / use information from step #1
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for each safety tactic applied for the safety requirement do / use information from step #1
for each safety-critical module implements the safety tactic do / use information from step #2
code snippet += generate Python code with MutPy library / use information from step #3 and step #4
end for
end for
generate Python file with the code snippet
end for

The code generation process uses the mapping between safety tactics and mutation models defined to decide
on the mutation behavior. The mutation model tells us what type of mutations are going to be applied. If the muta-
tion is at architectural-level, the mutation generation needs to be performed manually. On the other hand, for the
implementation-level mutations, our tool generates a code snippet with the mutation operators defined in Table ]
so that mutants can be generated. In order to get the parts of code to be mutated for implementation-level muta-
tions, our tool extracts the module-class relations and test classes-class relations from Architecture To Code Relations
for the safety-critical elements we have obtained. These relations help us to get the implementation details such as
module, the class, and the test class. This information indicates the parts of the code are going to be mutated. For
each safety tactic in the system, Python code is generated using the extracted information. The generated code is
skeleton code which has the required code to generate mutants and run test cases by executing related methods from
MutPy. We provide the mutation operators to the skeleton code and run the complete code with the original program
code. Each selected mutation operator is switched with the operator in the original code by MutPy, and mutants
are generated. Architectural-level mutation requires adding, removing, or modifying a component. Since it requires
implementation-specific knowledge, it can be achieved by updating the component manually, or this process can be

fully or partially automated depending on the case.

Considering the example scenario we provided in previous sections, the mutation model for the SanityCheck tactic
is on implementation-level and it requires to replace, add or remove the arithmetic, relational and logical operators in

the program code. In this case the the generated code snippet for this tactic is given below:

mut.py -t calculatorComponentA.py -u calculatorTests.py componentATests.py
-o AOD AOR COD COI ROR LOR LOD --report-html mutationReport

5.5 | Running Test Cases on the Mutants and Mutation Score Evaluation

When we have the mutants generated, as a next step, the test cases are run on the mutants to assess the quality of
the test suite. Our study focuses on evaluating the quality of the existing test suite. From this perspective, we use the
test suite implemented during the system development. Our approach does not include a process for generating test
cases. For implementation-level mutations, this step is also automated. Test cases are run by executing the generated
code. For the architectural-level mutations, we run the test cases manually. Test suite evaluation is performed on the

implementation level.

Based on the results of the test case execution step, we calculate the mutation score and evaluate it. If there is an
alive mutant (not killed by any test cases), we add new test cases to handle the alive mutants. This process is repeated

until all the mutants are killed.
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6 | TOOL

In this section, we present the tool that we developed in the Eclipse environment to define safety models using safety

DSL and the Python script to apply a fault-based testing process.

We defined the grammar of safety DSL using Xtext [23], a language development framework provided as an
Eclipse plug-in. After defining our DSL in Xtext, we wrote our code generator using Xtend provided in Xtext framework
for the safety DSL. Xtext and the corresponding code generator create the parser and runnable language artifacts.
From these artifacts, Xtext generates a full-featured Eclipse text editor. Figure|2|shows the snapshot of the Eclipse
text editor for our case study. As explained in the previous section, for the mutant generation and test case execution
steps, an existing open-source Python project MutPy is used. MutPy provides mutation operators for the mutant
generation. Additionally, it enables to execution of predefined test cases on mutated program code. The Python
script is generated during the code generation process to mutate the program code and execute test cases leveraging
MutPy.

[ ] [ ] runtime-EclipseXtext - safetyDSL/src/openPilotAlertManager.safety - Eclipse Platform W
il WO QU WG BG S YR ¢ B e |
[% Package Explorer 52 = 8 =| openPilotAlertManager.safety 22 S B | TR' = 0O [
B & 4 = Hazard View Openpilot_HazardView{ v % ‘

=S Elements { -
J . |
v & safetyDSL hazard displayingAnIncorrectAlertToUser; % @ |
> m\ JRE System Library [JavaSE- |
> Psrc safetyRequ%rement evaluateEventsWithTwoComponents; X i = |
> [=src-gen safEtyReun..rement oneEventCannotBeProduced; 9 |
safetyRequirement bothEventsCannotBeProduced; |
safetyRequirement twoEventsAreDifferent; ~ |

safetyRequirement doNotDisplayNonAlertEvents;

safetyRequirement showHighPriAndMostRecentAlert; »

safetyRequirement doNotShowExpiredAlerts;

consequence carAccident;
o B =
o= Outline X = fault lossOfCarSensor;
a & - £oma e e __ L.
= UnisL Ve aober 1 vuuve ([8 ; - =
|2 Problems ¢ Javadoc Declaration 50 =]
othEventsCannotBeProdu . !
woEventsAreDifferent Oitems [
_ . De Resource Path Location
oNotDisplayNonAlertEven
= showHighPriAndMostRecer
oNotShowExpiredAlerts
= carAccident
ossOfCarSensor |
=errorinCarSensor

