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Abstract

By protein structure prediction (PSP) we refer to the prediction of the 3-dimensional (3D) folding of a protein, known as

tertiary structure, starting from its amino acid sequence, known as primary structure. The state-of-the-art in PSP is currently

achieved by complex deep learning pipelines that require several input features extracted from amino acid sequences. It has

been demonstrated that features that grasp the relative orientation of amino acids in space positively impacts the prediction

accuracy of the 3D coordinates of atoms in the protein backbone. In this paper, we demonstrate the relevance of Geometric

Algebra (GA) in instantiating orientational features for PSP problems. We do so by proposing two novel GA-based metrics

which contain information on relative orientations of amino acid residues. We then employ these metrics as an additional input

features to a Graph Transformer (GT) architecture to aid the prediction of the 3D coordinates of a protein, and compare them

to classical angle-based metrics. We show how our GA features yield comparable results to angle maps in terms of accuracy

of the predicted coordinates. This is despite being constructed from less initial information about the protein backbone. The

features are also fewer and more informative, and can be (i) closely associated to protein secondary structures and (ii) more

readily predicted compared to angle maps. We hence deduce that GA can be employed as a tool to simplify the modeling of

protein structures and pack orientational information in a more natural and meaningful way.
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Abstract

By protein structure prediction (PSP) we refer to the prediction of the 3-dimensional
(3D) folding of a protein, known as tertiary structure, starting from its amino
acid sequence, known as primary structure. The state-of-the-art in PSP is currently
achieved by complex deep learning pipelines that require several input features
extracted from amino acid sequences. It has been demonstrated that features that
grasp the relative orientation of amino acids in space positively impacts the predic-
tion accuracy of the 3D coordinates of atoms in the protein backbone. In this paper,
we demonstrate the relevance of Geometric Algebra (GA) in instantiating orienta-
tional features for PSP problems.We do so by proposing two novel GA-basedmetrics
which contain information on relative orientations of amino acid residues. We then
employ these metrics as an additional input features to a Graph Transformer (GT)
architecture to aid the prediction of the 3D coordinates of a protein, and compare
them to classical angle-based metrics. We show how our GA features yield compa-
rable results to angle maps in terms of accuracy of the predicted coordinates. This is
despite being constructed from less initial information about the protein backbone.
The features are also fewer and more informative, and can be (i) closely associated to
protein secondary structures and (ii) more readily predicted compared to angle maps.
We hence deduce that GA can be employed as a tool to simplify the modeling of pro-
tein structures and pack orientational information in a more natural and meaningful
way.
KEYWORDS:
protein structure prediction, geometric algebra, conformal geometric algebra, 3D modelling, protein
modelling, graph transformer

1 INTRODUCTION

The structure of a protein determines its function. Knowing the structure of proteins is hence relevant to understanding their role
in the human body, with a big impact on medicine and drug design. An example of this is given by HIV-1 protease, which is the
enzyme responsible for the replication of HIV. Understanding the structure of HIV-1 protease allowed the design of drugs that
worked as inhibitors by mimicking the shape of the enzyme substrate, i.e. the molecule that the enzyme reacts with, successfully
preventing the replication of the virus1,2.

0Abbreviations: PSP, protein structure prediction; GA, geometric algebra; CGA, conformal geometric algebra; DL, deep learning; GT, graph transformer
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The first protein structure to be resolved was the structure of myoglobin in 19603. The 3D shape of myoglobin was determined
experimentally through X-ray diffraction. In the past decade, however, deep learning (DL) has been proven to be a more suc-
cessful approach to tackle the protein folding problem4,5. DL techniques are generally highly accurate and significantly cheaper
and faster than experimental techniques such as X-ray crystallography6, nuclear magnetic resonance (NMR)7 or cryoelectron
microscopy8.
Hence, we now talk about protein structure prediction (PSP) as the protein structure is predicted through a DL architecture.

To assess the state-of-the-art in the field, an international competition is held every two years, named the Critical Assessment of
Protein Structure Prediction (CASP). CASP14 was won by AlphaFold 2, reaching an unprecedented global distance test (GDT)
score of above 90% in almost 70% of the proteins in the CASP dataset, demonstrating how AlphaFold 2 can resolve the 3D
folding of virtually any protein with known primary structure2,9,10.
A typical DL-based PSP pipeline is generally composed of several cascaded neural networks, whose end goal is the prediction

of 3D coordinates of some of the atoms in the protein backbone11. In recent literature, Transformer networks have been proven to
be particularly suitable for coordinate prediction. Transformer networks are sequence-to-sequence models first introduced in12,
and have found widespread application in fields including speech synthesis13, semantic correspondence14, speech separation15
and trajectory forecasting16. In PSP, for example, two of the seven networks employed in11 are Transformer networks to predict
and refine the coordinates of the backbone atoms. Similarly, a multiple sequence alignment (MSA) Transformer followed by a
GT has been employed to predict 3D coordinates starting from the protein’s sequence of amino acids in17.
The goal of this paper are to: (1) employGeometric Algebra tools tomodel proteins and capture information about the pairwise

orientation of amino acids in the chain and (2) obtain new machine learning-ready features derived from this modeling and to
employ them in a PSP pipeline based on a GT, enabling comparison with the standard angle description in terms of accuracy of
the predicted 3D coordinates.
The rest of the paper is structured as follows: in Section 2 a brief summary of the state-of-the-art is provided; in Section 3

the fundamentals notions of GA and CGA are introduced and in Section 4 different modeling approach to protein structures
are presented. The experimental setup is discussed in Section 5, results are presented in Section 6 and interpreted in Section 7.
Lastly, conclusions are drawn in Section 8.

