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Abstract

In this paper, we investigate an efficient technique for solving fractional differential equations (FDEs). The proposed technique

is based upon Legendre polynomials to construct reproducing kernel spaces, the ε-approximate method is presented in space,

and stability and convergence analysis are given by analyzing the condition number of the matrix of the linear system. Finally,

comparison with the existing algorithm by the numerical experiments illustrates that efficiency and stability of the proposed

method.
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1 Introduction

In recent years, there have been more and more attentions on the research of fractional differential equations, the

main reason is that fractional calculus operators can describe many problems in the engineering field more accurately

than integer order calculus operators [1-3]. Fractional Differential Equations (FDEs)have attracted great attention

from various scientific fields, such as physics, dynamics of earthquakes, signal processing, fluid mechanics [4], chaotic

dynamics, biology [5], electromagnetic waves, polymer science, thermodynamics and so on [6-7]. FDEs are always

with weakly singular kernel and more complicated than integer ones. Actually, in many cases, it is difficult to

obtain the analytical solution, so many experts are dedicated to study the approximate solution of the equation and

emerging a lot of methods [8]. Such as, finite difference method [9], the local meshless method based on Laplace

transform [10], Laplace transform method [11], variational iteration method [12], spectral methods [13], shooting

method [14], etc. To the best of our knowledge, the reproducing kernel space is an ideal space framework for the

study of numerical analysis. In previous work, the Taylors formula or Delta function was used to construct the

reproducing kernel space [15-17], which has been proved to be an effective tool to solving various kinds of differential

equations [18-19].

In this paper, we are concerned with the approximation of FDEs as follows:

Dαu(x) + a1(x)u
′(x) + a0(x)u(x) = f(x), x ∈ (0, 1), α > 0, (1.1)

u(0)− α0u
′(0) = γ0, (1.2)

∗ Corresponding Author
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u(1) + α1u
′(1) = γ1. (1.3)

Here,

Dαu(x) =
1

Γ(k − α)

∫ x

0

(x− t)k−α−1u(k)(t)dt, (1.4)

where k := [α], ai(x)(i = 0, 1), f(x) ∈ L2[0, 1]. The existence and uniqueness of the solution u(x) of problem (1.1)

are established in [20].

The remaining part of this paper is organized as follows: Constructing Basis for reproducing kernel space based

on Legendre polynomials in section 2. In section 3, we give an efficient technique based on ε-approximate method,

theoretical analysis of the approximate solution for homogeneous equation and its unique solvability, stability and

convergence analysis are given. In section 4, we do some numerical experiments.

2 Basis of reproducing kernel space based on Legendre polynomials

The well-known Legendre polynomials is defined on the interval [-1, 1] and its recurrence formula:L0(z) = 1,

Ln(z) =
1

2nn!

dn

dzn
(z2 − 1)n, n = 1, 2, · · ·

z ∈ [−1, 1].

Let z = 2x− 1, we can get the following formulation in the interval [0, 1]:L0(x) = 1,

Ln(x) =
1

n!

dn

dxn
(x2 − x)n, n = 1, 2, · · ·

x ∈ [0, 1].

The Legendre polynomials has following properties:∫ 1

0

√
2n+ 1Ln(x)

√
2m+ 1Lm(x)dx = δmn.

The first seven terms of the polynomials of (2n+ 1)
1
2Ln(x) are listed in the table.

Table: The first seven polynomials of (2n + 1)
1
2 Ln(x)

n (2n + 1)
1
2 Ln(x)

0 1

1 3
1
2 (−1 + 2x)

2 5
1
2 (1 − 6x + 6x2)

3 7
1
2 (−1 + 12x − 30x2 + 20x3)

4 3(1 − 20x + 90x2 − 140x3 + 70x4)

5 11
1
2 (−1 + 30x − 210x2 + 560x3 − 630x4 + 252x5)

6 13
1
2 (1 − 42x + 420x2 − 1680x3 + 3150x4 − 2772x5 + 924x6)

Theorem 2.1. Let

Wm = Span{L0(x),
√
3L1(x),

√
5L2(x), · · · ,

√
2m+ 1Lm(x)},

the inner product Wm is given:

⟨u(x), v(x)⟩ =
∫ 1

0

u(x)v(x)dx, u(x), v(x) ∈ Wm.
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Then

R(x, y) = Ry(x) =
m∑
i=0

(2i+ 1)Li(x)Li(y)

is reproducing kernel of Wm.

