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Abstract

Objectives: To evaluate whether preimplantation genetic testing for aneuploidy (PGT-A) can improve pregnancy and neonatal
outcomes for patients with limited good-quality embryos. Design: Retrospective cohort study. Setting: University hospital.
Population: A total of 1,553 patients who intended to pursue PGT-A for the first time but obtained only two or less good-
quality embryos on day 3 after oocyte retrieval were divided into two groups: 997 in the PGT-A group and 556 in the drop-out
group of withdrawing PGT-A due to poor embryological outcome. Results: After adjusting for potential confounding factors,
PGT-A group exhibited significantly lower cumulative rates of biochemical pregnancy (19.96% vs. 30.22%, P-adj < 0.001),
clinical pregnancy (17.55% vs. 23.38%, P-adj < 0.001) and live birth (14.14% vs. 16.19%, P-adj = 0.005) per oocyte retrieval
and longer median time to pregnancy and live birth compared with drop-out group. However, significant increases in rates of
biochemical pregnancy (72.16% vs. 35.50%, P-adj < 0.001), clinical pregnancy (61.86% vs. 26.98%, P-adj < 0.001), and live
birth (48.45 vs. 18.26%, P-adj < 0.001) per transfer were found in the PGT-A group. No significant differences were observed in
cumulative miscarriage and ectopic pregnancy rates, number of ETs needed per live birth and neonatal outcomes. Conclusion:
PGT-A failed to improve cumulative live birth rate or shorten time to pregnancy, but optimized pregnancy outcomes per
transfer for patients with limited good-quality embryos. Keywords: preimplantation genetic testing for aneuploidy, cumulative

live birth rate, live birth rate per transfer, neonatal outcomes

Introduction

Preimplantation genetic testing for aneuploidy (PGT-A) has become increasingly utilized in assisted repro-
duction technology (ART) since the first established normal pregnancies of women with X chromosome-linked
diseases in the late 1980s (1). The prevalence of embryo aneuploidy is likely to be responsible for implanta-
tion failure or miscarriage (2, 3). PGT-A was demonstrated to be the most effective strategy to minimize
adverse pregnancy outcomes due to aneuploidy (4).

PGT-A, was initially introduced to screen embryos for several chromosome abnormalities by fluorescent
in-situ hybridization (FISH) in the 1990s (5, 6). Subsequently, several genetic testing technologies were
employed in PGT-A, mainly including single nucleotide polymorphism (SNP) and array-based comparative
genomic hybridization (aCGH) (7, 8). Furthermore, next-generation sequencing (NGS), provided parallel
processing of multiple nucleic acid molecules and efficient chromosomal analysis with high-resolution data
(9). Compared with biopsy on Day-3, trophectoderm cell biopsy on blastocyst stage reduced the risk of
misdiagnosis and caused less detriment to embryo viability (10, 11).

Indeed, numerous studies have demonstrated that euploid elective single-embryo transfer was helpful to



improve pregnancy outcomes and reduce miscarriage rate, especially in advanced maternal age (AMA)
women (12, 13). Besides, PGT-A was feasible for women with repeated implantation failure (RIF) and
recurrent miscarriage (RM) to improve the live birth rate per embryo transfer (ET) (14). Logically, PGT-
A can also be performed in those with a severe male factor, as some aneuploidies may derive from the
spermatozoa (15).

Results on live birth rates in women following PGT-A remain conflicting. Several randomized controlled trials
(RCTs) indicated that PGT-A improved the live birth rate among patients with a good prognosis in limited
infertile populations (16, 17). On the contrary, one multicenter, randomized and controlled trial suggested
that the cumulative live birth rate with conventional in vitro fertilization (IVF) was not inferior to the rate
with PGT-A among women with three or more good-quality blastocysts (18). Two other studies reached
the similar conclusion that there was no benefit of PGT-A when assessing the cumulative live birth rate
per oocyte retrieval (19, 20). Previous studies have predominantly focused on women with good pregnancy
prognosis, there is limited data to compare the cumulative pregnancy outcomes with or without PGT-A
among women possessing a poor prognosis for a live birth (12, 21, 22). The present study was therefore
conducted to compare the cumulative pregnancy outcomes after NGS-based PGT-A or intracytoplasmic
sperm injection (ICSI) treatment among patients with few good-quality embryos.