2 RELATED WORK

3D coordinates are predicted by training the network on several biological and chemical features of the protein. These features are
extracted starting from its amino acid sequence (or primary structure) and include interresidue distances (e.g. distance between
amino acid pairs), the secondary structures of the proteins (e.g. the local folding patterns such as helices or sheets), the potential
energy and others2,10,11,18,19,20,21.
Among these features, orientational information of atoms in the backbone has been proven to be particularly relevant. Xu

proposed a structure prediction approach in which orientational information is implicitly inferred from multiple distance maps
for several atoms in the backbone (e.g. C� − C� , C� − C� , Cg − Cg , N − C) in19. This approach outperformed RaptorX, their
previous contact-based prediction pipeline in18, which lacked such kind of information.
Yang et al. showed that angle maps, constructed explicitly starting from dihedral angles of the protein backbone, rather than

multiple distance maps, increase the coordinate prediction accuracy up to 2.2% compared to approaches with no orientational
information20. Baek et al. also included the same angle maps of20 as a pairwise feature as input of a Graph Transformer net-
work11, and Xu et al. employed them in a PSP pipeline deprived of proteins’ co-evolutionary information in22, suggesting
a hierarchy of features in terms of their importance in the prediction: when orientational information is available, other less
relevant features could be be dropped.
In AlphaFold, orientational information is embedded in the prediction pipeline by associating a 3D rigid body in the form of

a rotation and translation to each amino acid in the chain2. A similar approach is seen in AlphaFold 2, in which a “rigid body
gas”, i.e. a collection of 3D rigid bodies built on eachN − C� − C plane of the protein backbone, is fed into a 3D Transformer
architecture which updates the rigid bodies jointly with the side chain2.
Regardless of how the pairwise amino acid orientation is captured (interatomic distances, angle maps, rigid body frames,

etc) it has been demonstrated that it represents key information when trying to resolve the overall 3D protein structure. We
believe that a suitable candidate for providing information on pairwise orientations of amino acid is represented by Geometric
Algebra (GA), due to its intuitive handling of geometrical objects and operations on them23,24. GA has already found some
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applications in protein modelling: for example non-normalized rotors (see Section 3 for further details) have been employed for
tackling the loop closure problem, i.e. when feasible loops must be found between two given anchor residues, and to compute
atomic coordinates from internal coordinates25,26. More specifically, Conformal Geometric Algebra (CGA, see Section 3.2) has
seen application in the molecular distance problem27,28,29,30, which provides a suitable approach in selecting plausible protein
conformation starting from NMR measurements affected by uncertainty, rather than in a learning-based approach.
To the best of our knowledge, there has not been an effort to employ GA as a modelling tool in learning problems involving

proteins.

3 FUNDAMENTALS OF GEOMETRIC ALGEBRA

3.1 Geometric Algebra
A GA with p-basis vectors that square to +1, q-basis vectors that square to −1 and r vectors that square to 0 is indicated with
p,q,r, with p + q + r = n being the dimensionality of the space. GA is an algebra of geometric objects, which are built up via
the geometric product, which for vectors is defined as

ab = a ⋅ b + a ∧ b (1)
in which a and b are vectors, and ⋅ and ∧ represents the inner (or dot) and outer (or wedge) products, respectively. Both
components of Equation 1 have geometrical meaning: the inner product between a, b is proportional to the cosine of the angle
between them, while the outer product corresponds to the oriented area of the parallelogram with sides a, b, and we call a ∧ b a
bivector. It is possible to define higher grade objects by multiple outer products as Ar = a1 ∧ a2 ∧ ... ∧ ar, in which Ar is called
an r-blade with grade r. The geometric product ab is called a multivector, since it is a linear combination of a scalar, of grade 0,
and a bivector, of grade 2. Multivectors are linear combinations of blades of different grades.
We say that a geometric product of vectors R = a1a2...ar has a reverse given by R̃ = arar−1...a1, as long as r ≤ n. If we scale

R so that RR̃ = 1, it can be verified that the equation
v′ = RvR̃ (2)

yields a rotation of v into v′, as it preserves both lengths and angles. This can be easily proved since (RvR̃)2 = Rv2R̃ = v2RR̃ =
v2 and (RvR̃) ⋅ (RwR̃) = v ⋅w. We refer to the object R as a rotor when r is even, and it is a key quantity in GA.

3.2 Conformal Geometric Algebra
Conformal Geometric Algebra (CGA) extends a GA p,q,r of dimension n to p+1,q+1,r by introducing two basis vectors, e and ē
which satisfy e2 = +1 and ē2 = −1. Having introduced e and ē, we can construct two vectors

n∞ = e + ē

n0 =
1
2
(ē − e)

(3)

n∞ and n0 represent the point at infinity and the point at the origin, respectively. These newly defined vectors are at the basis of
the conformal mapping that extends GA onto CGA as follows

x ∈ p,q,r ←→ F (x) ∈ p+1,q+1,r (4)
with

F (x) = 1
2
(x2n∞ + x + n0) (5)

When dealing with a 3-dimensional Euclidean space, i.e. 3,0,0, the equivalent CGA will be 4,1,0, i.e. a five-dimensional
space. One of the most interesting properties of CGA is the representation of geometrical objects. It can be shown how point
pairs, lines, planes, circles and spheres are all easily represented by blades in the 5D CGA (see Table 1 ).
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TABLE 1 Objects in CGA
Grade Symbol Object

1 A point
2 A ∧ B point pair
3 A ∧ B ∧ C circle ()
3 A ∧ B ∧ n∞ line (L)
4 A ∧ B ∧ C ∧ D sphere (Σ)
4 A ∧ B ∧ C ∧ n∞ plane (Π)

4 MODELLING THE ORIENTATION OF AMINO ACIDS

The protein backbone is responsible for the protein folding. A protein backbone is characterized by several atoms bonded together
in a chain. The chemical group that differentiates amino acids between each other is bonded the alpha-Carbon (C�) of the protein
backbone. Given a string ofM amino acids, we can associate to itM C� atoms in the backbone, each of which is preceded by a
nitrogen (N) atom and followed by a carbon atom (C). In this section we present three ways of describing the geometry of the
protein backbone.