Writable Insert 16:32

FIGURE 9 Tool for Safety DSL

7 | CASE STUDY EVALUATION

This section explains the application of our fault-based testing approach and presents the results by using an industrial
case study described above. We applied the process shown in Figure[d] In the following, we explain the application

of each step.
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Case Study

AlertManagerl AlertManager2

AlertManagerMonitor

FIGURE 10 High-level architectural diagram of the case study

Component Openpilot Module - Github Link
Events events.py

Alert Managerl alertmanagerl.py.

Alert Manager2 alertmanager2.py.

Alert Manager Monitor alertmanagermonitor.py
Controls controlsd.py

TABLE 5 High-level architectural component along with Openpilot module

7.1 | Build Safety Model

As described in Section 3, we selected displaying an alert to user when an unusual event occurs hazard and identified
safety requirements as shown in Table|2| Later, we defined the corresponding safety tactics and presented them in
Table|§| In order to address the safety tactics we defined, we leveraged the part of Openpilot open-source software
explained in Section[3]and built a case study. Figure[I0]shows the overall high-level architecture diagram of our case
study. We added another AlertManager (AlertManager2) to address Replication Redundancy defined in|§|f0r SR1.
Table|§] presents the links to the Openpilot module associated with the component shown in Figure

These are the first two steps of the proposed fault-based testing approach. As a next step, we built the safety
model. For defining the safety-critical view, firstly, we identified our architectural elements. AlertManager1 and Alert-

Manager2 shown in Figure[I0]are responsible for processing alerts. Each AlertManager receives the alert data from


https://github.com/havvagulay/openpilot/blob/master/selfdrive/controls/lib/events.py
https://github.com/havvagulay/openpilot/blob/master/selfdrive/controls/lib/alertmanager.py
https://github.com/havvagulay/openpilot/blob/master/selfdrive/controls/lib/alertmanager2.py
https://github.com/havvagulay/openpilot/blob/master/selfdrive/controls/lib/alertmanagermonitor.py
https://github.com/havvagulay/openpilot/blob/master/selfdrive/controls/controlsd.py
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Controls. Controls read the alert data from car sensors using CAN protocol. If a warning or should be generated, Alert-
Managers notifies the Controls through commands relation. If a fault occurs in AlertManagerl and AlertManager2,
they report the fault to Controls through reportsFault relation. For condition monitoring, voting, and recovery tactics,
we added AlertManagerMonitor. AlertManagerMonitor monitors AlertManagerl and AlertManager2 components. It
detects the failure when one of these managers fails and recovers from failures by stopping/starting/initializing the
failed modules.

We built a safety model by using safety DSL explained in Section 4 according to the case description. We defined
hazard view, safety tactic view, and safety-critical view. For the sake of simplicity, we present a small part of the code
snippet from the safety-critical view in Figure[TT] Hazard view and safety-tactic view are created similarly using the
safety DSL.

Additionally, we defined implementation relations for the mutant generation and test case run steps. Module-
Class Relations shows which safety-critical module consists of which implementation classes, Class-Test Case Rela-
tions shows which implementation class should be tested with which test case classes. We present the architecture to
code relations in Figure[IT] Architecture to code relations provides a mapping between the module defined in the ar-
chitectural model and the class implemented in Java. Also, they map the implementation classes and test classes. For
example, Figure[TT|shows that alertManager1 has the implementation in alertManager.py in module-class relations. In
the next section, class-test case relations show that the test cases for alertManager.py is implemented in test_alerts.py,

test_state_machine.py, test_alertmanager.py. The complete safety model for our case study can be found in [25].

7.2 | Identify and Create Mutants

In this step, we identified mutants based on the safety tactics that we implemented in our case study. Based on the
mutation model we introduced in Table[d] we determined the mutants and presented them in Table[8] Table[d]explains
the action item required to taken for each safety tactic. For example, for SR1, we have Replication Redundancy as a
safety tactic in which we have AlertManager1 and AlertManager2 components as an application of this tactic. Based
on the guideline we have in[4]we defined specific mutation models for each safety tactic we defined for the safety
requirements.

