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Abstract

The effects of predator-taxis and conversion time delay on formations of spatiotemporal patterns in a predator-prey model are

explored. Firstly, the well-posedness, which implies global existence of classical solutions, is proved. Then, we establish critical

conditions for the destabilization of coexistence equilibrium through Turing/Turing-Turing bifurcations via describing the first

Turing bifurcation curve, and theoretically predict possible bi-stable/multi-stable spatially heterogeneous patterns. Next, we

demonstrate that coexistence equilibrium can also be destabilized through Hopf, Hopf-Hopf, Turing-Hopf bifurcations, and

possible stable/bi-stable spatially inhomogeneous staggered periodic patterns, bi-stable spatially inhomogeneous synchronous

periodic patterns, are theoretically predicted. Finally, numerical experiments also support theoretical predictions and partially

extend them. In a word, theoretical analyses indicate that, on the one hand, large predator-taxis can eliminate spatial patterns

caused by self-diffusion; on the other hand, the joint effects of predator-taxis and conversion time delay can induce complex

survival patterns, e.g., bi-stable spatially heterogeneous staggered/synchronous periodic patterns, thus diversify populations’

survival patterns.
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Summary

The effects of predator-taxis and conversion time delay on formations of spatiotem-
poral patterns in a predator-prey model are explored. Firstly, the well-posedness,
which implies global existence of classical solutions, is proved. Then, we estab-
lish critical conditions for the destabilization of coexistence equilibrium through
Turing/Turing-Turing bifurcations via describing the first Turing bifurcation curve,
and theoretically predict possible bi-stable/multi-stable spatially heterogeneous pat-
terns. Next, we demonstrate that coexistence equilibrium can also be destabilized
through Hopf, Hopf-Hopf, Turing-Hopf bifurcations, and possible stable/bi-stable
spatially inhomogeneous staggered periodic patterns, bi-stable spatially inhomoge-
neous synchronous periodic patterns, are theoretically predicted. Finally, numerical
experiments also support theoretical predictions and partially extend them. In a word,
theoretical analyses indicate that, on the one hand, large predator-taxis can elimi-
nate spatial patterns caused by self-diffusion; on the other hand, the joint effects of
predator-taxis and conversion time delay can induce complex survival patterns, e.g.,
bi-stable spatially heterogeneous staggered/synchronous periodic patterns, thus di-
versify populations’ survival patterns.

KEYWORDS:
predator-prey model, pattern formations, Turing bifurcation, Hopf bifurcation, predator-taxis

1 INTRODUCTION

In recent years, predator-prey model has always been a core topic of concerns in ecology and biomathematics13,22,23,26,44. In
the real world, besides random movement7,8,19, the spatial movements of predator and prey may actually be more directional,
for example, predator chases prey (prey-taxis)10,14,24,36, or prey avoids predator (predator-taxis)35,37,40. The existing researches
about the directed movements of predator and prey, have also provided new insights into the emergence of spatial non-uniform
distribution of species2,21,25,32. On the other hand, time delay caused by the conversion of predator’s capture behavior into
predator’s growth has also often been taken into account3,41. Hence, incorporating chemotaxis and time delay into the classical

†The research is supported by the National Natural Science Foundation of China (No. 11871176).
0MSC Classification: 35B32, 35K57, 92C15
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predator-prey model is necessary and reasonable, and the corresponding model is written as⎧⎪⎨⎪⎩
𝜕𝑢
𝜕𝑡

= ∇ ⋅ (𝑑𝑢∇𝑢 + 𝛼𝜁1(𝑢)∇𝑣) + 𝑢𝑓1(𝑢) − 𝑝(𝑢, 𝑣)𝑣, 𝑥 ∈ Ω, 𝑡 > 0,
𝜕𝑣
𝜕𝑡

= ∇ ⋅ (𝑑𝑣∇𝑣 − 𝜂𝜁2(𝑣)∇𝑢) + 𝑐𝑝(𝑢𝜏 , 𝑣𝜏)𝑣 − 𝑣𝑓2(𝑣), 𝑥 ∈ Ω, 𝑡 > 0,
𝜕𝑢
𝜕𝑛

= 𝜕𝑣
𝜕𝑛

= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,
(1)

with 𝑢𝜏 = 𝑢(𝑥, 𝑡 − 𝜏), 𝑣𝜏 = 𝑣(𝑥, 𝑡 − 𝜏), and Ω ⊂ ℝ𝑛, 𝑛 is the outer unit normal vector on 𝜕Ω. 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) represent the
densities of prey and predator at location 𝑥 and time 𝑡 respectively, 𝑑𝑢 and 𝑑𝑣 stand for random dispersal rates of prey and predator
respectively, thus are positive, and 𝑐 > 0 reflects the conversion rate. The function 𝑓1(𝑢) describes the growth rate of prey, of
which the most common cases are constant growth rate 𝑓1(𝑢) = 𝑟0 > 0, logistic growth rate 𝑓1(𝑢) = 𝑟0(1 − 𝑢

𝑁
) with 𝑁 > 0,

etc., while 𝑓2(𝑣) describes the mortality of predator, of which the most common cases are constant mortality 𝑓2(𝑣) = 𝑚1 > 0,
linear mortality 𝑓2(𝑣) = 𝑚1 + 𝑚2𝑣 with 𝑚2 > 0, etc. Moreover, 𝑝(𝑢, 𝑣) is the functional response function, and some common
cases are as follows,

Holling type II: 𝑝(𝑢, 𝑣) =
𝑏1𝑢

𝑏2 + 𝑢
,

Holling type III: 𝑝(𝑢, 𝑣) =
𝑏1𝑢2

𝑏2 + 𝑢2
,

ratio-dependent: 𝑝(𝑢, 𝑣) =
𝑏1𝑢

𝑏2𝑣 + 𝑢
,

with 𝑏1 > 0, 𝑏2 > 0. In particular, time delay 𝜏 ⩾ 0 is regarded as the contribution of the predation occurred in the past to
the current growth of predator18,28. ∇ ⋅ (𝛼𝜁1(𝑢)∇𝑣) describes the movement of prey toward a lower density of predator, while
−∇⋅(𝜂𝜁2(𝑢)∇𝑣) describes the movement of predator toward a higher density of prey, where 𝛼, 𝜂 ⩾ 0 are chemotaxis coefficients,
and the sensitivity function 𝜁1(𝑢) can be chosen as34, e.g.,

linear: 𝜁1(𝑢) = 𝑢,
Ricker: 𝜁1(𝑢) = 𝑢𝑒−𝜖𝑢,

saturated: 𝜁1(𝑢) =
𝑢

1 + 𝜖𝑢𝑚
,

with 𝜖 > 0, 𝑚 ⩾ 1, and 𝜁2(𝑣) can be selected analogously.
For model (1) with 𝜁1(𝑢) = 𝑢, 𝜁2(𝑣) = 𝑣 and 𝜏 = 0, spatial patterns induced by prey-taxis and predator-taxis have been

discussed by Wang et al.38, and they showed that spatial patterns can be eliminated by large predator-taxis and prey-taxis.
The results on Turing instability can be also found in Cao and Wu5, where sufficient conditions for the emergence of spatial
patterns were provided, and the authors further revealed that the appearances of spatial patterns does not necessarily require that
self-diffusion rate of predator is greater than that of prey in the presence of chemotaxis.

As for model (1) with only prey-taxis (𝛼 = 0, 𝜂 > 0) and 𝜏 = 0, global existence, asymptotic behavior or blow-up of solutions
in general parabolic-parabolic systems with prey-taxis have been widely studied, for example, see33,42 and references therein.
Pattern formations induced by prey-taxis with 𝜁2(𝑣) = 𝑣 have also been discussed in detail in20 for different 𝑓1, 𝑓2 and 𝑝.
Specifically speaking, Lee et. al.20 showed that large prey-taxis tends to stabilize the coexistence equilibrium when 𝑓1, 𝑓2 and 𝑝
correspond to logistic growth rate, constant mortality, and ratio-dependent forms. Moreover, Gao and Guo9 demonstrated that
the local stability of the constant steady state is enhanced by the presence of prey-taxis. Subsequently, Qiu et al.27 showed that
prey-taxis can suppress the globally asymptotical stability of the coexistence steady state, and pointed out that due to the effect of
prey-taxis, periodic solutions bifurcating from the coexistence steady state via Hopf bifurcation can be spatially inhomogeneous.