4.1 Dihedral angles
Dihedral angles are the most common way to describe the orientation of atoms in the protein backbone. They are the angles
between planes formed by different atom triplets in the backbone. Commonly, each amino acid i can be described with three
dihedral angles {�i,  i, !i}.

ϕi

ψi

ωi
Cα,i

Ni

Cβ,i

Ci
Ni+1

Ci−1

Cα,i+1

FIGURE 1 Ball-and-stick model of Insulin (ID: 3i40, left) and close up on the backbone in position i with dihedral angles
!i, �i,  i highlighted (right).

Following the convention in31, the angle  i is defined as the dihedral angle between the Ci−1−Ni−C�,i and theNi−C�,i−Ci
planes, the angle �i as the dihedral angle between the C�,i − C�,i − Ci and the Ni − C�,i − Ci planes, while !i is the dihedral
angle between theNi+1 − Ci − C�,i and the Ci −Ni+1 − C�,i+1 planes (see Fig. 1 ). A total of 5 planes, all relative to residue i,
are involved to specify the triplet of dihedral angles {�i,  i, !i}.
In order to build angle maps, we need dihedral angles between pairs of residues. We will hence define {�ij ,  ij , !ij} as the

dihedral angles between the same two pair planes mentioned above, but with the first plane relative to residue i and the second
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FIGURE 2 Angle maps for protein 12asA.

relative to residue j. With this assumption we have that �i = �ii,  i =  ii and !i = !ii. We can hence define the angle maps as
follows:

�ij =

{

�ij if dij < 15 Å
0 otherwise (6)

	ij =

{

 ij if dij < 15 Å
0 otherwise (7)


ij =

{

!ij if dij < 15 Å
0 otherwise (8)

where dij is the Euclidean distance between the C�’s of residues i, j measured in Å. Examples of angle maps are given in
Figure 2 . Note how the patterns in 	 are asymmetric.

4.2 Cost function between interpolated rotors
Each triplet of atoms in the backbone lies on a plane. We can take advantage of this information and associate each triplet i with
a plane Πi in Conformal Geometric Algebra (CGA): let Ai, Bi and Ci be the CGA representations of the Euclidean coordinates
of the atoms in the triplet. Πi can be then computed as the 4-blade:

Πi = Ai ∧ Bi ∧ Ci ∧ n∞ (9)
In this way, a protein is modelled as a collection of planes not too dissimilar to the gas of 3D rigid bodies of AlphaFold 210

(see Figure 3 ).
For each pair of planes Πi,Πj we can then form a rotor that rotates Πi into Πj as presented in32:

Rij =
1

√

⟨�⟩0
(1 − ΠiΠj) (10)

where � = 2 − (ΠiΠj + ΠjΠi) and ⟨⋅⟩ is the grade projector operator. We now use a cost function C(R), which is a simplified
version of the cost defined in33, that quantifies the variation of R from the identity:

C(R) = ⟨R∥R̃∥⟩0 (11)
in which the term R∥ is defined as R∥ = R ⋅ e. It can be shown that R∥ contains both rotational and translational information of
a pair of rotors. Since each amino acid can be associated with a plane, and each pair of planes can be associated with a rotor and
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RijRij

Πi

Πj

FIGURE 3 HIV-1 protease (ID: 1dmp) modelled as a collection ofN−C�−C planes (left) and close up on the first 20 residues
(right). Note Πj = RijΠiR̃ij .

eventually to a cost function, we can then build anM ×M matrixM (in whichM is the length of the amino acid sequence) as
follows:

MX,ij =

{

C(RX,ij) if dij < 15 Å
0 otherwise (12)

We call MX a “cost map” centered at atom X. We worked with two types of cost maps: MC� , constructed from the rotor
between planes specified byN − C� − C triplets (as in Fig. 3 ), andMC� , constructed from the rotor between planes specified
by C� − C� − C triplets. We chose these two planes as the amino acid side chain is bonded to the C� of the backbone via C� .
Examples of cost maps are given in Figure 4 .
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FIGURE 4 Cost maps for protein 1n6jA.



A. PEPE, J. LASENBY 7

4.3 Dot product between oriented points
Oriented points were first introduced in34. An oriented point Q in CGA is a trivector, i.e. a circle, with radius r = 0, defined as

Q = Iq ∧ q +
[1
2
q2Iq − q(q ⋅ Iq)

]

n∞ + Iqn0 + (Iq ⋅ q)E (13)
In which q ∈ ℝ3 is the 3D position vector defining the centre of Q, Iq is the (unit) bivector corresponding to the oriented

plane in which Q lies (orthogonal to the normal nq of the plane) and E = n∞ ∧ n0 is the origin-infinity bivector.
Given a pair of oriented points P ,Q, the dot product between them was first studied in35, and it was derived to be equal to

P ⋅Q = d2
[

−1
2
cos �pq + cosΘq cosΘp

]

(14)
in which d is the Euclidean distance between p, q ∈ ℝ3, �pq the dihedral angle between the two planes cos �pq = nq ⋅ nq ,
cosΘp = d ⋅ np and cosΘq = d ⋅ nq .
Equation 14 tells us that, up to a scale factor, the dot product between two oriented points is a function of three angles, hence

it encodes the orientation between them. Moreover, similarly to the cost function of Section 4.2, Equation 14 allows us obtain
a scalar measure from an initial GA description.
As each atom in the backbone can be associated to a set of 3D coordinates and it lies on a plane specified by the bonds to

the previous and following atoms in the backbone, it is easy to associate an atom with an oriented point. We will call QC� theoriented point centered on C� in theN −C� −C plane (see Fig. 5 ), QC� the oriented point centered on C� in the C� −C� −Cplane and so on.