We used the safety model and the selected mutation operators as inputs to our tool to create skeleton code for
generating mutants for method-level mutation generation. The skeleton code includes the required Python code for

mutant generation and execution of test cases. A sample code snippet is shown in below:

mut.py -t controlsd.py -u selfdrive/controls/tests/test_state_machine.py
-o AOD AOR COD COI ROR LOR LOD --report-html Report-controlsd

This code snippet includes the mutant generation code for the Sanity Check tactic for the module Controls. The
mutation operators that we have in the above code snippet are AOD (Arithmetic Operator Deletion), AOR (Arithmetic
Operator Replacement), COI (Conditional Operator Insertion), COD (Conditional Operator Deletion), ROR (Relational
Operator Replacement). LOR (Logical Operator Replacement), LOD (Logical Operator Deletion). COI and COD are
works with conditional operators like && (and), || (or), & (bit-wise and), | (bit-wise or), ~ (xor), ! (not) where ROR is
related to relational operators > (greater than), < (less than), >= (greater than or equals), <= (less than or equals), ==
(equals), != (not equals). All of the details on these operators can be found in [22].

For component-level mutation generation, we manually modified the code parts in the implementation of the

case study to reflect mutations.
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Safety-CriticalView Openpilot_Safety Critical {
Elements {
monitor alertManagerMonitor {
implementedTactics= healthCheckForAlertManager, recoverAlertManager

safety-critical alertManageril{
criticalitylLevel=B;
implementedSafetyRequirements= showHighPriAndMostRecentAlert,
evaluateEventsWithTwoComponents;
implementedTactics= checkAlertStates, compareAlertsTimeAndPriority, alertManagerReplica;

safety-critical alertManager2{
criticalitylLevel=B;
implementedSafetyRequirements= showHighPriAndMostRecentAlert,
evaluateEventsWithTwoComponents;
implementedTactics= checkAlertStates, compareAlertsTimeAndPriority, alertManagerReplica;

safety-critical controlsd {
criticalitylLevel=B;
implementedSafetyRequirements= doNotShowExpiredAlerts, oneEventCannotBeProduced,
bothEventsCannotBeProduced, twoEventsAreDifferent;
implementedTactics=checkIfAlertIsActive, alertManagerSelectAlert, compareAlerts,
alertManagerVoting;

safety-critical events {
criticalitylLevel=B;
implementedSafetyRequirements= doNotDisplayNonAlertEvents;
implementedTactics=eventTypeCheck;

Relations {
alertManagerMonitor monitors alertManagerl, alertManager?2;
alertManagerMonitor stops alertManagerl, alertManager2;
alertManagerMonitor starts alertManagerl, alertManager2;
alertManagerMonitor inits alertManagerl, alertManager2;

controlsd reads alertManagerl, alertManager2;
controlsd commands alertManagerl, alertManager2;
alertManagerl reportsFault controlsd;
alertManager2 reportsFault controlsd;
}
}

ImplementationRelations {
Module-Class Relations {
alertManagerMonitor composesOf = { alertmanagermonitor };
alertManagerl composesOf = { alertmanager };
alertManager2 composesOf = { alertmanager2 };
events composesOf = {events};
controlsd composesOf = { controlsd };

1
Class-Test Case Relations {
alertmanagermonitor testWith = { selfdrive.controls.lib.tests.test_alertmanagermonitor };
alertmanager testWith = { selfdrive.controls.tests.test_alerts,
selfdrive.controls.tests.test_state_machine, selfdrive.controls.lib.tests.test_alertmanager };
events testWith = { selfdrive.controls.lib.tests.test_alertmanager };
controlsd testWith = { selfdrive.controls.tests.test_state_machine };

FIGURE 11 Safety model definition for safety-critical view and architecture to code relations



Safety
Requirement

SR1

SR2

SR3

SR4

SR5

SRé6

SR7

Safety Tactic

Replication  Re-
dundancy

Condition Moni-
toring
Voting

Condition  Moni-
toring
Repair

Condition Moni-
toring
Override

Sanity Check

Sanity Check

Comparison

Sanity Check

Mutation Model

Component level: Replace the implementation of alert managers such that they
have different implementations.

Method level: Use mutation tool to generate mutations of corresponding code
part for AlertManagerMonitor

Component level: Create the mutations of the AlertManagerMonitor as to have
faulty voting behavior

Method level: Use mutation tool to generate mutations of corresponding code
part for AlertManagerMonitor
Component level: Create the mutations of the AlertManagerMonitor as to have

faulty repair behavior

Method level: Use mutation tool to generate mutations of corresponding code
part for Controls

Component level: Create the mutations of the Controls as to have faulty override
behavior

Method level: Use mutation tool to generate mutations of corresponding code

part for Events

Method level: Use mutation tool to generate mutations of corresponding code
part for Alert Managers

Method level: Use mutation tool to generate mutations of corresponding code
part for Controls