Proof. Using [21], we can prove thatWm is a reproducing kernel Hilbert space. Next we proof Rx(y) is a reproducing

kernel of Wm for ∀u(y) ∈ Wm.

Let

u(x) =

m∑
i=0

ai
√
2i+ 1Li(x),

we have

⟨u(x), Ry(x)⟩ = ⟨
m∑
i=0

ai
√
2i+ 1Li(x),

m∑
j=0

(2j + 1)Lj(x)Lj(y)⟩

=
m∑
i=0

ai
√
2i+ 1⟨Li(x),

m∑
j=0

(2j + 1)Lj(x)Lj(y)⟩

=

m∑
i=0

ai
√
2i+ 1Li(y)

= u(y),

so Rx(y) is the reproducing kernel of Wm.

Using [22] and the reproducing kernel of Wm, we can get the new reproducing kernel spaces Wm and reproducing

kernel Rm(x, y). Next, we list some reproducing kernel spaces:

• Space W2 = {u(x) | u(x) ∈ W 2, u(0) = 0}, W2 has the same inner product as W 2, and it is a reproducing kernel

space. Its reproducing kernel:

R2(x, y) = R(x, y)− R(x, 0)R(0, y)

R(0, 0)
= 4xy

(
12− 15y + 5x(−3 + 4y)

)
.

• Space W3 = {u(x) | u(x) ∈ W 3, u(0) = 0, u(1) = 0}, W3 has the same inner product as W 3, and it is a reproducing

kernel space. Its reproducing kernel:

R3(x, y) = R3(x, y)−
R3(x, 1)R3(1, y)

R3(1, 1)
= 60(−1 + x)x(−1 + y)y

(
4− 7y + 7x(−1 + 2y)

)
,

where R3(x, y) = R(x, y)− R(x,0)R(0,y)
R(0,0) .

• Space W4 = {u(x) | u(x) ∈ W 4, u(0) = u′(0) = u′′(0) = 0}, W3 has the same inner product as W 4, and it is a

reproducing kernel space. Its reproducing kernel:

R4(x, y) = R4(x, y)−
∂2R4(x,0)

∂y2

∂2R4(0,y)
∂x2

∂4R4(0,0)
∂x2∂y2

= 8x3y3
(
56− 63y + 9x(−7 + 8y)

)
,

where R4(x, y) = R4(x, y)−
∂R4(x,0)

∂y
∂R4(0,y)

∂x

∂2R4(0,0)
∂x∂y

, R4(x, y) = R(x, y)− R(x,0)R(0,y)
R(0,0) .

Let

v(x) = u(x) + (−α0u(x)− γ0)(1− x) + (α1u
′(x)− γ1),

3



then after homogenization, eqs.(1.1)-(1.3) are converted to the following from:{
Dαv(x) + a1(x)v

′(x) + a0(x)v(x) = g(x), x ∈ (0, 1),

v(0) = v(1) = 0,
(2.1)

where g(x) = f(x)+Dα
(
(−α0u(x)−γ0)(1−x)+(α1u

′(x)−γ1)
)
+a1(x)

(
(−α0u(x)−γ0)(1−x)+(α1u

′(x)−γ1)
)′
+

a0(x)
(
(−α0u(x)− γ0)(1− x) + (α1u

′(x)− γ1)
)
.

According to (2.1), a linear operator P : Wm[0, 1] → L2[0, 1] is defined by:

Pv(x) = Dαv(x) + a1(x)v
′(x) + a0(x)v(x). (2.2)

Theorem 2.2. The operator P defined in (2.2) is a bounded and linear operator.

Proof. Obviously, P is linear. By applying Cauchy Schwartzs inequality, we have

∥ Pv(x) ∥L2≤∥ Dαv(x) ∥L2 + ∥ a1(x)v
′(x) ∥L2 + ∥ a0(x)v(x) ∥L2 . (2.3)

Let v(x) ∈ Wm[0, 1], by the reproducibility property of the reproducing kernel function Rm(x, y) ∈ Wm, there exist

positive constants Si(i = 0, 1, 2, · · · ), such that

|v(i)(x)| = |⟨v(x), ∂
(i)Rm(·, x)
∂x(i)

⟩ ≤ ∥∂
(i)Rm(·, x)
∂x(i)

∥v(x)|Wm
≤ Si∥v(x)|Wm

.