Also, there are some researches on model (1) with only predator-taxis (𝛼 > 0, 𝜂 = 0) and 𝜏 = 0, e.g., Wu et al.35 discussed
the general model with predator-taxis and proved that large predator-taxis can make the spatial patterns caused by self-diffusion
disappear.

Particularly, when considering that logistic growth rate 𝑓1(𝑢), constant mortality 𝑓2(𝑣), ratio-dependent functional response
𝑝(𝑢, 𝑣) and linear sensitivity function 𝜁1(𝑢), model (1) reads⎧⎪⎪⎨⎪⎪⎩

𝜕𝑢
𝜕𝑡

= ∇ ⋅ (𝑑𝑢∇𝑢 + 𝛼𝑢∇𝑣) + 𝑢(𝑥, 𝑡)(𝑟0 − 𝑎𝑢(𝑥, 𝑡)) − 𝑏1𝑢(𝑥,𝑡)
𝑏2𝑣(𝑥,𝑡)+𝑢(𝑥,𝑡)

𝑣(𝑥, 𝑡),
𝜕𝑣
𝜕𝑡

= ∇ ⋅ (𝑑𝑣∇𝑣) − 𝑚1𝑣(𝑥, 𝑡) +
𝑐𝑏1𝑢(𝑥,𝑡−𝜏)

𝑏2𝑣(𝑥,𝑡−𝜏)+𝑢(𝑥,𝑡−𝜏)
𝑣(𝑥, 𝑡), 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑢
𝜕𝑛

= 𝜕𝑣
𝜕𝑛

= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,
𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) ⩾ 0, 𝑣(𝑥, 𝑡) = 𝑣0(𝑥, 𝑡) ⩾ 0, (𝑥, 𝑡) ∈ Ω × [−𝜏, 0],

(2)
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where Ω = (0, 𝜋). 𝑟0 and 𝑟0
𝑎

stand for intrinsic growth rate of prey and carrying capacity, respectively, 𝑚1 is mortality of predator,
which is independent of its density, 𝑏1 and 𝑏2 denote the capturing rate and half saturation constant, respectively. The initial
functions 𝑢0 and 𝑣0 are non-negative, continuous and satisfy

(𝑢0, 𝑣0) ∈ (𝑊 1,𝑝(Ω × [−𝜏, 0],ℝ+))2, 𝑝 > 1. (3)

For model (2) with 𝜏 = 0, by replacing ∇⋅(𝛼𝑢∇𝑣) with ∇⋅(𝛼(1− 𝑢
𝑀
)𝑢∇𝑣), Wang and Zou37 investigated the formations of spatial

patterns and found that small predator-taxis can lead to spatial patterns, where 𝑀 measures the maximum number of prey that
a unit volume can accommodate. As for (2) with 𝜏 = 0 and a general form of predator-taxis, Gao12 proved the global existence
and uniform boundedness of the classical solutions. For the case with no chemotaxis, that is, for 𝛼 = 0, Song et al.31 considered
the delayed model (2) and discussed the existence and stability of the delay-induced spatially homogeneous periodic orbit.

In this paper, we would like to reveal the diversities of populations’ survival patterns caused by predator-taxis and conver-
sion time delay from the perspective of studying Turing bifurcation, Hopf bifurcation, Turing-Turing bifurcation, Turing-Hopf
bifurcation and so on for system (2).

Firstly, we prove the well-posedness of (2). Secondly, for system (2) without conversion time delay, we establish conditions
for the existences of Turing bifurcation and Turing-Turing bifurcation. Particularly, we describe the first Turing bifurcation curve
precisely in (𝑑𝑢, 𝛼)-plane, which is piecewise smooth with the segment points being Turing-Turing bifurcation points. Hence,
the latent steady states with different wave frequencies that system (2) may exhibit can be forecasted by virtue of the first Turing
bifurcation curve. Compared to37, we give a larger range of parameters when the stability of the positive constant steady state
is broken by Turing bifurcation. Moreover, for system (2), we theoretically reveal that large predator-taxis will suppress the
appearance of spatial patterns caused by random diffusion.

Afterwards, the conditions for the existences of Hopf bifurcation and Hopf-Hopf bifurcation are given when considering the
effects of conversion time delay. We completely determine the finite range of wave frequencies when Hopf bifurcation occurs
in system (2). Especially, by describing the finite Hopf bifurcation curves, we also attain the first Hopf bifurcation curve, and
determine the stable periodic solutions with different wave frequencies that system (2) may exhibit intuitively, and show that the
positive constant steady state will be destabilized through Hopf-Hopf bifurcation at the segment points. Differing from the most
previous studies on reaction-diffusion systems with only self-diffusion, our results show that when the positive constant steady
state is destabilized, system (2) will exhibit stable periodic patterns with non-zero wave frequencies through Hopf bifurcation and
some abundant periodic patterns through Hopf-Hopf bifurcation, such as transient quasi-periodic patterns and bistable periodic
patterns, i.e. two stable periodic patterns with different spatial wave frequencies coexist.

Apart from those, the instability of positive constant steady state may also be brought about by some other bifurcations, such
as Turing-Hopf bifurcation, Turing-Turing-Hopf bifurcation, Turing-Hopf-Hopf bifurcation and so on. We also establish the
conditions for the existences of the corresponding bifurcations. And it is shown from a numerical perspective that a pair of stable
spatially inhomogeneous synchronous time-periodic patterns appear through Turing-Hopf bifurcation.

This paper is organized as follows. Global existence of the classical solutions is given in Section 2. In Section 3 and Section
4, we state the main results about Turing instability and Hopf bifurcation for system (2). Some numerical simulations are also
given to illustrate theoretical results. At last, we finish our study with conclusions in Section 5.

Throughout the paper, ℕ is the set of all positive integers, and ℕ0 = ℕ ∪ {0}. As for the definitions of the mode-𝑘1 Turing
bifurcation and mode-(𝑘1, 𝑘1 + 1) Turing-Turing bifurcation, as well as mode-𝑘2 Hopf bifurcation, mode-(𝑘1, 𝑘2) Turing-Hopf
bifurcation, mode-(𝑘2, �̃�2) Hopf-Hopf bifurcation and so on, which will be mentioned later, the reader may refer to6,11,16.

2 GLOBAL EXISTENCE OF THE CLASSICAL SOLUTIONS

Before starting to formally investigate the long-term dynamics, we first prove the well-posedness of system (2), and the result
is inspired by29.

Theorem 1. System (2) admits a unique and positive classical solution (𝑢, 𝑣) ∈ (𝐶((0,∞),𝑊 1,𝑝(Ω×[−𝜏, 0],ℝ+))∩𝐶2,1((0,∞)×
Ω,ℝ+))2 with 𝑝 > 1, if the initial values satisfy (3).

Proof. When 𝜏 = 0, it follows12 that the conclusion is valid.
When 𝜏 > 0, for 0 ⩽ 𝑡 ⩽ 𝜏, from the first (second) equation of (2) and the comparison principle for parabolic equations, we

have 𝑢 ⩾ 0 (𝑣 ⩾ 0). Further by39, we have 𝑢 > 0 (𝑣 > 0) for 0 ⩽ 𝑡 ⩽ 𝜏. Moreover, it follows from1 that (2) has a unique classical



4 Yue Xing ET AL

solution (𝐶((0, 𝑇 ),𝑊 1,𝑝(Ω × [−𝜏, 0],ℝ+)) ∩ 𝐶2,1((0, 𝑇 ) × Ω,ℝ+))2. Noting that

𝐺1(𝑢, 𝑣) ≜𝑟0 − 𝑎𝑢 −
𝑏1𝑣

𝑏2𝑣 + 𝑢
⩽ 𝑟0,

𝐺2(𝑢𝜏 , 𝑣𝜏) ≜ 𝑐𝑏1𝑢𝜏
𝑏2𝑣𝜏 + 𝑢𝜏

− 𝑚1 ⩽ 𝑐𝑏1,

the classical solution can be extended to 𝑡 ∈ [0, 𝜏] and (𝑢, 𝑣) ∈ (𝐶((0, 𝜏),𝑊 1,𝑝(Ω × [−𝜏, 0],ℝ+)) ∩ 𝐶2,1((0, 𝜏) × Ω,ℝ+))2. Now
by repeating the above proof for 𝑡 ∈ [𝜏, 2𝜏] and 𝑡 ∈ [𝑛𝜏, (𝑛 + 1)𝜏] (𝑛 ⩾ 2), we have the analogous results. Thus, the global
existence of the classical positive solution of (2) can be obtained, which is obviously positive.