TABLE 6 Identifying Mutant Model for Case Study
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Lines of Total Mutation Total Equivalent Alive Killed Mutation
Mutated = Test Model Generated Mutants Mutants = Mutants Score
Code Cases Mutants (%)
Alert 37 3 Replication 4 0 0 4 100
Managerl Redundancy
Alert 37 3 Replication 4 0 0 4 100
Manager2 Redundancy

TABLE 7 Mutation Results for SR1

7.3 | Run Test Cases

The next step is executing test cases on mutant codes. Test case generation is performed by generated code for
method-level mutants. As shown in Implementation Relations, controlsd.py should be tested with test_state_machine
test class. For the sake of simplicity, the part of the generated code is shown in Figure ??. As given in the code, test
cases are executed on mutants for each test class, and results are collected to generate a report.

7.4 | Results

The last step is the generation of the report. When the test cases are executed in Section[7.3] results are collected,
and the code part is called to generate a report. The report includes the classes under test, test case classes, mutation
operators, test results (fail/pass), related faults, and related safety tactics. Tablesshow the results for our case
study along with the mutation score. They also include details of mutant generation (the total number of lines of the
mutated code, mutation model, the total number of generated mutants, the total number of alive mutants, and the
total number of killed mutants). While calculating the mutation score, equivalent mutants should be determined. If
a mutant semantically behaves precisely like the original program, the mutant is equivalent. We manually checked
the generated mutants to see if they behave like the original code to detect equivalent mutants. This process can
be improved by using the existing approaches proposed in several studies, such as [26} 27} 128]. Since the original
program passes all of the test cases and the killed mutant is a mutant that failed on at least one of the test cases, a
killed mutant cannot be an equivalent mutant. In this regard, we only checked the live mutants to see if any of them is
an equivalent mutant. We included the number of equivalent mutants as another column in the tables. We calculated
the mutation score using the formula presented in Section 5.

Table[7] Table[I0} Table[IT]and Table[I3]show the results for SR1, SR4, SR5 and SR7 respectively. For all of these,
the mutation score is 100, no further action is required.

Table [8] presents the mutation results for SR2. For Condition Monitoring and Voting tactic, there are 10 mutants
generated and 8 of them killed. When we revisited the test cases for Condition Monitoring tactic, we observed that
some cases are not considered for this tactic. The test cases were missing some of the edge cases for checking the
state of each AlertManager. We added three more test cases to cover all of the cases. With the complete test suite,
all of the mutants were killed, and we obtained a mutation score of 100.

Table [9] presents the mutation results for SR3. For Condition Monitoring and Repair tactic, there are 11 mutants
generated and 5 of them killed. When we revisited the test cases for Condition Monitoring tactic, we observed that
some cases are not considered for the this tactic. When we revisited the test cases for this tactic, we observed that

some cases are not considered for the Condition Monitoring tactic. The test cases were missing some of the edge
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Lines of Total Mutation Total Equivalent Alive Killed Mutation
Mutated = Test Model Generated Mutants Mutants = Mutants Score
Code Cases Mutants (%)

Alert 12 5 Condition 10 0 2 8 80

Manager Monitoring

Monitor and Voting

TABLE 8 Mutation Results for SR2

Lines of Total Mutation Total Equivalent Alive Killed Mutation
Mutated = Test Model Generated Mutants Mutants = Mutants Score
Code Cases Mutants (%)

Alert 19 4 Condition 11 2 6 5 55.55

Manager Monitoring

Monitor and Repair

TABLE 9 Mutation Results for SR3

cases for checking the state of each AlertManager. We added two more test cases to cover all of the cases. With the
complete test suite, all of the mutants were killed, and we obtained a mutation score of 100.

Table[I2)presents the mutation results for SRé. For Sanity Check and Repair tactic, there are 11 mutants generated
and 5 of them killed. When we revisited the test cases for Repair tactic, we observed that some cases are not consid-
ered for this tactic. The test cases were missing some of the edge cases for checking the state of each AlertManager.
In first iteration, we added two more test cases to cover all of the cases. With the first iteration, we were able to kill
5 more mutants in which the mutation score is 55%. In the second iteration we added two more test cases and we

were able to obtain the mutation score as 100%.