Material and methods
Patients

Ethical approval for this present study was obtained from the Institutional Review Board of Reproductive
Medicine, Shandong University. This was a retrospective cohort study in which all patients indicated an
intention to pursue PGT-A for the first time but obtained only two or less good-quality embryos on day 3
after oocyte retrieval. Cycles in which PGT-A was intended were assessed from March 2017 to June 2021
and only the first cycles for patients meeting the inclusion criteria were examined. Donor oocyte/sperm
recipients were excluded. Patients applying PGT for chromosomal structural rearrangements (PGT-SR) or
monogenic/single gene defects (PGT-M) were also excluded.

Two study groups were formed based on patients’ choices of persisting in PGT-A or not. The PGT-A
group consisted of patients selecting blastocyst culture, trophectoderm biopsy and genetic testing despite
low number of good-quality embryos, while the drop-out group involved patients withdrawing PGT-A in
favor of ET in line with morphologic criteria. Eventually, 997 oocyte retrieval cycles in the PGT-A group
and 556 in the drop-out group were analyzed, leading to 291 and 493 cycles of ET, respectively.

Procedures

The controlled ovarian hyperstimulation (COH) protocols employed in this study involved long and short
gonadotropin-releasing hormone agonists, antagonists, and mild stimulation protocols, which were used
based on the patient’s age and preferences and measures of ovarian reserve. When at least one follicle with
a diameter over 18 mm was observed, human chorionic gonadotropin (hCG) was injected subcutaneously.
Oocytes were retrieved 36 hours later and the aspirated oocytes were then transferred to embryo culture
medium and cultured in an incubator at 37. Subsequently, ICSI was employed for all patients. The embryo
morphology for cleavage stage was scored according to the Puissant criteria, and the blastomeres with 7-10
cells and [?] 3 scores were defined as good-quality embryos (23). Especially, patients with [?] 2 good-quality
embryos were counseled about the low chances of obtaining euploid blastocysts and let decide whether to
continue or withdraw PGT-A on day 3 after oocyte retrieval.

For patients keeping on PGT-A, blastomeres were cultured to blastocyst stage, and only 4BC or better
blastocysts would be regarded as good-quality blastocysts judging by the Gardner blastocyst scoring system
(24). Then good-quality blastocysts were implemented by multicell trophectoderm biopsy and cryopreserved
using vitrification technique by an experienced embryologist. Blastocyst biopsies were genetically screened
via NGS. Finally, a single frozen-thawed euploid, mosaic or failed/inconclusive-diagnosed blastocyst was
selected for possible transfer after genetic counseling. In the drop-out group, majority of patients underwent



fresh blastomere transfer unless they did not obtain good-quality embryos on day 3 after oocyte retrieval.
For those patients, blastomeres were obliged to be cultured to blastocyst stage for fresh embryo transfer
on day 5 after oocyte retrieval or vitrified for a future frozen transfer in patients whose embryos were not
blastocysts until day 5 or who had contraindications to a fresh transfer (risk of ovarian hyperstimulation
syndrome, thin endometrium, premature progesterone elevation).

Generally, extra endometrial preparation was not needed for fresh embryo transfer as the thickness of en-
dometrium would reach its maximum after COH. Luteal phase support with 20 mg of oral dydrogesterone
(Duphaston, Abbott, USA) twice a day and 200 mg of vaginal progesterone capsules (Utrogestan, Besins
Manufacturing, Belgium) once a day was initiated on the day of oocytes retrieval until the 12th week of ges-
tation in most circumstances. For patients who underwent frozen embryo transfer, endometrial preparation
and luteal phase support protocols, as well as blastocyst vitrification—thawing and transfer procedures that
followed, were completed as described in a previous study (25).

Outcome measures

The primary outcomes were cumulative rates of biochemical pregnancy, clinical pregnancy, miscarriage,
ectopic pregnancy, and live birth per oocyte retrieval. The secondary outcomes included pregnancy outcomes
per transfer, number of ETs needed per live birth, median time to pregnancy and live birth, and neonatal
outcomes.