3 TURING INSTABILITY AND MULTI-STABLE SPATIAL PATTERNS

Firstly, we analyze the existence and stability of positive constant steady state for the homogeneous system corresponding to
system (2).

In fact, there is a unique positive equilibrium �̄� ∶= (�̄�, �̄�) for system (2) if

𝑐 >
𝑚1

𝑏1
and 𝑟0 >

𝑐𝑏1 − 𝑚1

𝑐𝑏2
, (4)

where
�̄� = 1

𝑎
(𝑟0 −

𝑐𝑏1 − 𝑚1

𝑏2𝑎𝑐
), �̄� =

𝑐𝑏1 − 𝑚1

𝑚1𝑏2
�̄�.

Then, the linearized equations of system (2) at �̄� are given by⎧⎪⎨⎪⎩
𝑢𝑡 = 𝑑𝑢

𝜕2

𝜕𝑥2
𝑢 + 𝛼�̄� 𝜕2

𝜕𝑥2
𝑣 + (−𝑎�̄� + 𝑏1 �̄��̄�

(𝑏2�̄�+�̄�)2
)𝑢 − 𝑏1 �̄�2

(𝑏2�̄�+�̄�)2
𝑣,

𝑣𝑡 = 𝑑𝑣
𝜕2

𝜕𝑥2
𝑣 + 𝑐𝑏1𝑏2�̄�2

(𝑏2�̄�+�̄�)2
𝑢𝜏 −

𝑐𝑏1𝑏2 �̄��̄�
(𝑏2�̄�+�̄�)2

𝑣𝜏 ,

𝑢𝑥(0, 𝑡) = 𝑣𝑥(0, 𝑡) = 0, 𝑢𝑥(𝜋, 𝑡) = 𝑣𝑥(𝜋, 𝑡) = 0.

(5)

Let {𝜇𝑘 = 𝑘2 ∶ 𝑘 ∈ ℕ0} be the eigenvalues of operator − 𝜕2

𝜕𝑥2
on (0, 𝜋) subject to Neumann boundary conditions. And for the

sake of convenience, denote
𝜛 ∶=

𝑚1(𝑐𝑏1 − 𝑚1)
𝑐2𝑏1𝑏2

> 0,

then the characteristic equations of (5) read

𝐷𝑘(𝜆, 𝜏, 𝛼) ∶= 𝜆2 + 𝑝𝑘𝜆 + 𝜎𝑘 + (𝑠𝑘𝜆 + 𝑞𝑘(𝛼))𝑒−𝜆𝜏 = 0, 𝑘 ∈ ℕ0, (6)

where
𝑝𝑘 = 𝑘2(𝑑𝑢 + 𝑑𝑣) + (𝑎�̄� −𝜛),
𝑠𝑘 = 𝑐𝑏2𝜛,
𝜎𝑘 = 𝑘4𝑑𝑢𝑑𝑣 + 𝑘2𝑑𝑣(𝑎�̄� −𝜛),

𝑞𝑘(𝛼) = 𝑘2𝑐𝑏2�̄�𝜛𝛼 + 𝑐𝑏2𝜛(𝑘2𝑑𝑢 + 𝑎�̄�).

(7)

For 𝜏 = 0, (6) turns into
𝐷𝑘(𝜆, 0, 𝛼) = 𝜆2 + (𝑝𝑘 + 𝑠𝑘)𝜆 + (𝜎𝑘 + 𝑞𝑘(𝛼)) = 0, 𝑘 ∈ ℕ0. (8)

Denote 𝐷𝐸𝑇𝑘 ∶= 𝜎𝑘 + 𝑞𝑘(𝛼), 𝑇𝑅𝑘 ∶= −(𝑝𝑘 + 𝑠𝑘) for 𝑘 ∈ ℕ0, then

𝐷𝐸𝑇𝑘 = 𝑘4𝑑𝑢𝑑𝑣 + 𝑘2[𝑑𝑣(𝑎�̄� −𝜛) + 𝑑𝑢𝑐𝑏2𝜛 + 𝛼𝑐𝑏2�̄�𝜛] + 𝑎𝑐𝑏2�̄�𝜛,
𝑇𝑅𝑘 = −𝑘2(𝑑𝑢 + 𝑑𝑣) − (𝑎�̄� −𝜛) − 𝑐𝑏2𝜛.

If
𝑐 >

𝑚1

𝑏1
and 𝑟0 > 𝑟0 ≜ max

{
𝑐𝑏1 − 𝑚1

𝑐𝑏2
,
(𝑐𝑏1 − 𝑚1)(𝑐𝑏1 + 𝑚1 − 𝑐𝑏2𝑚1)

𝑐2𝑏1𝑏2

}
, (9)

then 𝑇𝑅0 < 0, hence �̄� is locally asymptotically stable for local ODE system since 𝐷𝐸𝑇0 > 0. So in the following discussions,
we always assume that (9) is satisfied.

Next, we devote ourselves to discussing the occurrences of Turing bifurcation for system (2).
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For convenience, denote
𝑟0 ∶=

(𝑐𝑏1 − 𝑚1)(𝑐𝑏1 + 𝑚1)
𝑐2𝑏1𝑏2

> 0,

and it is obvious that 𝑟0 > 𝑟0.
When 𝑟0 ⩾ 𝑟0, then 𝑎�̄� − 𝜛 ⩾ 0, hence 𝑇𝑅𝑘 < 0, 𝐷𝐸𝑇𝑘 > 0 for 𝑘 ∈ ℕ0, which indicates that �̄� is locally asymptotically

stable.
When 𝑟0 < 𝑟0, then 𝑎�̄� −𝜛 < 0. According to (9), 𝑇𝑅𝑘 < 0 for 𝑘 ∈ ℕ0 also holds. Whereas, there exists some 𝑘 ∈ ℕ such

that 𝐷𝐸𝑇𝑘 < 0, meaning that Turing bifurcation can occur for system (2). Then, for any fixed 𝑑𝑣 > 0, define

𝛼(𝑘, 𝑑𝑢) ∶= −
𝑑𝑢𝑑𝑣𝑘4 + (𝑑𝑣(𝑎�̄� −𝜛) + 𝑑𝑢𝑐𝑏2𝜛)𝑘2 + 𝑎𝑐𝑏2�̄�𝜛

𝑘2𝑐𝑏2�̄�𝜛
, 𝑑𝑢 > 0, 𝑘 ∈ Λ, (10)

where

Λ ∶=

{
𝑘 ∈ ℕ ∶ 𝑘 > �̂� ≜

√
𝑎𝑐𝑏2�̄�𝜛

𝑑𝑣(𝜛 − 𝑎�̄�)

}
. (11)

Also, denote
�̄�(𝑘) ∶= lim

𝑑𝑢→0+
𝛼(𝑘, 𝑑𝑢) = − 𝑎�̄�

𝑘2�̄�
+

𝑑𝑣(𝜛 − 𝑎�̄�)
𝑐𝑏2�̄�𝜛

. (12)

Then, to describe the critical conditions for the instability of the positive equilibrium, we first discuss the monotonicity of �̄�(𝑘)
with respect to the wave number 𝑘.

Lemma 2. For any 𝑎, 𝑏1, 𝑏2, 𝑚1, 𝑑𝑣 > 0, provided that 𝑐 > 𝑚1

𝑏1
, 𝑟0 < 𝑟0 < 𝑟0, then �̄�(𝑘) > 0 is monotonically increasing in 𝑘 for

𝑘 ∈ Λ.