7.5 | Evaluation

In this section, we present the evaluation of our fault-based testing approach. We generated mutations for the imple-
mentation of the case study using the proposed approach and aim to achieve a 100% mutation score to locate the

weaknesses in the test suite and have effective tests for safety concerns. For some of the safety requirements, the

Lines of Total Mutation Total Equivalent Alive Killed Mutation
Mutated = Test Model Generated Mutants Mutants = Mutants Score
Code Cases Mutants (%)
Controls 247 8 Condition 158 0 0 158 100
Monitoring
and Over-
ride

TABLE 10 Mutation Results for SR4
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Events

TABLE 11

Alert
Manager1

Alert
Manager2

TABLE 12

Controls

TABLE 13

Lines of Total Mutation

Mutated = Test Model

Code Cases

13 5 Sanity
Check

Mutation Results for SR5

Lines of Total Mutation

Mutated = Test Model

Code Cases

37 5 Sanity
Check
Comparison

37 5 Sanity
Check
Comparison

Mutation Results for SR6

Lines of Total Mutation

Mutated = Test Model

Code Cases

342 8 Sanity
Check

Mutation Results for SR7

Total
Generated
Mutants

45

Total
Generated
Mutants

21

21

Total
Generated
Mutants

258

Equivalent Alive

Mutants

Mutants

Equivalent Alive

Mutants

Mutants

14

14

Equivalent Alive

Mutants

Mutants

Killed
Mutants

45

Killed
Mutants

Killed
Mutants

258

Mutation
Score
(%)

100

Mutation
Score
(%)

30

30

Mutation
Score
(%)

100
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mutation score was already 100%. For these kinds of requirements, the implemented test suite is able to cover all the
edge cases. However, for example, SR6 requires multiple safety tactics to be implemented, and these tactics have lots
of edge cases to check. We revisited the test cases and observed that the test suite was missing some test cases.
With the help of our approach, engineers or developers build system models by focusing on safety concerns. They
use these models as an input to mutation testing and evaluate the adequacy of the test suite based on the safety
concerns explicitly defined in the models. If the mutation score is not 100, they revisit and reiterate the test suite
to add missing or edge test cases to achieve a mutation score of 100. Our tool automates the process by removing
manual steps for generating the mutations and running test cases. It also helps to ensure the safety concerns are

properly addressed in the test cases by focusing on the safety tactics.

8 | DSL EVALUATION

In this section, we present the evaluation of our DSL from the end users’ perspective. Since our DSL is relatively new,
we do not have adequate trained users to conduct formal interviews with questionnaires to evaluate our DSL. In this
regard, we have looked at the existing studies in the literature to provide an approach for assessing DSLs from various
perspectives. [29] (30} 31} [32] propose different approaches to evaluate novel DSLs. For our DSL, we used Frame-
work for Qualitative Assessment of DSLs (FQAD) [30], which is based on the ISO/IEC 25010:2011 standard. FQAD
describes a set of quality properties for assessing a DSL, including Functional suitability, Usability, Reliability, Main-
tainability, Productivity, Extensibility, Compatibility, Expressiveness, Reusability, and Integrability. In the following, we
present the evaluation of our DSL considering each quality characteristic.

Functional suitability indicates to what degree the DSL is fully developed. This means that all necessary function-
alities exist in the DSL, and the DSL does not have functionality not given in the represented domain. We used our
DSL to define multiple case studies, and we have been able to describe all the problem-specific functionalities needed
to express safety. From this point, we can conclude that our DSL meets this criterion.

Usability refers to the degree to which specified users can use DSL to accomplish specified goals. To analyze this
property, we have asked engineers experienced in the safety domain to assess the overall usability of our DSL. They
expressed that differentiating between safety-critical and non-safety-critical components in the system helped them
identify where to focus on the safety requirements. They also indicated that expressing and seeing the direct relation
between safety-critical components and safety tactics helped address safety concerns in the system. Overall, they
mentioned that the DSL is easy to learn and use.

Reliability of a DSL is defined as the property of a language that helps to produce reliable programs. We developed
our DSL using the Xtext framework in the Eclipse environment. The Xtext framework provides full infrastructure
including parser, linker, type checker, compiler and editing support for Eclipse. The Eclipse editor provides all the
requirements for handling code errors.

Maintainability shows to what degree the DSL is easy to maintain. Our DSL consists of four main parts, which are
defined by applying the separation of concerns principle. This helps to achieve modularity in the DSL. For maintain-
ability, it is also vital to address understandability. In our DSL, we directly model the concepts as defined in the safety
domain. Therefore, the grammar is easy to understand. Maintenance also covers modifiability. Since our DSL design
is modular, it can be easily modified, or new concepts can be added.

Productivity refers to the degree to which a DSL promotes programming productivity. Our DSL helps to increase
productivity because it enhances the design and testing process of safety-critical systems. It helps developers and

engineers to identify safety-critical concerns by explicitly defining them at the early stages of the design. Also, it
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supports the testing stage by helping test engineers to assess the quality of the test suites focusing on the safety
concerns.