QCα,i
QCα, j

nq,i

nq, j

FIGURE 5 Haemoglobin (ID: 1a3n) modelled as a collection of oriented points centered at C� (left) and close up on 5 residues
with labelled oriented point (right).

We can again build anM ×M map for each protein chain of lengthM , which we will call dot product maps, defined as:

NX,ij =
⎧

⎪

⎨

⎪

⎩

1
d2ij
(QX,i ⋅QX,j) if dij < 15 Å

0 otherwise
(15)

In whichX is any atom among C� , C� , C orN , and dij is the Euclidean distance betweenXi andXj . Note the normalization
factor as we are only interested in the orientation between atoms. Examples of dot product maps maps are given in Figure 6 .

5 EXPERIMENTS

Having defined these orientational maps, we now proceed to study how they impact the prediction of protein coordinates.
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FIGURE 6 Dot product maps for protein 3i41A.

5.1 Dataset
We employed an expanded version of PDNET to train our models21. The original PDNET includes 1000 proteins for train-
ing and 150 proteins for testing, of which the top seven features in contact and distance prediction problems are picked. These
features are sequence profiles, secondary structures, solvent accessibility, coevolutionary signals, FreeContact36, contact poten-
tials alignments and Shannon entropy, all predicted starting from the amino acid sequence. The seven features are encoded in
PDNET as a stack of 57M ×M channels for each of its protein chains of lengthM . Of the 57 channels, 3 of them correspond
to pairwise features, i.e. FreeContact, coevolutionary signals and contact potentials, while the remaining 54 are 27 individual
features repeated twice as a matrix and their corresponding transpose (i.e. Y and Y T ).
We expanded PDNET by adding distance maps (defined as Dij = dij , where dij = ‖Ti − Tj‖2, with T ∈ ℝN×3 being the

ground truth coordinates of the C� atoms of the protein) and eight possible combinations of the cost maps described in Section
4 (namelyMC� ,MC� ,NC� ,NC� ,NN ,
,� and 	), for a total of nine different cases (see Table 2 ).
We then recast the dataset in the form of heterogeneous graphs so that it could be input into the GT (see Section 5.2.1). By

heterogeneous graph (V ,E) with V and E being its set of nodes and edges, we refer to a graph with different types of nodes
and edges. If |V | = M is the total number of nodes, the graph can be described as a set of adjacency matrices for each of the
K edge types, i.e. {Ak}Kk=1, where Ak ∈ ℝM×M , or in tensor form A ∈ ℝM×M×K : we say that Ak;i,j is non-zero when there
exists an edge of type k between nodes i, j. Along with A, we can also define a feature matrix X ∈ ℝM×D, where D is the
dimensionality of the features, or equivalently we can say there are D node types.
Ignoring the transposed matrices, we have D = 27 channels which correspond to features relative to individual amino acids

which can be manipulated and arranged in a feature matrix X ∈ ℝM×D=27. On the other hand, the pairwise features range from
a minimum of K = 4 in case (a) up to a maximum of K = 7 in cases (g)-(i) which correspond to the edges of the protein graph,
i.e. the adjacency matrices A ∈ ℝM×M×K (see Table 2 ).
The input to the architecture is then given by the pair of tensors {A, X}(i) for each protein i in the dataset. Training details are

given in Appendix B.1.

5.2 Architecture
The end-to-end architecture, derived from17, is composed of two parts: (1) a Graph Transformer and (2) a 3D projector. A
summary of the architecture is shown in Fig. 7 . We omitted the MSA Transformer of17 as the employed dataset allows us to
directly perform node and edge embedding on its features.

5.2.1 The Graph Transformer
The GT has been implemented as described in37. The goal of a GT is to learn informative meta-paths within the graph, i.e. an
ordered sequence of node types and edge types. The GT also implements an attention mechanism, which is a function of the
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FIGURE 7 The employed architecture. Features are recast in graph form to predict 3D backbone coordinates via a GT + 3D
projector architecture

neighbourhood connectivity for each node in the graph38. The output of the l-th layer of a GT with C attention heads is a node
representation with the same dimensionality as X, i.e. Z ∈ ℝM×D which can be written as

Z (l) =
C
⨁

i=1
�(Δ̃−1i Ã

(l)
i XW ) (16)

where⨁ is the concatenation operator, �(⋅) is the sigmoid function, Δ̃i is the degree matrix of Ã(l)i (defined as Δm = ∑

n Amn),
X is the feature matrix,W ∈ ℝD×D is a trainable weight matrix and Ã(l)i = A(l)i + I , in which A(l)i is the adjacency matrix from
the i-th channel of the metapath tensor A(l) ∈ ℝM×M×C . A(l) is evaluated as A(l) = Δ−1Q1Q2. Q1 and Q2, both ∈ ℝM×M×C , are
two adjacency tensors selected according to:

Q = '[A; � (W')] (17)
where A ∈ ℝM×M×K is the adjacency tensor, '(⋅) is the convolution operator, � (⋅) is the softmax function andW' ∈ ℝC×C×K

are the weights of '. Z contains the node representations from C different meta-path graphs.