Biochemical pregnancy was defined as serum hCG concentration > 25 mIU/mL at 14 days after blastomere
transfer or 12 days after blastocyst transfer. Clinical pregnancy was diagnosed as the presence of at least one
gestational sac with fetal heart activity visualized by ultrasound around 7" week of gestation. Miscarriage
referred to the spontaneous termination of clinical pregnancy before 28 weeks of gestation. Ectopic pregnancy
was regarded as the existence of extra-uterine gestational sac diagnosed by ultrasound or laparoscopy. Live
birth was known as the delivery of one or more live-born infants after 28 weeks of gestation. The cumulative
live birth rate was calculated by the number of deliveries per oocyte retrieval cycle. Number of ETs needed
per live birth was identified by the number of transfers required to achieve the first live birth per oocyte
retrieval cycle. Neonatal outcomes were assessed among patients with singleton delivery, including preterm
rate, newborn’s sex ratio and birth weight. Preterm birth was regarded as a live birth before 37 weeks of
gestation. Normal and low birth weight were denoted as the birth weight of 2500-4000 g and below 2500 g.

Statistical analysis

All analyses were carried out using the Statistical Package for Social Science (SPSS) software, release 26.0
and figures were completed with GraphPad Prism software, version 9.0.0. Continuous variables with a
normal distribution were reported as a mean value with standard deviation and compared through unpaired
two-tailed student t-test. Categorical data were presented as numbers with percentages and assessed using
Pearson’s chi-square test. Binary logistic regression analysis of cumulative pregnancy outcomes was used
to control the confounding factors related to the likelihood of achieving a live birth per oocyte retrieval,
including maternal age, infertility duration, maternal anti-Miillerian hormone (AMH), number of mature
oocytes and indication to PGT-A. Besides, logistic regression with generalized estimating equation (GEE)
of clinical outcomes per transfer was carried out to account for intrinsic dependence for the different ETs
from the same patient. P-value <.05 was considered statistically significant.

Results

A total of 1553 patients who intended PGT-A for the first time were initially enrolled in this study (Figure 1).
As presented in Figure 1, 997 oocyte retrieval cycles from the PGT-A group adhered to blastocyst culture
and PGT-A, of which 415 (41.62%) did not obtain blastocysts suitable for biopsy, 319 (32.00%) did not
receive transferable embryos after genetic testing, and 263 (26.38%) were followed by 291 ET cycles. In
the drop-out group, 126 of 556 (22.66%) oocyte retrieval cycles did not receive transferable embryos after
morphological grading, and 430 (77.34%) were followed by 493 ET cycles. The cancellation rates of embryo
transfer among the two groups were 73.62% and 22.66% (P<0.001, Figure 2a).



Basal characteristics, indications for PGT-A and cycle data between PGT-A group and drop-out group were
compared in Table I. Of note, female age was significantly higher and infertility duration was longer in the
drop-out group. Similarly, AMH level parameters and number of basal follicles were significantly worse in
the drop-out group compared with the PGT-A group. Numbers of embryos transferred and good-quality
embryos transferred as well as endometrial thickness during transfer cycles were higher in drop-out group.
But no significant differences were observed between the two groups in terms of paternal age, maternal body
mass index (BMI), number of previous oocyte retrieval cycles, number of good-quality embryos at day 3
after oocyte retrieval and endometrial preparation program of transfer cycles.

Comparison of cumulative pregnancy outcomes, pregnancy outcomes per transfer and neonatal outcomes
per live birth between the two groups was displayed in Table II. A multivariate logistic regression analysis
for cumulative pregnancy outcomes was conducted to eliminate the potential effects of confounding factors,
including maternal age, infertility duration, maternal AMH, number of mature oocytes, indication to PGT-
A. What is most striking is that the cumulative live birth rate was lower in the PGT-A group, even after
adjustment of several potential confounders (14.14 % vs. 16.19%, P-adj = 0.005). Moreover, the PGT-
A group showed significantly inferior cumulative rates of biochemical pregnancy and clinical pregnancy
compared with the drop-out group (19.96% vs. 30.22%, P-adj < 0.001; 17.55% vs. 23.38%, P-adj < 0.001;
respectively). No significant variations were recorded in the cumulative miscarriage and ectopic pregnancy
rates and number of ETs needed per live birth between two groups (Figure 2b). In contrast to our results
about cumulative pregnancy outcomes, the rates of biochemical pregnancy, clinical pregnancy and live birth
per transfer were higher in the PGT-A group, even after adjusting several potential confounders (72.16% vs.
35.50%, P-adj < 0.001; 61.86% vs. 26.98%, P-adj < 0.001; 48.45% vs. 18.26%, P-adj < 0.001; respectively).
The miscarriage and ectopic pregnancy rates per transfer did not differ significantly between PGT-A and
drop-out groups. However, the drop-out group spent much shorter time to achieve pregnancy and live birth
than the PGT-A group (Figure 2¢ and Figure 2d). In addition, no significant associations between the two
groups were detected in preterm rate, birth sex ratio and weight of newborns per singleton delivery.