A direct calculation from 𝛼(𝑘, 𝑑𝑢) = 0 yields

𝑑𝑘
𝑢 ∶= −

𝑑𝑣(𝑎�̄� −𝜛)𝑘2 + 𝑎𝑐𝑏2�̄�𝜛
𝑘2(𝑑𝑣𝑘2 + 𝑐𝑏2𝜛)

, 𝑘 ∈ Λ, (13)

which is a critical value of 𝑑𝑢 when �̄� is destabilized.
For any 𝑑𝑣 > 0, let

�̄� ∶=

{⌊𝑘∗⌋ + 1, for 𝑑⌊𝑘∗⌋
𝑢 ⩽ 𝑑⌊𝑘∗⌋+1

𝑢 ,⌊𝑘∗⌋, for 𝑑⌊𝑘∗⌋
𝑢 > 𝑑⌊𝑘∗⌋+1

𝑢 ,
(14)

then �̄� is the critical wave number of the nonconstant steady states arising from �̄� through Turing instability, where

𝑘∗ =

√
𝑐𝑏2𝜛(𝑎�̄� +

√
𝑎�̄�𝜛)

𝑑𝑣(𝜛 − 𝑎�̄�)
, (15)

and ⌊⋅⌋ is the floor function.
The next lemma concerns the monotonicity of 𝑑𝑘

𝑢 in 𝑘 and 𝛼(𝑘, 𝑑𝑢) in 𝑑𝑢, respectively, that is,

Lemma 3. For any 𝑎, 𝑏1, 𝑏2, 𝑚1, 𝑑𝑣 > 0, provided that 𝑐 > 𝑚1

𝑏1
, 𝑟0 < 𝑟0 < 𝑟0, then

(i) 𝑑𝑘
𝑢 is monotonically increasing with respect to 𝑘 ∈ ℕ for �̂� < 𝑘 < �̄�, and monotonically decreasing with respect to 𝑘 ∈ ℕ

for 𝑘 ⩾ �̄�.

(ii) for any 𝑘 ∈ Λ, 𝛼(𝑘, 𝑑𝑢) is linear and monotonically decreasing with respect to 𝑑𝑢 for 𝑑𝑢 > 0. Particularly, 𝛼(𝑘, 𝑑𝑢) > 0 for
0 < 𝑑𝑢 < 𝑑𝑘

𝑢 , 𝑘 ∈ Λ.

Proof. We only prove the case of 𝑑⌊𝑘∗⌋
𝑢 ⩽ 𝑑⌊𝑘∗⌋+1

𝑢 , �̄� = ⌊𝑘∗⌋ + 1, and the other cases can be proved by following the similar
arguments.

For part (i), define Θ1(𝑥) by

Θ1(𝑥) ∶= −
𝑑𝑣(𝑎�̄� −𝜛)𝑥 + 𝑎𝑐𝑏2�̄�𝜛

𝑥(𝑑𝑣𝑥 + 𝑐𝑏2𝜛)
, 𝑥 > 0.

So by a direct calculation, there exists 𝑥∗ = 𝑘2∗ satisfying that Θ1(𝑥) is increasing in 𝑥 on (0, 𝑥∗), and decreasing in 𝑥 on (𝑥∗,∞).
And by (11), it follows that

𝑘2∗ − �̂�2 =
𝑐𝑏2𝜛

√
𝑎�̄�𝜛

𝑑𝑣(𝜛 − 𝑎�̄�)
> 0,
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that is, 𝑘∗ > �̂�, thus ⌊𝑘∗⌋ + 1 ⩾ 𝑘∗ > �̂�, which implies that 𝑑𝑘
𝑢 is decreasing for ⌊𝑘∗⌋ + 1 ⩽ 𝑘 ∈ ℕ. On the other hand, for

𝑘 ∈ {𝑘 ∈ ℕ ∶ �̂� < 𝑘 < ⌊𝑘∗⌋ + 1}, 𝑑𝑘
𝑢 is monotonically increasing with respect to 𝑘.

For part (ii), for any 𝑘 ∈ Λ, we rewrite the expression of 𝛼(𝑘, 𝑑𝑢) in (10) as follows

𝛼(𝑘, 𝑑𝑢) ∶= −
𝑑𝑣𝑘2 + 𝑐𝑏2𝜛

𝑐𝑏2�̄�𝜛
𝑑𝑢 −

𝑑𝑣(𝑎�̄� −𝜛)𝑘2 + 𝑎𝑐𝑏2�̄�𝜛
𝑘2𝑐𝑏2�̄�𝜛

, 𝑑𝑢 > 0,

then 𝛼(𝑘, 𝑑𝑢) is a linear function of 𝑑𝑢, thus for 𝑑𝑢 > 0, 𝛼(𝑘, 𝑑𝑢) is monotonically decreasing with respect to 𝑑𝑢, implying that
𝛼(𝑘, 𝑑𝑢) > 0 for 0 < 𝑑𝑢 < 𝑑𝑘

𝑢 , 𝑘 ∈ Λ.

As required by the model background, we focus on the case where the predator-taxis coefficient is non-negative. To this end,
for any 𝑑𝑣 > 0, define

𝛼∗(𝑘, 𝑑𝑢) ∶= max{𝛼(𝑘, 𝑑𝑢), 0}, 𝑘 ∈ Λ, 0 < 𝑑𝑢 < 𝑑 �̄�
𝑢 . (16)

It is well known that the first critical value of Turing bifurcation determines the stability of positive constant steady state15. So
to describe the critical region where the stability of �̄� changes in (𝑑𝑢, 𝛼)-plane, next we discuss the intersections of 𝛼 = 𝛼∗(𝑘, 𝑑𝑢)
for 𝑘 ∈ Λ, 0 < 𝑑𝑢 < 𝑑 �̄�

𝑢 .

Lemma 4. For any 𝑎, 𝑏1, 𝑏2, 𝑚1, 𝑑𝑣 > 0, provided that 𝑐 > 𝑚1

𝑏1
, 𝑟0 < 𝑟0 < 𝑟0, then for any 𝑘 ∈ Λ,

(i) the equation
𝛼∗(𝑘, 𝑑𝑢) = 𝛼∗(𝑘 + 1, 𝑑𝑢), 0 < 𝑑𝑢 < 𝑑 �̄�

𝑢

has a unique root 𝑑𝑘,𝑘+1
𝑢 ∈ (0, 𝑑𝑘+1

𝑢 ), which is denoted by

𝑑𝑘,𝑘+1
𝑢 ∶=

𝑎𝑐𝑏2�̄�𝜛
𝑑𝑣𝑘2(𝑘 + 1)2

. (17)

(ii) for 𝑘 ⩾ �̄�,
𝛼∗(𝑘, 𝑑𝑢) > 𝛼∗(𝑘 + 1, 𝑑𝑢) ⩾ 𝛼∗(𝑘 + 2, 𝑑𝑢) ⩾ ⋯ ,
𝛼∗(𝑘, 𝑑𝑢) > 𝛼∗(𝑘 − 1, 𝑑𝑢) > 𝛼∗(𝑘 − 2, 𝑑𝑢) > ⋯ > 𝛼∗(�̄�, 𝑑𝑢),

(18)

for 𝑑𝑘,𝑘+1
𝑢 < 𝑑𝑢 < 𝑑𝑘−1,𝑘

𝑢 , where 𝑑 �̄�−1,�̄�
𝑢 ∶= 𝑑 �̄�

𝑢 .

(iii) for �̂� < 𝑘 < �̄�
𝛼∗(�̄�, 𝑑𝑢) ⩾ 𝛼∗(�̄� − 1, 𝑑𝑢) ⩾ ⋯ ⩾ 𝛼∗(⌊�̂�⌋ + 1, 𝑑𝑢), for 0 < 𝑑𝑢 < 𝑑 �̄�

𝑢 . (19)

Proof. The part (i) is obvious. As for parts (ii) and (iii), below we only give the proof when 𝑑⌊𝑘∗⌋
𝑢 ⩽ 𝑑⌊𝑘∗⌋+1

𝑢 , �̄� = ⌊𝑘∗⌋ + 1, and
the other cases can be proved similarly.