5.2.2 The 3D Projector
The 3D projector is a simple fully connected layer obeying

P = Z (L)WP (18)
where Z (L) is the output of the L-th layer of the GT,WP ∈ ℝD×3 is the weight matrix of the projector and P ∈ ℝM×3 are the
3D coordinates of theM C� atoms in the protein chain. To train the model, a distance map is evaluated for each protein from
the predicted coordinates P as D̃ij = dij , where dij = ‖Pi − Pj‖2 is the Euclidean distance between the 3D coordinates of the
i-th and j-th amino acid in P .

TABLE 2 Combinations of orientational features. The column “ Planes” specifies how many planes are required to build the
corresponding set of features. The column “K” indicates the total number of adjacency matrices of the graph.

Case Additional Features Planes K
(a) none - 4
(b) MC� 1 5
(c) MC� ,MC� 2 6
(d) NC� 1 5
(e) MC� ,NC� 2 6
(f) NC� ,NC� 2 6
(g) NC� ,NC� ,NN 3 7
(h) MC� ,NC� ,NC� 3 7
(i) 
,�,	 5 7
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6 RESULTS

For each protein of lengthM we obtained anM × 3 point cloud P of predicted 3D coordinates. We then aligned the predicted
coordinates to the ground truth coordinates T (obtained from the Protein Data Bank (PDB)39) via singular value decomposition
(SVD) (see Appendix A) and performed the GDT, and evaluated the GDT_TS (total score) and GDT_HA (half size) between
P and T as follows:

GDT_TS = p<1Å + p<2Å + p<4Å + p<8Å
4

(19)

GDT_HA =
p<0.5Å + p<1Å + p<2Å + p<4Å

4
(20)

where p<nÅ indicates the percentage of an amino acid’s coordinates in P whose distance from the corresponding amino acid’s
coordinates in T is below n Å. Results for 5 test sets D1 to D5 are summarized in Tables 3 -4 . The highest GDT score has
been highlighted in bold and the second highest has been underlined.

TABLE 3 GDT_TS scores over the five datasets.
Case D1 D2 D3 D4 D5

max med. min max med. min max med. min max med. min max med. min

(a) no orientation 23.99 7.48 0.73 22.46 7.36 0.87 21.32 7.66 0.81 21.32 7.66 0.81 25.98 7.60 1.13
(b) MC� 30.00 11.61 1.71 28.73 11.42 1.87 36.34 12.50 2.25 32.18 12.05 1.55 32.79 12.50 1.58
(c) MC� ,MC� 38.51 11.72 1.70 35.23 11.73 1.77 38.67 12.21 1.89 34.48 11.53 2.33 38.64 12.90 1.42
(d) N� 35.82 11.21 2.29 31.73 11.89 1.01 37.07 12.02 2.72 33.04 11.02 2.47 37.09 11.75 2.91
(e) MC� ,NC� 39.58 11.51 2.58 36.05 12.34 2.00 29.72 12.11 2.21 28.97 11.86 1.09 38.31 12.11 0.13
(f) NC� ,NC� 32.20 11.56 2.35 34.09 11.75 1.20 32.59 12.33 1.03 33.62 11.90 2.12 31.25 12.66 3.05
(g) NC� ,NC� ,NN 29.74 12.00 1.83 39.39 12.39 1.41 41.37 12.71 1.49 38.99 11.65 1.62 37.75 13.03 2.03
(h) MC� ,NC� ,NC� 33.85 11.73 2.71 31.85 11.97 0.89 29.76 12.92 1.79 30.74 12.42 2.03 43.13 11.24 0.66
(i) 
,�,	 33.21 12.29 2.29 33.04 13.10 1.42 32.33 12.69 1.58 29.61 12.05 1.82 32.81 13.75 1.82

TABLE 4 GDT_HA scores over the five datasets.
Case D1 D2 D3 D4 D5

max med. min max med. min max med. min max med. min max med. min

(a) no orientation 9.12 1.61 0.00 7.41 1.81 0.00 8.02 1.74 0.10 8.02 1.74 0.10 8.33 1.80 0.00
(b) MC� 10.27 2.55 0.08 10.06 2.42 0.35 15.09 2.68 0.31 11.62 2.05 0.13 13.11 2.78 0.00
(c) MC� ,MC� 16.53 2.50 0.22 12.89 2.46 0.00 16.41 2.42 0.51 11.78 2.43 0.29 15.26 2.81 0.26
(d) N� 15.30 2.68 0.22 11.06 3.00 0.14 16.05 2.82 0.13 12.07 2.60 0.51 16.01 2.88 0.59
(e) MC� ,NC� 15.83 2.96 0.20 12.46 2.97 0.21 11.79 2.72 0.28 9.20 2.85 0.00 15.90 2.12 0.00
(f) NC� ,NC� 11.36 2.20 0.18 10.23 2.07 0.10 10.21 2.22 0.34 11.21 2.27 0.00 12.59 2.62 3.05
(g) NC� ,NC� ,NN 10.38 2.56 0.28 17.04 2.57 0.20 17.67 3.03 0.11 16.37 2.69 0.17 15.46 2.94 0.34
(h) MC� ,NC� ,NC� 12.69 2.59 0.33 11.36 3.06 0.20 10.12 2.85 0.28 9.41 2.64 0.13 21.08 2.71 0.00
(i) 
,�,	 13.81 2.93 0.23 11.56 2.51 0.00 12.35 3.20 0.28 10.00 2.83 0.30 13.38 2.91 0.30