Using the above formula, a direct calculation together with the use of Cauchy-Schwartzs inequality immediately

yields there exist positive constants C and S, such that

|Dαv(x)| ≤ 1

Γ(m− α)

∫ x

0

|(x− t)m−α−1||v(x)(m)(t)|dt ≤ M∥v(x)∥Wm

Γ(m− α)

∫ x

0

|(x− t)m−α−1|dt ≤ CS∥v(x)∥Wm

Γ(m− α)
.

Then

∥Dαv(x)∥2L2
≤

∫ 1

0

C2S2∥v(x)∥2Wm

Γ2(m− α)
dx ≤ M2

1 ∥v(x)∥2Wm
. (2.4)

Similarly, we have

∥a1(x)v′(x)∥L2 ≤ M2∥v(x)∥Wm , ∥a0(x)v(x)∥L2 ≤ M3∥v∥Wm . (2.5)

Applying (2.3), (2.4), (2.5), one gets

∥ Pv(x) ∥L2≤ (M1 +M2 +M3)∥v(x)∥Wm ,

where Mi(i = 1, 2, 3) is a constant, so the theorem holds true.

Let {xi}∞i=0 be nodes in interval [0, 1]× [0, 1], so we construct the bases ϕm
i (x) ∈ Wm, m = 2, 3, · · · ,

ϕm
i (x) = PRm(y, x)|y=xi , i = 0, 1, 2, · · · ,∞.

3 An efficient technique based on ε-approximate method

3.1 Theoretical Analysis of the Approximate Solution for (2.1) and its unique solv-

ability

In this section, combining the least square theory and the idea of residuals in the spaces Wm(m = 2, 3, · · · ), we
provide an efficient approach for problem (2.1) by the ε-approximate method.
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Definition 3.1. For ∀ε > 0, if ∥Pvn(x)− g∥L2 < ε, then vn(x) is called ε-approximate solution of (2.1).

According to (1.4), when k = m− 1(m = 2, 3, · · · ), there is v(x), ϕm
i ∈ Wm, let

vn(x) =
n∑

i=0

ciϕ
m
i (x)

is the ε-approximate solution for (2.1), and have

G(c0, c1, c2, · · · , cn) = ∥Pvn(x)− g∥2L2 = ∥
n∑

i=0

ciPϕm
i (x)− g∥2L2 < ε2, (3.1)

where ci(i = 0, 1, 2, · · · , n) are constants.

Numerical Scheme: The ε-approximate method for eq(2.1) read as: seeking c∗0, c
∗
1, c

∗
2, · · · , c∗n such that

G(c∗0, c
∗
1, c

∗
2, · · · , c∗n) = ∥

n∑
i=0

c∗iPϕm
i (x)− g∥2L2 , min∥

n∑
i=0

ciPϕm
i (x)− g∥2L2 . (3.2)

Remark 3.1. The coefficients c∗i (i = 0, 1, 2, · · · , n) are identified as the minimum value of G(c0, c1, c2, · · · , cn).
Therefore, c∗i satisfies the following:

∂

∂c∗i
G(c∗0, c

∗
1, c

∗
2, · · · , c∗n) = 0,

which implies that

n∑
i=0

c∗i ⟨Pϕm
i (x),Pϕm

j (x)⟩L2 = ⟨Pϕm
j (x), g∗⟩L2 , j = 0, 1, 2, · · · , n. (3.3)

thus, c∗0, c
∗
1, c

∗
2, · · · , c∗n can be determined by:

AX = d,

where

A = (⟨Pϕm
i (x),Pϕm

j (x)⟩L2)(n+1)×(n+1), X = (x0, x1, x2, · · · , xn)
T , d = (⟨Pϕm

j (x), g∗⟩)T(n+1)×1.

Theorem 3.1. The numerical scheme (3.2) has a unique solution provided that P is reversible.