For part (ii), if 𝑘 ⩾ �̄�, then for the first sequence, if further 𝑑𝑢 > 𝑑𝑘,𝑘+1
𝑢 , it follows that

𝛼∗(𝑘, 𝑑𝑢) − 𝛼∗(𝑘 + 1, 𝑑𝑢) =
(2𝑘 + 1)(𝑑𝑢𝑑𝑣𝑘2(𝑘 + 1)2 − 𝑎𝑐𝑏2�̄�𝜛)

𝑐𝑏2�̄�𝜛𝑘2(𝑘 + 1)2
> 0,

that is, 𝛼∗(𝑘, 𝑑𝑢) > 𝛼∗(𝑘 + 1, 𝑑𝑢). In addition, if 𝑑𝑢 > 𝑑𝑘+1
𝑢 > 𝑑𝑘,𝑘+1

𝑢 , together with the definition of 𝛼∗(𝑘, 𝑑𝑢) in (16), then
𝛼∗(𝑘+1, 𝑑𝑢) = 𝛼∗(𝑘+2, 𝑑𝑢) = ⋯ = 0, implying that for 𝑑𝑢 > 𝑑𝑘,𝑘+1

𝑢 , 𝛼∗(𝑘, 𝑑𝑢) > 𝛼∗(𝑘+1, 𝑑𝑢) ⩾ 𝛼∗(𝑘+2, 𝑑𝑢) ⩾ ⋯. Similarly, if
𝑑𝑢 > 𝑑𝑘+1,𝑘+2

𝑢 , the 𝛼∗(𝑘+1, 𝑑𝑢) > 𝛼∗(𝑘+2, 𝑑𝑢) ⩾ 𝛼∗(𝑘+3, 𝑑𝑢) ⩾ ⋯ holds, and the rest can be done in the same manner. And by
(17), 𝑑⌊𝑘∗⌋+1

𝑢 > 𝑑𝑘,𝑘+1
𝑢 > 𝑑𝑘+1,𝑘+2

𝑢 > ⋯ > 0 also holds. Thus, when 𝑑𝑢 > 𝑑𝑘,𝑘+1
𝑢 , 𝛼∗(𝑘, 𝑑𝑢) > 𝛼∗(𝑘 + 1, 𝑑𝑢) ⩾ 𝛼∗(𝑘 + 2, 𝑑𝑢) ⩾ ⋯.

If 𝑑𝑢 < 𝑑𝑘−1,𝑘
𝑢 , it analogously follows that

𝛼∗(𝑘, 𝑑𝑢) − 𝛼∗(𝑘 − 1, 𝑑𝑢) =
(2𝑘 − 1)(−𝑑𝑢𝑑𝑣𝑘2(𝑘 − 1)2 + 𝑎𝑐𝑏2�̄�𝜛)

𝑐𝑏2�̄�𝜛𝑘2(𝑘 − 1)2
> 0,

that is, 𝛼∗(𝑘, 𝑑𝑢) > 𝛼∗(𝑘 − 1, 𝑑𝑢). So if 𝑑𝑢 < 𝑑𝑘−2,𝑘−1
𝑢 , then 𝛼∗(𝑘 − 1, 𝑑𝑢) > 𝛼∗(𝑘 − 2, 𝑑𝑢) and so on. By (17) again, 0 < 𝑑𝑘−1,𝑘

𝑢 <
𝑑𝑘−2,𝑘−1
𝑢 < ⋯ < 𝑑⌊𝑘∗⌋+1

𝑢 holds. Hence, when 𝑑𝑢 < 𝑑𝑘−1,𝑘
𝑢 , 𝛼∗(𝑘, 𝑑𝑢) > 𝛼∗(𝑘 − 1, 𝑑𝑢) > 𝛼∗(𝑘 − 2, 𝑑𝑢) > ⋯ > 𝛼∗(⌊𝑘∗⌋ + 1, 𝑑𝑢).

For part (iii), according to Lemma 2 and Lemma 3, if �̂� < 𝑘 < �̄�, then 𝛼∗(⌊𝑘∗⌋+1, 𝑑𝑢) ⩾ 𝛼∗(⌊𝑘∗⌋, 𝑑𝑢) ⩾ ⋯ ⩾ 𝛼∗(⌊�̂�⌋+1, 𝑑𝑢),
0 < 𝑑𝑢 < 𝑑 �̄�

𝑢 .
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(a) (b)

Figure 1 (a): Turing bifurcation curves 𝛼 = 𝛼∗(𝑘, 𝑑𝑢) when 0 < 𝑑𝑢 < 𝑑 �̄�
𝑢 for different 𝑘 ∈ Λ in (𝑑𝑢, 𝛼)-plane. (b): The first Turing

bifurcation curve 𝛼 = 𝛼∗(𝑑𝑢), 0 < 𝑑𝑢 < 𝑑 �̄�
𝑢 . The non-smooth points 𝑇�̄�,�̄�+1, 𝑇�̄�+1,�̄�+2, ⋯ are Turing-Turing bifurcation points.

Synthesizing the above discussions, for 𝑘 ∈ Λ, 0 < 𝑑𝑢 < 𝑑 �̄�
𝑢 , define

𝛼∗(𝑑𝑢) ∶= 𝛼∗(𝑘, 𝑑𝑢), 𝑑𝑢 ∈ [𝑑𝑘,𝑘+1
𝑢 , 𝑑𝑘−1,𝑘

𝑢 ), 𝑘 ⩾ �̄�, (20)

with �̄� is defined as in (14). Then
𝛼 = 𝛼∗(𝑑𝑢), 0 < 𝑑𝑢 < 𝑑 �̄�

𝑢 (21)
is called the first Turing bifurcation curve, which is the critical curve for Turing instability of �̄�.

Lemma 5. For any 𝑎, 𝑏1, 𝑏2, 𝑚1, 𝑑𝑣 > 0, provided that 𝑐 > 𝑚1

𝑏1
, 𝑟0 < 𝑟0 < 𝑟0, then for any 𝑑𝑢 ∈ (0, 𝑑 �̄�

𝑢 ), there must exist some

integer 𝑘1 ⩾ �̄� such that 𝑑𝑢 ∈ [𝑑𝑘1,𝑘1+1
𝑢 , 𝑑𝑘1−1,𝑘1

𝑢 ). Specifically,

(i) if 𝑑𝑢 ∈ (𝑑𝑘1,𝑘1+1
𝑢 , 𝑑𝑘1−1,𝑘1

𝑢 ) and 𝛼 = 𝛼∗(𝑑𝑢), 0 is a simple root of characteristic equation (8) with 𝑘 = 𝑘1, and the other roots
of (8) have strictly negative real parts. Moreover, let 𝜆1(𝑘1, 0, 𝛼) be the root of (8) satisfying 𝜆1(𝑘1, 0, 𝛼∗(𝑑𝑢)) = 0, then

𝑑𝜆1(𝑘1, 0, 𝛼∗(𝑑𝑢))
𝑑𝛼

=
−𝑘21𝑐𝑏2�̄�𝜛
𝑝𝑘1 + 𝑠𝑘1

< 0. (22)

(ii) if 𝑑𝑢 = 𝑑𝑘1,𝑘1+1
𝑢 and 𝛼 = 𝛼∗(𝑑

𝑘1,𝑘1+1
𝑢 ), then 0 is a simple root of characteristic equation (8) for both 𝑘1 and 𝑘1 + 1, and the

other roots of (8) have strictly negative real parts.

Proof. Inspired by the proof of15, we only give the proof of part (i), and the second assertion can be analogously proved.
Note that in (8), 𝐷𝐸𝑇𝑘 = 0 if and only if 𝛼 = 𝛼∗(𝑘, 𝑑𝑢) for 𝑘 ∈ Λ, 0 < 𝑑𝑢 < 𝑑 �̄�

𝑢 . So, for any 𝑘1 ∈ Λ, 𝜆1(𝑘1, 0, 𝛼) = 0 is
always a root of (8) with such 𝑘1 when 𝛼 = 𝛼∗(𝑘1, 𝑑𝑢). By the definition of 𝛼∗(𝑑𝑢) and 𝛼∗(𝑘, 𝑑𝑢), if 𝑑𝑢 ∈ (𝑑𝑘1,𝑘1+1

𝑢 , 𝑑𝑘1−1,𝑘1
𝑢 ) and

𝛼 = 𝛼∗(𝑑𝑢), then 0 is a root of (8) with 𝑘 = 𝑘1. Moreover, it follows
d𝐷𝑘1(𝜆, 0, 𝛼)

d𝜆
∣𝜆=0= −𝑇𝑅𝑘1 > 0

that 𝜆 = 0 is simple. The condition (9) ensures that 𝑇𝑅𝑘 < 0 for all 𝑘 ∈ ℕ0 and 𝐷𝐸𝑇𝑘 > 0 for 𝑘 ⩾ �̄�, 𝑘 ∈ ℕ and 𝑘 ≠ 𝑘1. Thus,
all the other roots of (8) have strictly negative real parts. Differentiating (8) with respect to 𝛼, the transversality conditions in
(22) can be obtained directly.