There are several things to note here: firstly, by adding orientational information, an improvement on the protein coordinates
quality corresponding to at least ∼ 4% compared to the approach without orientational information can be measured, as found
in20.
Secondly, for all the analyzed cases (b)-(i) the relative improvement is generally < 2%, which implies that no clear superior

approach to modeling the amino acid orientation exists. This means that, as long as orientational information is added, an
improvement is going to be seen regardless of how this information is encoded. This is also mirrored in the training loss, which
is significantly larger only for case (a) (see Figure 8 ).
However, the orientational information encoded through our GA-based metrics generally require much less information about

the protein backbone than encoding orientation as angle maps. Compare, for example, case (d) with (i) in Table 4 : in case



A. PEPE, J. LASENBY 11

TABLE 5 GDT_TS score for 10 example proteins (GDT_HA score in parenthesis)
Protein ID (a) (b) (c) (d) (e) (f) (g) (h) (i)
1mk0A 15.46 (6.44) 23.45 (5.15) 14.43 (2.58) 14.94 (4.90) 16.49 (3.35) 22.68 (8.25) 30.93 (7.99) 21.13 (7.99) 18.81 (6.70)
1yqhA 9.37 (3.12) 16.34 (3.85) 16.10 (4.08) 12.25 (1.68) 19.47 (6.97) 24.04 (6.73) 21.87 (4.57) 21.15 (6.94) 20.91 (8.65)
1zv1A 22.89 (5.93) 21.61 (6.35) 28.81 (8.90) 22.88 (9.74) 20.34 (8.89) 20.34 (3.81) 25.84 (7.63) 28.81 (5.93) 19.49 (6.36)
2d0oB 12.96 (4.17) 11.80 (2.31) 13.66 (3.24) 17.13 (5.55) 15.74 (5.55) 19.91 (5.78) 25.69 (8.10) 25.46 (7.87) 20.37 (7.41)
2dgbA 9.04 (2.71) 13.85 (2.71) 16.87 (3.01) 18.37 (6.32) 23.49 6.93) 20.18 (6.02) 17.49 (5.42) 13.25 (4.22) 19.91 (6.48)
2dm9A 12.29 (2.97) 15.67 (4.24) 18.64 (4.45) 16.73 (4.66) 18.86 (7.20) 13.13 (3.60) 14.19 (2.33) 15.04 (4.24) 10.59 (2.12)
2ehwA 8.69 (1.09) 10.87 (2.83) 10.65 (2.83) 12.39 (3.26) 11.74 (3.48) 10.22 (2.82) 11.09 (2.61) 15.00 (3.26) 22.17 (7.17)
2fyuK 10.38 (1.89) 15.10 (5.66) 16.98 (5.66) 29.72 (9.43) 18.87 (5.19) 16.51 (2.83) 26.89 (6.13) 14.62 (4.72) 24.06 (7.55)
2fztA 14.74 (2.24) 25.96 (7.37) 10.58 (2.24) 27.88 (8.33) 19.23 (6.09) 15.06 (4.49) 25.00 (6.73) 17.63 (4.17) 21.47 (3.52)
2gomA 19.67 (7.79) 26.64 (9.43) 27.46 (6.56) 25.00 (9.84) 28.28 (9.43) 25.00 (6.56) 27.87 (8.20) 27.46 (9.02) 25.00 (11.07)

(d) we have a single dot product map NC� (K = 5), constructed over oriented points at position C� in the plane specified by
the N − C� − C triplet, that yields comparable results to case (i), in which angle maps are three additional features (K = 7)
constructed over a total of 5 different planes.
This tells us two things: GA-based metrics can (1) distill more information about the relative orientation of amino acids from

of fewer geometrical objects, and (2) that this information can be condensed in fewer features, which are equivalent to the 3
angle maps approach.
Examples of GDT scores for 10 proteins are given in Table 5 . Again, it can be seen that no approach is consistently superior

for randomly selected proteins. Examples of predicted coordinates for selected cases are given in Figures 9 -10 -11 .
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FIGURE 8 Training loss sampled every 10 learning steps for selected approaches. With the exception of case (a), the training
loss profiles are generally undistinguishable.

7 DISCUSSION

7.1 Geometrical meaning of features
The fact that our GA approach yields comparable results to angle maps by employing fewer features obtained from less geo-
metrical information can be explained with how the information is packed in GA based features: it is possible to establish a
relationship between the secondary structure and the patterns in the cost maps. By secondary structure we refer to local folding
patterns of a protein, most commonly �-helices and �-sheets.
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GDT_TS = 25.00
GDT_HA = 9.84

GDT_TS = 27.46
GDT_HA = 9.02 

GDT_TS = 25.00
GDT_HA = 11.07

MAE: 5.83
SSIM: 0.689

MAE: 3.07
SSIM: 0.768

MAE: 3.56
SSIM: 0.695

FIGURE 9 Results for protein 2gomA. The original 3D protein model is shown in green with the original distance map D
below. The ground truth and predicted coordinates T , P are given on the top row for selected cases in red and blue, respectively,
with their corresponding GDT scores. Below, the distance map D̂ built from P and the MAE and SSIM measured with respect
to D.

GDT_TS = 23.80
GDT_HA = 6.49

GDT_TS = 16.83
GDT_HA = 4.09

MAE: 3.64
SSIM: 0.746

MAE: 4.72
SSIM: 0.663

GDT_TS = 21.15
GDT_HA = 6.49

MAE: 3.93
SSIM: 0.685

FIGURE 10 Results for protein 1yqhA. The original 3D protein model is shown in red with the original distance mapD below.
The ground truth and predicted coordinates T , P are given on the top row for selected cases in red and blue, respectively, with
their corresponding GDT scores. Below, the distance map D̂ built from P and the MAE and SSIM measured with respect to D.