Proof. It is sufficient to prove the linear system AX = 0 has only zero solution. Assume that

⟨
n∑

i=0

Pϕm
i (x)xi,Pϕm

j (x)⟩L2 = 0, j = 0, 1, 2, · · · , n. (3.4)

Multiplying both sides of (3.4) by xj and a cumulative summation yields that

⟨
n∑

i=0

Pϕm
i (x)xi,

n∑
j=0

Pϕm
j (x)xj⟩L2 = 0,

which leads to

P(

n∑
i=0

ϕm
i (x)xi) = 0.

By the linear independence of {ϕm
i }ni=0 and reversibility of the operator P, we immediately obtain that xi = 0, i =

0, 1, 2, · · · , n.

5



3.2 Stability and convergence analysis

We will first discuss the stability of our proposed method. Here we consider the condition number of A, which

is defined as follows:

cond(A) = |µmax

µmin
|,

where µmax, µmin are the maximum and minimum eigenvalues of A, respectively.

Lemma 3.1. The eigenvalue of A obtained by (3.3) is bounded by ∥P∥.

Proof. Let µ is an eigenvalue of A
(
A = (⟨Pϕm

i (x),Pϕm
j (x)⟩L2)(n+1)×(n+1)

)
, then there exists a unit vector X

(
X =

(x0, x1, x2, · · · , xn)
T
)
, such that AX = µX. Thus,

µxi =

n∑
j=0

aijxj =

n∑
j=0

⟨Pϕm
i (x),Pϕm

j (x)⟩L2xj = ⟨Pϕm
i (x),

n∑
j=0

Pϕm
j (x)xj⟩L2 , ∀i = 0, 1, 2, · · · , n.

Summing xi from 0 to n in above formula, we derive that

µ = µ
n∑

i=0

x2
i = ⟨

n∑
i=0

Pϕm
i (x)xi,

n∑
j=0

Pϕm
j (x)xj⟩L2 = ∥P(

n∑
i=0

ϕm
i (x)xi)∥2L2 ≤ ∥P∥2∥

n∑
i=0

ϕm
i (x)xi∥2Wm

= ∥P∥2.

Lemma 3.2. [23] If P is a reversible and bounded operator, then P−1 is bounded.

Lemma 3.3. For v ∈ Wm, if ∥v∥Wm = 1, then ∥Pv∥L2 ≥ 1
∥P−1∥ .

Proof. Let Pv = g, according to the condition ∥v∥Wm = 1, one gets

1 = ∥v∥Wm = ∥P−1g∥Wm ≤ ∥P−1∥Wm∥g∥L2 ,

that is

∥Pv∥L2 = ∥g∥L2 ≥ 1

∥P−1∥
.

Theorem 3.2. The numerical scheme for getting the ε-approximate solution of (3.2) is stable .

Proof. Denote µ be the eigenvalue of A obtained by (3.2), then we have

µ = ∥
n∑

i=0

xiPϕm
i (x)∥2L2 .

Combining the fact that ∥
n∑

i=0

xiϕ
m
i (x)∥Wm = 1 and Lemma 3.3, yields

µ = ∥P
n∑

i=0

xiϕ
m
i (x)∥2L2 ≥ 1

∥P−1∥2
.

So, the condition number

cond(A) = |µmax

µmin
| ≤ ∥P∥2

1
∥P−1∥2

= ∥P∥2∥P−1∥2.

It means that the condition number is bounded, so our algorithm is stable.

Next, we will provide the convergence analysis of the presented scheme .
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Theorem 3.3. Let v ∈ Wm[0, 1] be the exact solution of (2.1), then approximate solution vn ∈ Wm[0, 1] converges

to u uniformly.

Proof. Note that

|v(x)− vn(x)| = |⟨v(x)− vn(x), Rm(·, x)⟩Wm | ≤ ∥v(x)− vn(x)∥Wm∥Rm(·, x)∥Wm ,

and for ∀ε > 0, have

∥v − vn∥Wm = ∥P−1P(v − vn)∥Wm ≤ ∥P−1∥∥P(v − vn)∥L2 = ∥P−1∥∥g − Pvn∥L2 < ε → 0.

It means vn converges to v uniformly on interval [0,1].