In Figure 1 (𝑎), we demonstrate the schematic diagram of Turing bifurcation curves 𝛼 = 𝛼∗(𝑘, 𝑑𝑢) when 0 < 𝑑𝑢 < 𝑑 �̄�
𝑢 for

different 𝑘 ∈ Λ in (𝑑𝑢, 𝛼)-plane to illustrate the properties presented in Lemma 4. The corresponding first Turing bifurcation
curve 𝛼 = 𝛼∗(𝑑𝑢), 0 < 𝑑𝑢 < 𝑑 �̄�

𝑢 is plotted in Figure 1 (𝑏), and the non-smooth points of 𝛼 = 𝛼∗(𝑑𝑢), 0 < 𝑑𝑢 < 𝑑 �̄�
𝑢 , 𝑇�̄�,�̄�+1, 𝑇�̄�+1,�̄�+2,

⋯ are Turing-Turing bifurcation points.
So in summary, we have

Theorem 6. For model (2) with 𝜏 = 0 and any 𝑎, 𝑏1, 𝑏2, 𝑚1, 𝑑𝑣 > 0, provided that 𝑐 > 𝑚1

𝑏1
, then

(1) when 𝑟0 ⩾ 𝑟0, for 𝑑𝑢 > 0, 𝛼 > 0, positive constant steady state �̄� is always locally asymptotically stable.
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(a) 𝑑𝑣 = 0.2 (b) 𝑑𝑣 = 1.8

Figure 2 Stable region, Turing bifurcation region and Turing-Turing bifurcation region for 𝑑𝑣 = 0.2, 1.8, respectively.

(2) when 𝑟0 < 𝑟0 < 𝑟0,

(𝑎) if further 𝑑𝑢 ⩾ 𝑑 �̄�
𝑢 , the �̄� is locally asymptotically stable for 𝛼 > 0.

(𝑏) when 0 < 𝑑𝑢 < 𝑑 �̄�
𝑢 ,

(i) �̄� is locally asymptotically stable for 𝛼 > 𝛼∗(𝑑𝑢), and unstable for 0 < 𝛼 < 𝛼∗(𝑑𝑢).
(ii) if further 𝑑𝑢 ∈ (𝑑𝑘1,𝑘1+1

𝑢 , 𝑑𝑘1−1,𝑘1
𝑢 ) for some 𝑘1 ⩾ �̄� and 𝑘1 ∈ ℕ, (2) undergoes mode-𝑘1 Turing bifurcation when

𝛼 = 𝛼∗(𝑑𝑢).
(iii) if further 𝑑𝑢 = 𝑑𝑘1,𝑘1+1

𝑢 for some 𝑘1 ⩾ �̄� and 𝑘1 ∈ ℕ, (2) undergoes mode-(𝑘1, 𝑘1+1) Turing-Turing bifurcation
when 𝛼 = 𝛼∗(𝑑

𝑘1,𝑘1+1
𝑢 ).

Remark 1. (Turing patterns and Turing-Turing patterns) Note that sufficient conditions for the formations of spatial patterns
have been provided in37, while the condition 0 < 𝛼 < 𝛼∗(𝑑𝑢), 0 < 𝑑𝑢 < 𝑑 �̄�

𝑢 given in Theorem 6 is not only sufficient but also
necessary for pattern formations.

As shown in Figure 1 (𝑏), the first Turing bifurcation curve 𝛼 = 𝛼∗(𝑑𝑢), 0 < 𝑑𝑢 < 𝑑 �̄�
𝑢 , is formed by connecting Turing

bifurcation curves of mode-�̄�, mode-�̄� + 1, mode-�̄� + 2, ⋯ with Turing-Turing bifurcation points 𝑇�̄�,�̄�+1, 𝑇�̄�+1,�̄�+2, ⋯, which
indicates that the positive constant steady state can be destabilized by mode-𝑘 Turing bifurcation, thus system (2) will harvest
the spatially inhomogeneous steady states shaped like cos 𝑘𝑥, and also suggests that the positive constant steady state can be
destabilized by mode-(𝑘, 𝑘 + 1) Turing-Turing bifurcation, thus system (2) will harvest more complex spatial patterns, such as
multiple superposition solutions of cos 𝑘𝑥 and cos(𝑘+1)𝑥, or the coexistence of multi-stable spatial patterns shaped like cos 𝑘𝑥
and shaped like cos(𝑘 + 1)𝑥, where the possible values of 𝑘 are �̄�, �̄� + 1,⋯.

Moreover, it can be concluded that large predator-taxis has the effects of eliminating spatial patterns which arise due to random
dispersal of predator and prey. Besides, it follows from Lemma 3 and (20) that 𝛼 = 𝛼∗(𝑑𝑢) is decreasing with respect to 𝑑𝑢 for
0 < 𝑑𝑢 < 𝑑 �̄�

𝑢 , which means that when the self-diffusion 𝑑𝑢 of prey is small, the heterogeneity of spatial distributions of the two
populations can be eliminated by increasing the predator-taxis coefficient 𝛼, that is to say, large predator-taxis can supplement
small self-diffusion of prey.

Next, we provide some examples to intuitively explain the above theoretical analysis.
Here we refer to parameter selections in30, and let

𝑎 = 0.4902, 𝑟0 = 0.5, 𝑐 = 𝑏1 = 1
𝑏2 = 0.9804, 𝑚1 = 0.6, 𝜏 = 0.

Then (9) is satisfied, thus �̄� = (0.1877, 0.1276) is locally asymptotically stable for local ODE system.
Further, when 𝑑𝑣 = 0.2, 1.8, respectively, Turing bifurcation sets are given in Figure 2, where 𝛼 = 𝛼∗(𝑘, 𝑑𝑢) for 𝑘 =

1, 2, 3, 4,⋯ are Turing bifurcation curves, and the regions where multiple spatial patterns exist are marked. For ease of citations,
stable regions are denoted as 𝐷, mode-2 Turing bifurcation region is denoted as 𝐷2, and mode-(1, 2), mode-(2, 3) Turing-Turing
bifurcation regions are denoted as 𝐷1,2, 𝐷2,3, respectively.
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(a) (𝑑𝑢, 𝛼) = (0.02, 0)
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(b) (𝑑𝑢, 𝛼) = (0.02, 0.087)

Figure 3 The spatial distributions of the two populations are inhomogeneous when (𝑑𝑢, 𝛼) = (0.02, 0) and (𝑑𝑢, 𝛼) = (0.02, 0.087),
respectively.

Example 1. (Turing bifurcation and spatial patterns)
Let 𝑑𝑣 = 0.2, we want to show the effects of predator-taxis on pattern formations.
It follows from (14) that �̄� = 2. Due to (13), 𝑑 �̄�

𝑢 = 𝑑2
𝑢 = 0.0241. And by (17), 𝑑2,3

𝑢 = 0.0031.
When 𝑑𝑢 ∈ (𝑑2,3

𝑢 , 𝑑2
𝑢 ), Theorem 6 indicates that system (2) undergoes mode-2 Turing bifurcation at 𝛼 = 𝛼∗(𝑑𝑢). And the

eigenfunction corresponding to the eigenvalue 𝜇2 is

(�̄� + cos 2𝑥, �̄� +
𝑐𝑏1𝑏2�̄�2

𝜇2𝑑𝑣(𝑏2�̄� + �̄�)2 + 𝑐𝑏1𝑏2�̄��̄�
cos 2𝑥)𝑇 = (�̄� + cos 2𝑥, �̄� + 0.1569 cos 2𝑥)𝑇 . (23)

Bifurcation theory indicates that when (𝑑𝑢, 𝛼) ∈ 𝐷2, there will be spatially inhomogeneous patterns and the waveforms are
consistent with those of eigenfunctions given by (23).

(1) Let 𝑑𝑢 = 0.02, then 𝛼∗(0.02) = 0.1384. Let 𝛼 = 0 < 𝛼∗(0.02) and 𝛼 = 0.087 < 𝛼∗(0.02) respectively, then (𝑑𝑢, 𝛼) ∈ 𝐷2
(see Figure 2 (𝑎)). Thus, mode-2 Turing bifurcation occurs and �̄� becomes unstable. Meanwhile, spatially inhomogeneous
patterns shaped like cos 2𝑥 are theoretically expected to appear. Specifically, when choosing (0.1877+0.1 cos 2𝑥, 0.1276+
0.1 cos 2𝑥) as initial values, numerical results are presented in Figure 3, and the third column of Figure 3 illustrates that
the waveforms of spatially inhomogeneous patterns are consistent with the waveforms of corresponding eigenfunction
given by (23).