Extensibility defines the degree to which a DSL has general mechanisms for users to add new features. Our DSL
can easily be extended because of its modularity. Our DSL consists of four different parts that each provides different
a viewpoint to the safety domain. In this regard, our DSL can be easily extended by adding new concepts. Also, the
Xtext framework and the Eclipse helps users to add new features to DSL easily.

Compatibility of a DSL shows at what degree a DSL is compatible with the domain and the development process.
We defined our DSL to enhance the testing process of safety-critical systems. It is designed to help test engineers
to assess the test suites’ quality by focusing on safety concerns. It fits the systems engineering lifecycle in terms of
requirement analysis, design, development, and testing.

Expressiveness defines the relation between the program and what the programmer has in their mind. For this
criterion, it is imperative to have a one-to-one mapping between the concepts and their representation in the DSL.
We developed our DSL based on a thorough domain analysis whereby we have modeled each concept in the corre-
sponding metamodel of the language. We can affirm a one-to-one correspondence between the concepts, and their
representation in the DSL and there are no duplicated concepts. We also considered the abstraction level of the con-
cepts in the DSL to ensure that they are not too generic or too specific but expressive enough to represent the safety

domain.

Reusability of a DSL refers to the degree to which DSL can be used in any other language. The definitions in our
DSL can be used in any other language since the DSL directly models the concepts as defined in the safety domain.

Integrability defines the degree to which the DSL is compatible with integration with other languages. We devel-
oped the DSL using the Xtext framework in Eclipse environment. The Eclipse platform allows developers to extend
Eclipse applications like Eclipse IDE with additional functionalities via Eclipse plug-ins. In this respect, our DSL can be

integrated with other languages using the Eclipse IDE.

9 | RELATED WORK

Several studies have proposed domain-specific languages (DSL) for addressing safety. In [33], the authors define a DSL
to present Petri-nets and a tool MeeNET to debug safety-critical systems. Their focus is on having a DSL to formally
define behavior of the system using Petri-nets and verify the system behavior. Nandi et al. [34] proposes a DSLfor
the correct deployment of RV solutions in the scope of cyber-physical systems. Kaleeswaran et al. [35] define a DSL
for Hazard and Operability Analysis (HAZOP) study. HAZOP study is a systematic way to identify potential hazards in
the system. The HAZOP-DSL helps users to build links between HAZOP study and the system model for consistency
and traceability. With the DSL support, the changes in the system model can be detected, and the user is enforced
to make necessary changes in the HAZOP. Their study enables users to detect issues in the safety analysis at early
design levels. [36] defines a DSL for defining the safety requirements and automatically verifying their consistency
using formal methods. They propose a domain-specific language SafeNL to enable users to define safety requirements
formally. They convert the SafeNL documents into formal constraints (Clock Constraint Specification Language) and
verify their consistency with existing tools. Queiroz et al. [37] propose a DSL for defining scenarios used in simulation
testing of autonomous driving systems. Their DSL includes information about vehicles, pedestrians, paths, roads
which are the main components to compose test cases for self-driving vehicle testing. Some studies [38}[39] define
a DSL to improve processes in their engineering life cycle. [39] defines a DSL (Mauve) for specifying the software

architecture of autonomous robots. Using this DSL, they analyze the real-time correctness of the architecture by



474

475

476

477

478

479

480

481

482

483

484

485

486

509

510

511

512

513

verifying the schedulability of different components. They transform Mauve model into Periodic State Machines
and analyze real-time characteristics of the architectural components. Also, they check the validity of behavioral
properties by converting Mavue model into Fiarce [40] models and analyze the Fiarce model using TINA [41]. In [42],
the authors propose a domain-specific modeling language (DSML) to provide a conceptual model for expressing the
information mandated by DO-178C standard. Iber et al. [43] proposes a DSL to specify tests from UML Testing Profile
(UTP). They model the UTP to support model-driven development processes such as generating test code.

All these and other studies in the literature define DSL to support system development lifecycle. Some focus only
on one step of the lifecycle such as requirement analysis or design or implementation, where some of them are specific
to one safety-critical domain like railway systems,robotics, or automotive. To the best of our knowledge, no generic
DSL has been presented which is dedicated to assess the quality of the test suite. With this study, our primary focus
is evaluating the adequacy of the test suite based on the applied safety tactics in the software architecture models.
Our DSL allows us to express safety tactics in the safety models and the system implementation details to generate
mutants and run test cases.