We illustrate this relationship by assigning an arbitrary colour to each secondary structure: red to �-helices, green to �-sheets,
blue to turns and white to all the others. In Fig. 12 we see how there is almost one-to-one correspondence between colour
patches of secondary structures with patterns in cost maps. This shows how cost maps, despite being built starting from a single
plane in the backbone (N − C� − C), contain information about the protein folding that is among the most relevant in PSP
pipelines, namely secondary structures.
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GDT_TS = 26.96
GDT_HA = 9.80

MAE: 3.75
SSIM: 0.745

MAE: 2.38
SSIM: 0.827

GDT_TS = 34.31
GDT_HA = 13.72

GDT_TS = 40.20
GDT_HA = 18.14

MAE: 3.05
SSIM: 0.780

FIGURE 11 Results for protein 1z0jB. The original 3D protein model is shown in yellow with the original distance map D
below. The ground truth and predicted coordinates T , P are given on the top row for selected cases in red and blue, respectively,
with their corresponding GDT scores. Below, the distance map D̂ built from P and the MAE and SSIM measured with respect
to D.

To the best of our knowledge, this is the first example of a single orientational map that clearly matches the secondary
structures.

Φ Ψ Ω 𝑁 𝑀 Secondary 
Structures

FIGURE 12 Orientational maps and secondary structures. Helices (red) and sheets (green) can be easily spotted from the
patterns in the cost mapM.
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7.2 Predictability of features
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FIGURE 13 Predicting orientational features. We employed the residual neural network of21 to predict (a) cost mapsM� , (b)
dot product maps N� and (c) angle maps �,	,
. While all (true) orientational features provide similar improvements when
predicting coordinates, not all of them are as readily predicted.

Results presented so far assume that the orientational features are built starting from ground truth coordinates of atoms in
the protein. In a realistic scenario, however, the coordinates are the end goal of the pipeline, not the starting point. We would
then have to employ predicted orientational features, which are less clear than the ground truth features shown so far and must
themselves be estimated from other features or MSA alignments of the amino acid sequence.
We hence employed the PDNET pipeline in21, originally designed to predict distance maps, to compare how easily different

orientational maps are predicted starting from same set of features and the same pipeline. We attempted predicting cost maps
MC� , dot product maps NC� and the three angle maps. The prediction pipeline is shown in Figure 13 , while training details are
outlined in Appendix B.2.
Example of predictions are given in Figures 14 -15 : cost mapsMwere consistently more accurately predictable. This can be

explained with the fact that they are closely related to secondary structure information, which is implicitly included in other input
features. Less accurate are the predictions of angle maps, which don’t present easily recognizable patterns or are asymmetric as
in 	 . A similar consideration can be made for dot product maps.
While all true orientational maps increase the coordinate prediction accuracy in a similar way, not all orientational maps are

readily predicted, meaning that in a realistic PSP pipeline we will prefer features that are easier to estimate for the same added
value in terms of GDT scores.

Φ Ψ Ω 𝑁 𝑀

Ground 
Truth

Prediction

FIGURE 14 Ground truth and predicted orientational maps for protein 1a3aA.
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Φ Ψ Ω 𝑁 𝑀

Ground 
Truth

Prediction

FIGURE 15 Ground truth and predicted orientational maps for protein 1a70A.

8 CONCLUSIONS

This paper dealt with the issue of orientational features in PSP pipelines. We employed GA as a tool to model the protein
backbone as a rigid body and built two novel features from it, which we named cost maps and oriented point maps, and compared
their impact on PSP accuracy side by side with traditional angle maps. We verified that adding GA-based orientational features
improves the accuracy in terms of GDT scores in a similar way to angle maps, but requiring less geometrical information
about the protein backbone, generally from 1 up to 3 planes compared to 5 planes required by angle maps. This shows that GA
condenses orientational information of proteins in fewer, more informative features. Moreover, we also showed: (i) how patterns
in cost maps can be immediately associated to the protein secondary structures, which is what determines the overall folding and
is one of the most relevant feature in PSP problems, and (ii) how cost maps are easily predictable compared to other features.
We hence believe that employing GA-based orientational features, which require little prior knowledge of the protein structure

and are closely related to secondary structures, is going to be especially relevant in realistic PSP scenarios in which geometrical
information about the protein chain is limited and all the input features have to be predicted as accurately as possible.

8.1 Limitations
This paper aims to be a proof-of-concept for different measures of interresidue orientation for PSP problems and how they impact
the predicted protein coordinates compared to more standard angle maps. We did not focus on boosting the training accuracy:
we are positive that adding more proteins to the training set, employing a larger dataset which includes longer, more complex
protein chains, or training the network for longer are all elements that can significantly improve the GDT scores. Moreover, we
provided only a subset of possible combinations of the proposed maps.
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APPENDIX

A 3D COORDINATES ALIGNMENT

The predicted coordinates P are relative to a different reference frame compared to T , the ground truth coordinates from the PDB
database. P and T must be aligned before evaluating the GDT scores. The goal of alignment is to find R ∈ ℝ3×3, t ∈ ℝ3 such
that P = RT + t. In the GA case, we aim at finding the rotor R such that P = RT R̃. We do so by initially centering P , T at the
origin (i.e by placing their centre of mass at the origin) and align the two point clouds via characteristic multivector technique40.
Results in Table 5 are obtained after aligningP , T .We picked the best GDT scores out of two different alignments procedures,

namely (i) singular value decomposition (SVG) and (ii) GA-based alignment via characteristic multivectors. Results in Tables
3 -4 , as they refer to 750 proteins, have been obtained only through (i) as it is faster computationally. The two algorithms are
summarized in Algorithms 1-2.