Considering the possible effect of mosaic or failed/inconclusive-diagnosed embryos transferred on pregnancy
outcomes, the clinical outcomes of only euploid embryos transferred in the PGT-A group were further
analyzed, and the results were consistent with the above description (Supplemental Table I).

Discussion

PGT-A is now widely used in the ART field in order to select a single euploid embryo for transfer and
access clinical pregnancy and live birth. However, there has been controversy regarding whether PGT-A can
improve the overall pregnancy outcomes in specific patients with a good prognosis (16-20, 26). Besides, the
question that whether patients with limited good-quality embryos benefit from PGT-A or not also remains
unresolved (12, 21, 22). The main goal of this study was to compare the cumulative clinical outcomes of
patients insisting on PGT-A and those intended but cancelled PGT-A when two or less good-quality embryos
were available on day 3 after oocyte retrieval.

Main findings and interpretation

Our study showed that trophectoderm biopsy of blastocyst-stage embryos combined with NGS-based PGT-
A did not significantly improve the cumulative live birth rate in women with poor embryo yield or quality.
To our knowledge, one randomized controlled study by Rubio et al. reported that Day-3 embryo biopsy
associated with aCGH-based PGT-A was not superior in the cumulative delivery rates per AMA patient
compared with ICSI (12). The other observational-cohort study with 2 years follow-up by Sacchi, et al.
ounded that the drop-out group showed poorer cumulative live birth rate per oocyte retrieval than the PGT-
A group given trophectoderm biopsy and quantitative PCR among AMA patients (9/106, 8.49% vs. 81/308,
26.29%, Pj0.001) (22). The limited sample data pooled from both cleavage and blastocyst stage embryos
and/or embryos screened by different genetic testing technologies might account for these inconsistent results
in previous studies. In the present cohort, even though the drop-out group was characterized by higher
female age, longer infertility duration and poorer ovarian reserve, the lower cumulative live birth rate was



still assessed in PGT-A group after eliminating the potential effects of several confounding factors. Our
results were comparable to the previous studies among patients with a good prognosis, namely PGT-A was
not beneficial when the cumulative live birth rate was assessed per oocyte retrieval (18-20). Besides, we found
that PGT-A did not have more favorable cumulative rates of biochemical pregnancy and clinical pregnancy
per retrieval. Several possible explanations may be responsible for the inferior outcome of PGT-A. Firstly,
the biopsied trophectoderm cells may not perfectly represent the true chromosomal composition of the inner
cell mess, leading to misdiagnosis of embryo karyotype (27, 28). Secondly, although widely used, embryo
biopsy may influence embryonic development and PGT-A may lead to abandoning a large number of embryos
with potential for normal euploid pregnancies (29). Consequently, the continued employment of PGT-A in
poor-prognosis patients may not be reasonable, especially considering the increased financial burden when
patients had limited good-quality embryos (30).