In the literature, several studies proposed a fault-based testing approach to test safety-critical systems. In [44],
the authors proposes an approach to generate test oracles from the formal requirements defined in CASDL (Casco
Accurate Specification Description Language). In another study [12], a test case generation approach is defined based
on model mutation for the safety requirements in the system. Firstly, a fault model is defined by describing mutation
operators and UML models of the system. Then, they define a process for transforming a UML model to OOAS (Object-
Oriented Action Systems) using fault models. Subsequently, OOAS models’ mutations are generated and used for the
test case generation process. Another study [45] applies mutation testing on a nuclear reactor. In this work, a test
case generation approach is defined to test a nuclear reactor. Mutation testing is applied by mutating the source code.

With this approach, they aim to calculate the degree of test adequacy of the generated test cases.

Safety concern has not been explicitly addressed using a dedicated architecture perspective before. However,
there is plenty of work related to safety engineering. In our earlier work [19]/46], we have provided a safety perspective
that can support the architectural design of safety-critical systems. It can assist the system and software architects in
designing, analyzing, and communicating the decisions regarding safety concerns by evaluating safety issues early on
the life cycle before implementing the system.

In [47,148], several architectural patterns are proposed to support software safety design. Gawand et al. [48]
propose a framework for the specification of architectural patterns to support safety and fault tolerance. They provide
four types of patterns. One of the patterns is Control-Monitor pattern. They aim to improve fault detection by using
redundancy by using this pattern. Another pattern is the Triple Modular Redundancy pattern which is used to enhance
system’s safety where there is no fail-safe state. The other pattern is the Reflective State pattern which separates the
application into base-level and meta-level to separate control and safety aspects from the application logic. The last
pattern is Fault Tolerance Redundancy pattern which improves the fault tolerance of the system while implementing
the redundancy for safety. Armoush et al. [47] propose a Recovery Block with Backup Voting pattern which improves
the fault tolerance of the system.

Our earlier work considered the explicit modeling of viewpoints for quality concerns [49}/50/51]. As a result, each
quality concern, such as adaptability and recoverability, requires a different decomposition of the architecture. Archi-
tectural elements and relations are defined to specify the required decomposition for the quality concerns. Earlier
work on local recoverability has shown that this approach is also broadly applicable. We consider this work comple-

mentary to the architectural perspectives approach. Both alternative approaches seem to have merits.
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10 | THREATS TO VALIDITY

In this section, we discuss threats to the validity of our study using the guideline defined in [52].

Construct validity: The main goal of our study is to assess the adequacy of the test suite of safety-critical systems.
To achieve this, we built an approach by leveraging existing fault-based testing methods. While applying the proposed
approach to the case study, we assumed that the implementation (code) of the case study is bug-free and the test suite
is complete from a test coverage perspective. Any defects in the case study implementation and test suite may affect
our case study evaluation results. Additionally, we used pJava [53] to generate mutants. Any issues in uJava would
jeopardize our study’s construct validity. The other point we bring to attention is that our case study is implemented
in Java. We did not focus on the requirements of programming languages for supporting the implementation of safety-
critical concerns since the scope of the paper is on mutant generation. This also might have an effect on the construct
validity.

Internal validity: To evaluate our approach, we used a use case from a real industrial case study. For the given
case study, there is no equivalent mutant detected. Some of the equivalent mutants could not be generated or found
because of the size of the case study. This might cause a threat to our internal validity. We plan to perform additional
case studies as future work.

External validity: Our approach is based on safety concerns, and it provides a generic approach for safety-critical
systems. To illustrate our work, we applied our approach to a real case from a safety-critical system in the avionics
domain. However, it can be applied to any safety-critical system from any domain since the overall approach is generic.

Reliability: In this work, we provided detailed information about each step of the proposed approach. The meta-
model, DSL, and tool are publicly available through an open-source platform. Hence, the results obtained within our

study are reproducible.

11 | CONCLUSION

Testing safety-critical systems is essential and for this purpose, developing an effective test suite is necessary. In
this article, we have thus provided a systematic approach for assessing test suites of safety-critical systems. For this
purpose, we have adopted a fault-based testing approach that can be used to analyze the effectiveness of so-called
architecture safety tactics. We have developed the required metamodel and realized the DSL to model the faults and
tactics and support fault-based testing. We have applied the approach and the tool for a real industrial case study.
The approach and the tool are helpful to assess a given test suite and analyze the strength of the safety tactics.
Based on the results from our case study, our main conclusion is that our approach is feasible and effective for
test suite assessment of safety-critical systems. It supports the overall architecture design of safety-critical systems
and analysis to realize the requirements for safety-critical systems. With our fault-based testing approach, engineers
and developers build dedicated system models to express safety concerns, use these models as an input to mutation
testing, and evaluate the effectiveness of the developed test suite based on the safety concerns addressed in the
models. If the mutation score is not 100, they revisit and reiterate the test suite to add missing or edge test cases
to achieve a mutation score of 100. Since our approach focuses on safety tactics and fault knowledge, it enables
developers to build complete and robust test suites focusing on safety concerns while building safety-critical systems.
For future developments, we aim to enhance the approach further by systematically analyzing different faults and
safety tactics from various domains such as robotics, nuclear systems, and automotive. Besides, we aim to automate

mutation operation selection with the help of the safety model. Another improvement area that we plan is generating
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test artifacts (test data, test scripts, test oracle) from the DSL we defined. We also consider adding debugging and

testing support to our DSL as future work.
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A | EBNF GRAMMAR OF DSL