Algorithm 1 SVD Alignment
i← 0
M ← 103

while i ≤M do

CP ← 1
N

∑N
i P

i ⊳ compute centroids
CT ← 1

N

∑N
i T

i

H ← (P − CP )(T − CT )T ⊳ H ∈ ℝ3×3

U,Σ, V T ← SVD(H)
⊳ perform SVD

R← V UT

t← CP − RCT

T ← RT + t ⊳ rotate and translate T
i← i + 1

end while

B TRAINING DETAILS

B.1 Graph Transformer + 3D Projector
The total loss to minimize is equal to

 = 1 + 2 (B1)
In which the first term minimizes the L1 norm between D (the ground truth distance map) and D̃, as

1 =
1
N2

N
∑

i

N
∑

j
‖D̃ij − Dij‖1 (B2)

The second termmaximizes the structural similarity index (SSIM) betweenD and D̃weighted by an arbitrary coefficient � = 10
to make 2 of the same order of magnitude as 1:

2 = �
(

1 − SSIM{D, D̃}
)

= �

(

1 −
(2�D̃�D + c1)(2�D̃D + c2)

(�2
D̃
+ �2D + c1)(�

2
D̃
+ �2D + c2)

)

(B3)

where �D is the mean of D, �D̃ the mean of D̃, �D̃D the covariance of D̃ and D, �2
D̃
the variance of D̃, �2D the variance of

D, c1 = (k1L)2, c2 = (k2L)2 with k1 = 0.01, k2 = 0.03 and L the dynamic range is set to 255.



A. PEPE, J. LASENBY 19

Algorithm 2 GA Alignment
i← 0
M ← 103

while i ≤M do
CP ← 1

N

∑N
i P

i ⊳ compute centroids
CT ← 1

N

∑N
i T

i

F ← (P − CP )(T − CT )T

G ← (T − CT )(T − CT )T ⊳ F ,G ∈ ℝ3×3

f1, f2, f3 ← F∶,1, F∶,2, F∶,3 ⊳ extract columns of F, G
g1, g2, g3 ← G∶,1, G∶,2, G∶,3

f 1 ← (f2 ∧ f3)∕(f1 ∧ f2 ∧ f3) ⊳ reciprocal frames
f 2 ← (f1 ∧ f3)∕(f1 ∧ f2 ∧ f3)
f 3 ← (f1 ∧ f2)∕(f1 ∧ f2 ∧ f3)

X ← 1+[(f 1g1+f 2g2+f 3g3)]+[(f 2∧f 1)(g1∧g2)+(f 3∧f 2)(g2∧g3)+(f 3∧f 1)(g1∧g3)+(f 3∧f 2∧f 1)(g1∧g2∧g3)]
� ← XX̃
R̃← X∕

√

�

T ← RT R̃
i← i + 1

end while

Note how the loss is measured over distance maps and not over 3D coordinates as 3D coordinates depend on a reference
frame, while distances are rotationally and translationally invariant. It is possible to include an orientational term in the loss
(e.g. MAE between original and predicted cost maps or angle maps), but this would require more coordinates to be predicted
rather than just the C� coordinates, which are enough for distance maps.
The model consists of 108813 trainable parameters, of which 108648 are from the GT and 165 are from the projector. The

training and testing sets are subsets of PDNET. The first is composed of 200 proteins, while for testing the accuracy of the model
we tested it on 5 test sets of 150 proteins each (labelled D1, D2, etc). The optimizer has been set to Adam with exponentially
decaying learning rate, with initial learning rate �0 = 1 × 10−2 and decay rate per epoch  = 0.9. The GT has C = 4 attention
heads and L = 3 layers. The batch size has been fixed to B = 1 and the network has been trained for E = 5 epochs, for a total
of 1000 training iterations.
Combinations of � ∈ {1×10−1, 1×10−2, 1×10−3, 3×10−4},E ∈ {3, 5, 10}, B ∈ {1, 50, 100},L ∈ {3, 6, 10}, C ∈ {1, 4, 5},

as well as  = 1 and additional layers in the 3D projector have also been implemented and tested, but the hyperparameters
above were found to be optimal for our problem.
The code has been written as a Jupyter Notebook on Google Colaboratory, run on an NVIDIA Tesla K80 GPU and it uses

PyTorch for the DL architecture, the Clifford library for GA operations41 and the PDBModule of Biopython for handling protein
data. The GT was derived from17. Scripts and datasets are available upon request to the authors.

B.2 PDNET Pipeline
The loss of the PDNET pipeline shown in Section 7.2 has been chosen to be

X = log
(

cosh
(

XP − XT
)) (B4)

where XP ,XT are the predicted and true orientational maps in the training set, respectively, with X = {M,N,�,	,
}. The
only difference between the approaches is the activation function of the last layer: when predicting N, which ranges between
[−0.5, 0.5], we employed a tanh activation instead of a ReLU.
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The training features are identical to those of PDNET, namely a stack of images of the type {Y(i)}Ni=1, with L = 57 and
Y(i) ∈ ℝM×M , in whichM is the length of the protein sequence. The loss is evaluated per pixel. The training set has been kept
to 1000 proteins from the DEEPCOV dataset, and the testing set to 150 proteins from the PSICOV dataset, as in the original
PDNET pipeline. The code has been implemented similarly to B.1.
Trained models, datasets and results are available upon request to the authors.
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