(2) If we further choose a larger predator-taxis coefficient 𝛼 = 0.5 > 𝛼∗(0.02) = 0.1384, then (𝑑𝑢, 𝛼) ∈ 𝐷 (see Figure 2 (𝑎)).
Thus �̄� is locally asymptotically stable. Let (0.1877 + 0.1 cos 2𝑥, 0.1276 + 0.1 cos 2𝑥) be initial values, and numerical
results are presented in Figure 4.

Consequently, it is numerically confirmed that large predator-taxis has effects on eliminating spatial patterns resulting from
self-diffusion by comparing Figure 3 with Figure 4.

Example 2. (Turing-Turing bifurcation and multi-stable spatial patterns)

(1) Let 𝑑𝑣 = 0.2. Compared with Example 1 (2), we further choose a smaller self-diffusion coefficient of prey 𝑑𝑢 = 0.0055.
It follows (13), (16) and (17), that

𝛼∗(2, 𝑑𝑢) = 0.6308, 𝛼∗(3, 𝑑𝑢) = 0.5513, 𝛼∗(4, 𝑑𝑢) = 0.3310,
𝑑2
𝑢 = 0.0241, 𝑑3

𝑢 = 0.0138, 𝑑2,3
𝑢 = 0.0033,
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Figure 4 The spatial distributions of the two populations are homogeneous when (𝑑𝑢, 𝛼) = (0.02, 0.5).

Table 1 Formations and comparisons of multiple spatial patterns.

Case 𝑑𝑣 (𝑑𝑢, 𝛼) Figures Spatial Patterns

I 0.2 (0.02, 0) 3 (𝑎) Spatial patterns with wave frequency 2
(0.02, 0.087) 3 (𝑏) Spatial patterns with wave frequency 2

II 0.2 (0.02, 0.5) 4 Spatially homogeneous patterns

III 0.2 (0.0055, 0.5) 5 (𝑎) (𝑏) Multi-stable spatial patterns with
wave frequencies 2 and 35 (𝑐) (𝑑)

IV 1.8 (0.02, 0.5) 6 (𝑎) (𝑏) Multi-stable spatial patterns with
wave frequencies 1 and 26 (𝑐) (𝑑)

thus 𝑑𝑢 ∈ (𝑑2,3
𝑢 , 𝑑3

𝑢 ) and (𝑑𝑢, 𝛼) ∈ 𝐷2,3, that is, (𝑑𝑢, 𝛼) is selected in mode-(2, 3) Turing-Turing bifurcation region (see
Figure 2 (𝑎)), where superposition patterns of cos 2𝑥 and cos 3𝑥 or multi-stable spatial patterns shaped like cos 2𝑥 and
cos 3𝑥 are theoretically expected to emerge. When we choose (0.1877 + 0.1 cos 2𝑥, 0.1276 + 0.1 cos 2𝑥), (0.1877 −
0.1 cos 2𝑥, 0.1276− 0.1 cos 2𝑥), (0.1877+ 0.1 cos 3𝑥, 0.1276+ 0.1 cos 3𝑥) and (0.1877− 0.1 cos 3𝑥, 0.1276− 0.1 cos 3𝑥)
as initial values respectively, as shown in Figure 5, a pair of spatially inhomogeneous patterns with wave frequency 2 and
a pair of spatially inhomogeneous patterns with wave frequency 3 coexist, which are multi-stable spatial patterns.

(2) Let 𝑑𝑢 = 0.02. Compared with Example 1 (2), we further choose a bigger self-diffusion coefficient of predator 𝑑𝑣 = 1.8.
It follows (13), (16) and (17), that

𝛼∗(1, 𝑑𝑢) = 6.9267, 𝛼∗(2, 𝑑𝑢) = 3.9413, 𝛼∗(3, 𝑑𝑢) = 0,
𝑑1
𝑢 = 0.124, 𝑑2

𝑢 = 0.0362, 𝑑1,2
𝑢 = 0.0033,

thus 𝑑𝑢 ∈ (𝑑1,2
𝑢 , 𝑑2

𝑢 ) and (𝑑𝑢, 𝛼) ∈ 𝐷1,2, that is, (𝑑𝑢, 𝛼) is selected in mode-(1, 2) Turing-Turing bifurcation region (see
Figure 2 (𝑏)), where superposition patterns of cos 𝑥 and cos 2𝑥 or multi-stable spatial patterns shaped like cos 𝑥 and
cos 2𝑥 are theoretically expected to emerge. When we choose (0.1877+0.1 cos 𝑥, 0.1276+0.1 cos 𝑥), (0.1877−0.1 cos 𝑥,
0.1276 − 0.1 cos 𝑥), (0.1877 + 0.2 cos 2𝑥, 0.1276 + 0.1 cos 2𝑥) and (0.1877 − 0.2 cos 2𝑥, 0.1276 − 0.1 cos 2𝑥) as initial
values respectively, as shown in Figure 6, a pair of spatially inhomogeneous patterns with wave frequency 1 and a pair of
spatially inhomogeneous patterns with wave frequency 2 coexist, which are multi-stable spatial patterns.

Consequently, the results of Example 2 show that, on the one hand, the positive constant steady state can be destabilized
through Turing-Turing bifurcation, resulting in multi-stable spatial patterns. On the other hand, by comparing the results of
Figure 5 and Figure 6 with those of Figure 4, respectively, it is numerically illustrated that either small self-diffusion for prey
or large self-diffusion for predator will promote spatial patterns to appear, which suggests that predator-taxis can balance the
spatial heterogeneity caused by self-diffusion.

For convenience, we summarize the results of Example 1 and Example 2 in Table 1 and make the following comparisons.
The comparison of cases I and II shows that large predator-taxis can eliminate spatial patterns caused by self-diffusion, that

is to say, the more sensitive prey is to predation (large predator-taxis), the more evenly distributed the two populations are.
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(a) The initial values are 𝑢0 = 0.1877 + 0.1 cos 2𝑥, 𝑣0 = 0.1276 + 0.1 cos 2𝑥
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(b) The initial values are 𝑢0 = 0.1877 − 0.1 cos 2𝑥, 𝑣0 = 0.1276 − 0.1 cos 2𝑥
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(c) The initial values are 𝑢0 = 0.1877 + 0.1 cos 3𝑥, 𝑣0 = 0.1276 + 0.1 cos 3𝑥
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(d) The initial values are 𝑢0 = 0.1877 − 0.1 cos 3𝑥, 𝑣0 = 0.1276 − 0.1 cos 3𝑥

Figure 5 Multi-stable spatial patterns when (𝑑𝑢, 𝛼) = (0.0055, 0.5). The first two columns are spatial distribution patterns of the
two populations shaped like cos 2𝑥 and cos 3𝑥 when different initial values are selected, and the third column is the comparison
of shapes of spatial distribution patterns and shapes of the eigenfunctions.

Beyond that, a reasonable phenomenon is explained, that is, when only self-diffusion is considered, fast predator dispersal
leads to the appearance of spatial patterns, which will eventually disappear when further considering the chemotaxis behavior of
prey avoiding predator, suggesting that predator-taxis can partially cancel out the non-uniform advantage caused by self-diffusion
of predator.

The comparison of cases II and III shows that spatial patterns still exist as long as the self-diffusion of prey is small enough.
From another perspective, it also shows that predator-taxis and self-diffusion of prey are complementary, that is, predator-taxis
is equivalent to accelerating the self-diffusion of prey, and the spatial distributions of the two populations will finally reach
homogeneity if predator-taxis is large enough.
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(a) The initial values are 𝑢0 = 0.1877 + 0.1 cos 𝑥, 𝑣0 = 0.1276 + 0.1 cos 𝑥
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(b) The initial values are 𝑢0 = 0.1877 − 0.1 cos 𝑥, 𝑣0 = 0.1276 − 0.1 cos 𝑥
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(c) The initial values are 𝑢0 = 0.1877 + 0.2 cos 2𝑥, 𝑣0 = 0.1276 + 0.1 cos 2𝑥
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(d) The initial values are 𝑢0 = 0.1877 − 0.2 cos 2𝑥, 𝑣0 = 0.1276 − 0.1 cos 2𝑥

Figure 6 Multi-stable spatial patterns when 𝑑𝑣 = 1.8 and (𝑑𝑢, 𝛼) = (0.02, 0.5). The first two columns are spatial distribution
patterns of the two populations shaped like cos 𝑥 and cos 2𝑥 when different initial values are selected, and the third column is
the comparison of shapes of spatial distribution patterns and shapes of the eigenfunctions.