However, the data presented in this study demonstrated significant improvements in pregnancy outcomes per
transfer in the PGT-A group, including rates of biochemical pregnancy, clinical pregnancy and live birth per
transfer. Parallel effects following elective single embryo transfer after trophectoderm biopsy and aneuploidy
screening have been reported previously, which showed a higher live birth rate per transfer compared with
drop-out group among AMA patients (81/201, 40.30% vs. 9/117, 7.69%, P;0.001) (22). Likewise, Haviland
et al. found that women aged [?] 38 years who used PGT-A were 67% (RR: 1.67; 95% CI: 1.31, 2.13)
significantly more likely to have a live birth than women who did not use PGT-A (31). Murugappan et
al. also shared the notion that cycles that completed trophectoderm biopsy and aCGH-based PGT-A had
a significantly increased live birth rate compared with those in which PGT-A was intended but cancelled
due to poor embryo yield or quality among RM patients (57/158, 36.00% vs. 6/40, 15.00%, P;j0.05) (21).
Overall, the evidence available so far suggested that PGT-A had a positive effect on the ability to successfully
maintain the pregnancy to term and improved delivery rate per transfer.

Furthermore, neonatal outcomes of preterm birth rate, sex ratio and birth weight among poor prognosis
patients with singleton delivery were essentially identical between the two groups in this study. Our data
was consistent with one observational-cohort study that neither blastocyst culture nor PGT-A assessment
resulted in suboptimal neonatal outcomes in AMA patients, as evidenced by the comparable low birthweight
rate (5/81, 6.17% vs. 2/10, 20.00%, P;0.05) and preterm birth rate (6/81, 7.41% vs. 1/10, 10.00%, P;0.05)
between PGT-A and drop-out groups (22). A recent multicenter, randomized and controlled trial also
indicated that the incidences of maternal or neonatal complications and congenital anomalies were similar
between PGT-A and conventional IVF groups among subfertile women who were aged 20 to 37 years and
obtained three or more good-quality blastocysts (18). On the contrary, another RCT discovered that elective
single embryo transfer after trophectoderm biopsy and rapid aneuploidy screening improved obstetrical
outcomes (including higher birthweight, lower rates of preterm delivery and lower rates of neonatal intensive
care unit admission) as compared with untested 2-embryo transfer, which did not target patients with a poor
prognosis (32). In addition, there were no differences of the mean number of ETs needed per live birth and
time to pregnancy between PGT-A and drop-out group in our cohort. Contrarily, Rubio et al. reported that
Day-3 embryo biopsy with aCGH-based PGT-A led to lower number of ETs needed per live birth (1.8 vs.
3.7) and shorter time to pregnancy (7.7 vs. 14.9 weeks) compared with ICSI for AMA patient, which might
be explained by different stage embryos tested via different genetic testing technologies (12).

Strengths and Limitations

Indeed, the strength of this study lied in its unique design for women with poor embryo yield or quality,
which filled the research gaps in this area. Besides, the current study provided new insights into the re-
lationship of PGT-A and cumulative pregnancy outcomes per started cycle, and accumulated evidence of
understanding which group of women are most likely to benefit from PGT-A. Nevertheless, some limitations
still existed in our study. As a retrospective cohort analysis, the discrepancies between the two groups might
contribute to the current results, even though logistic regression was used to minimize sampling bias and
group heterogeneity. In addition, our findings might be subjected to small sample size and only first oocyte
retrieval for patients who met the inclusion criteria included. Therefore, caution should be exercised when



interpreting the results, especially for clinical genetic counseling of patient with a poor prognosis in PGT-A
treatment.

Conclusion

In summary, although PGT-A provided preferable clinical outcomes per transfer, it did not lead to additional
improvement in cumulative live birth rate or shorter time to pregnancy as compared to ICSI without genetic
testing. Therefore, the application of PGT-A should be more individualized and carefully, especially for
those patients with a poor prognosis for a live birth.
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Figure legends
Figure 1. Flow chart of the study.

Note: PGT-A, preimplantation genetic testing for aneuploidy; ET, embryo transfer; a, Oocyte retrieval
cycles without transferable embryos after genetic testing; b, Oocyte retrieval cycles without transferable
embryos after morphological grading; ¢, Transfer cycles of mosaic or failed/inconclusive-diagnosed embryos

Figure 2. Comparison of clinical outcomes between two groups.

Note: PGT-A, preimplantation genetic testing for aneuploidy; ET, embryo transfer; **** P;0.0001;ns, not
significant; a, Results of the cancellation rate of ET; b: Results of number of ETs needed per live birth; c:
Results of median time to pregnancy; d: Results of median time to live birth.
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