SafetyDSL = {SafetyView} ImplementationDetail;
SafetyView = HazardView | SafetyTacticView | SafetyCriticalView;

HazardView = 'Hazard View' STRING '{ Elements {' {HazardElement} '} 'Relations {' {HazardRelation} '}''}' ;
HazardElement =Hazard | SafetyRequirement | Consequence | Fault | FaultTree ;
Hazard = 'hazard' HazardID ;' ;

SafetyRequirement = 'safetyRequirement’ SReqID ';' ['{" {SafetyRequirement} '}'] ;
Consequence = 'consequence’ ConsequencelD";';

Fault = 'fault’ FaultiD ;' ;

FaultTree = 'faultTree' FaultTreelD FaultTreeNode ';';

FaultTreeNode = FaultiD | ANDNode | ORNode ;

ANDNode = FaultTreeNode 'AND' FaultTreeNode ;

ORNode = FaultTreeNode 'OR' FaultTreeNode

HazardRelation = DerivedFrom | Causes | CausedBy ;

DerivedFrom = SReqlID {',' SReqID} 'derivedFrom' HazardID ';';

Causes = HazardID 'causes' ConsequencelD {',' ConsequencelD} ';';

CausedBy = HazardID 'causedBy' FaultTreelD ;' ;

SafetyTacticView= 'SafetyTacticView' STRING '{' {SafetyTactic} '} ;
SafetyTactic = ('faultAvoidance' | 'faultDetection' | 'faultContainment') STacticID '{' 'type=' STRING 'handledFaults=' (FaultID) {',’ FaultiD} '} ;' ;

SafetyCriticalView = 'Safety-CriticalView' name=ID '{' 'Elements {'{ArchitecturalElement} '} 'Relations {'{SafetyCriticalRelation}'}' '}’ ;
ArchitecturalElement = SafetyCritical | NonSafetyCritical | Monitor ;
SafetyCritical = 'safety-critical' SCModulelD '{' 'criticalityLevel=' ('A' | 'B' | 'C' | 'D") '}’
'implementedSafetyRequirements=' SReqID {',' SReqID} ;'
['implementedTactics=" STacticID {',' STacticID} ;']
['sub-elements="{SCModulelD} {',' SCModulelD}"';' ]
['hasState' StatelD {',' StatelD}] '} ';';
NonSafetyCritical = 'non-safety-critical' NSCModulelD ( '{' {NSCModulelD}'} | ;') ;
Monitor = 'monitor' MonitorID [{' 'implementedTactics=' SCTacticID {',' SCTacticID} '}'] ;' ;
State = ('state' | 'safeState') StatelD ';';

SafetyCriticalRelation = ArchElementToArchElement | MonitorToArchitecturalElement | ReportsFault ;
ArchitecuralElementID = (SCModulelD | NSCModulelD | MonitorID);
ArchElementToArchElement = ArchitecturalElementID (‘reads’ | 'writes' | 'commands') ArchitecturalElementID {',' ArchitecturalElementID} ;" ;
MonitorToArchitecturalElement = MonitorID ('stops' | 'starts' | "inits' | 'restarts' | 'monitors') SCModulelD {';' SCModulelD} ;' ;
ReportsFault = SCModulelD 'reportsFault' SCModulelD {',' SCModulelD} ;' ;
ImplementationDetail = 'ImplementationRelations {' "Module-Class Relation {' {ModuleClassRelation} '};'
'Class-TestCase Relation{' {ClassTestCaseRelation} '};' '}';
ModuleClassRelation = SCModulelD 'composesOf=""{' ClassDef {',' ClassDef} '} ;' ;
TacticTestCaseRelation = STacticlD 'testWith='"{" QualifiedName {',' QualifiedName}'}'';';

ClassDef = QualifiedName ; FaultTreelD = STRING;
Qualified Name = STRING {"'.' STRING } ; SCModulelD = STRING;
HazardID = STRING; NSCModulelD = STRING;
SReqID = STRING; MonitorID = STRING;
ConsequencelD = STRING; StatelD = STRING;

FaultlD = STRING; STacticID = STRING;
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