Similarly, we can proof each order derivative v′n(x), v
′′
n(x), · · · of ε-approximate solution for (2.1) uniformly

converge to v′(x), v′′(x), · · · respectively.

4 Numerical result

In this section, three numerical examples are tested to show the validity of our proposed algorithm.

Example 4.1. [25] Consider the example with α = 0.5 :

Dαu(x)− a0(x)u(x) = f(x), x ∈ [0, 1], u(0) = 0,

where

f(x) =


8x

3
2

3
√
π
, x ∈ [0, 0.5],

8x
3
2

3
√
π
− 1, x ∈ (0.5, 1].

a0(x) =

 0, x ∈ [0, 0.5],

1

x2
, x ∈ (0.5, 1].

The exact solution is u(x) = x2. Here α = 0.5, so we use the basis of W2 to construct the ε-approximate solution

un(x). Error en ,
√

n∑
i=0

(
u(xi)− un(xi)

)
(xi = ih, i = 0, 1, 2, · · · , n, h = 1

n ), where n is the number of basis, and

also the number of points, the result is shown in Table 1 compared with ref.[25].

Table1: Results of en compared with Ref.[25] for Example 1.

n en en(ref.[25])

32 1.75 × 10−12 7.56 × 10−4

64 5.76 × 10−12 1.30 × 10−4

128 5.57 × 10−12 2.28 × 10−5

256 2.56 × 10−12 4.08 × 10−6

512 2.70 × 10−11 7.54 × 10−7

Example 4.2. Consider the example 2 in ref.[25] with α = 1.9:Dαu(x)− (2x+ 6)u(x) = f(x), x ∈ (0, 1),

u(0)− 1

α− 1
u′(0) =

α− 4

α− 1
, u(1) + u′(1) = 3α+ 8,

where the exact solution u(x) = xα+x2α−1+1+3x−7x2+4x3+x4, f(x) = −1.82736+14.7159x0.1−4.88079x0.9−
22.9339x1.1 − 10.9209x2.1 − 2(3 + x)(1 + 3x + x1.9 − 7x2 + x2.8 + 4x3 + x4). For α = 1.9, we use the basis of W3

to get the ε-approximate solution un(x), the error estimates are all discussed in ref.[25] and our paper. Let

eN , max
1≤i≤N

|
(
u(xi)− uN (xi)

)
| (xi =

i
N , i = 0, 1, 2, · · · , N), where N is the number of basis and also the number of

points. Table 2 show our results and the results of ref.[25].

7



Table2: Results of eN compared with Ref.[25] for Example 2.

n eN eN (Ref.[25])

18 5.09 × 10−4 7.56 × 10−2

36 5.08 × 10−4 1.30 × 10−3

72 5.09 × 10−4 2.28 × 10−3

144 5.09 × 10−4 4.08 × 10−4

Example 4.3. Consider the following example with 2 ≤ α ≤ 3:
Dαu(x) + u(x) =

6!

Γ(4.5)x3.5
+ x6, x ∈ (0, 1),

u(0) = 0, u′(0) = 0, u′′(0) = 0,

with the solution u(x) = x3.

In the Table 3, we give errors of each derivative of different n when α = 2.3, where enk ,
√

n∑
i=0

(
u(k)(xi)− u

(k)
n (xi)

)
, k =

0, 1, 2.

Table3: Results of errors of each derivative for Example 3.

n en0 en1 en2
10 2.85 × 10−16 2.27 × 10−15 1.62 × 10−14

20 9.81 × 10−16 1.43 × 10−15 4.92 × 10−15

40 7.22 × 10−15 3.91 × 10−14 4.69 × 10−14

Figure 1 and Figure 2 show that the absolute-errors corresponds to different the number of basis n and different

values of fractional parameter α.

n=10

n=20

n=40

0.0 0.2 0.4 0.6 0.8 1.0

0

5.×10-16

1.×10-15

1.5×10-15
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3.×10-15

x

A
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Fig1. the Absolute-errors with α = 2.3

for different the number of basis n.

α=2.1

α=2.5

α=2.9

0.0 0.2 0.4 0.6 0.8 1.0

0

1.×10-15

2.×10-15

3.×10-15

4.×10-15

5.×10-15

6.×10-15
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Fig2. the Absolute-errors with n = 10

for different values of fractional parameter α.
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