The comparison of cases II and IV shows that the spatial patterns still exist as long as the self-diffusion of predator is large
enough. From another perspective, the accelerated self-diffusion of predator is equivalent to the weakened ability of prey to
avoid the risk of being preyed, thus increasing the probability of emergence of spatial inhomogeneous patterns.

Case III and Case IV show that spatial inhomogeneous steady states with different wave frequencies can coexist, which in turn
indicates that the constant stationary can be destabilized by Turing-Turing bifurcation, thus giving rise to multi-stable spatial
patterns.

4 HOPF BIFURCATION AND SPATIOTEMPORAL STAGGERED PERIODIC PATTERNS

In this part, we discuss the effects of time delay on the stability of the positive constant steady state of system (2).
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First, the following result concerning the nonoccurence of Hopf bifurcation for system (2) with 𝜏 = 0 holds.

Theorem 7. For model (2) with 𝜏 = 0 and 𝑎, 𝑏1, 𝑏2, 𝑚1, 𝑑𝑣 > 0, provided that 𝑐 > 𝑚1

𝑏1
, 𝑟0 > 𝑟0, then for 𝑑𝑢, 𝛼 > 0, there is no

Hopf bifurcation.

Next, we establish the conditions for the occurrence of Hopf bifurcation for system (2) with 𝜏 > 0.
Let 𝜆 = ±i𝜔𝑘(𝛼) with 𝜔𝑘(𝛼) > 0, be a pair of purely imaginary roots of (6). For the sake of convenience, denote 𝜔𝑘(𝛼) ≜ 𝜔𝑘.

Then, for 𝑘 ∈ ℕ0,

𝐷𝑘(i𝜔𝑘, 𝜏, 𝛼) = 𝜎𝑘 − 𝜔2
𝑘 + 𝑞𝑘(𝛼) cos(𝜔𝑘𝜏) + 𝑠𝑘𝜔𝑘 sin(𝜔𝑘𝜏)

+ i[𝑝𝑘𝜔𝑘 + 𝑠𝑘𝜔𝑘 cos(𝜔𝑘𝜏) − 𝑞𝑘(𝛼) sin(𝜔𝑘𝜏)] = 0.
(24)

Separating the real and imaginary parts yields

sin(𝜔𝑘𝜏) =
𝑠𝑘𝜔𝑘(𝜔2

𝑘 − 𝜎𝑘) + 𝑝𝑘𝑞𝑘(𝛼)𝜔𝑘

𝑠2𝑘𝜔
2
𝑘 + 𝑞𝑘(𝛼)2

,

cos(𝜔𝑘𝜏) =
𝑞𝑘(𝛼)(𝜔2

𝑘 − 𝜎𝑘) − 𝑝𝑘𝑠𝑘𝜔2
𝑘

𝑠2𝑘𝜔
2
𝑘 + 𝑞𝑘(𝛼)2

,
(25)

which implies that
𝜔4
𝑘 + (𝑝2𝑘 − 𝑠2𝑘 − 2𝜎𝑘)𝜔2

𝑘 + 𝜎2
𝑘 − 𝑞𝑘(𝛼)2 = 0. (26)

Denote

𝜔±
𝑘 ∶=

√√√√𝑠2𝑘 − 𝑝2𝑘 + 2𝜎𝑘 ±
√

(𝑠2𝑘 − 𝑝2𝑘 + 2𝜎𝑘)2 − 4(𝜎2
𝑘 − 𝑞𝑘(𝛼)2)

2
. (27)

So, we first discuss the sign of 𝜎2
𝑘 − 𝑞𝑘(𝛼)2 = (𝜎𝑘 + 𝑞𝑘(𝛼))(𝜎𝑘 − 𝑞𝑘(𝛼)). Since 𝜎𝑘 + 𝑞𝑘(𝛼) > 0 is guaranteed by Theorem 7, the

sign of 𝜎2
𝑘 − 𝑞𝑘(𝛼)2 coincides with that of 𝜎𝑘 − 𝑞𝑘(𝛼), and

𝜎𝑘 − 𝑞𝑘(𝛼) = (𝑑𝑢𝑘2 + (𝑎�̄� −𝜛))(𝑑𝑣𝑘2 − 𝑐𝑏2𝜛) − 𝑐𝑏2𝜛
2 − 𝑘2𝑐𝑏2�̄�𝜛𝛼. (28)

Because 𝜎𝑘 − 𝑞𝑘(𝛼) = 0 with respect to 𝑘 has only one positive root, denoted as 𝐾0 for simplicity, where

𝐾0 =

√
−Γ +

√
Γ2 + 4𝑑𝑢𝑑𝑣𝑎𝑐𝑏2�̄�𝜛

2𝑑𝑢𝑑𝑣
(29)

with Γ ∶= 𝑑𝑣(𝑎�̄� −𝜛) − 𝑑𝑢𝑐𝑏2𝜛 − 𝛼𝑐𝑏2�̄�𝜛, we can conclude that

𝜎2
𝑘 − 𝑞2𝑘(𝛼) < 0, 𝑘 ∈ (0, 𝐾0),

𝜎2
𝑘 − 𝑞𝑘(𝛼)2 > 0, 𝑘 ∈ (𝐾0,∞).

And, the following theorem deals with the case about the roots of (26).

Theorem 8. For 𝑎, 𝑏1, 𝑏2, 𝑚1, 𝑑𝑣 > 0, provided that 𝑐 > 𝑚1

𝑏1
, 𝑟0 > 𝑟0, then for 𝑑𝑢, 𝛼 > 0 and 𝑘 ∈ ℕ0, it follows that

(1) when 0 ⩽ 𝑘 < 𝐾0, 𝜔+
𝑘 is the unique positive root of (26).

(2) when 𝑘 ⩾ 𝐾0, (26) has no positive root.

Proof. For 0 ⩽ 𝑘 < 𝐾0, since 𝜎2
𝑘 − 𝑞2𝑘(𝛼) < 0, 𝜔+

𝑘 is the only positive root of (26), regardless of the positivity or negativity of
𝑠2𝑘 − 𝑝2𝑘 + 2𝜎𝑘.

For 𝑘 ⩾ 𝐾0, the 𝜎2
𝑘 − 𝑞2𝑘(𝛼) ⩾ 0 holds, and it follows (28) that for 𝑘 = 𝐾0,

(𝑑𝑢(𝐾0)2 + (𝑎�̄� −𝜛))(𝑑𝑣(𝐾0)2 − 𝑐𝑏2𝜛) = 𝑐𝑏2𝜛
2 + (𝐾0)2𝑐𝑏2�̄�𝜛𝛼 > 0. (30)

Note that
𝑠2𝑘 − 𝑝2𝑘 + 2𝜎𝑘 = −

[
(𝑑𝑢𝑘2 + (𝑎�̄� −𝜛))2 + (𝑑𝑣𝑘2 + 𝑐𝑏2𝜛)(𝑑𝑣𝑘2 − 𝑐𝑏2𝜛)

]
, (31)

thus,

(𝑎) if 𝑟0 < 𝑟0 < 𝑟0, that is to say, 𝑎�̄� −𝜛 < 0, one can show that 𝑠2𝑘 − 𝑝2𝑘 + 2𝜎𝑘 = 0 with respect to 𝑘 has a unique positive
root, denoted as 𝐾+. And by (29), we have

2𝑑𝑢𝑑𝑣(𝐾0)2 = −Γ +
√

Γ2 + 4𝑑𝑢𝑑𝑣𝑎𝑐𝑏2�̄�𝜛, (32)
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so it can be verified that
𝑑𝑢(𝐾0)2 + (𝑎�̄� −𝜛) = 2𝑑𝑣(𝑑𝑢(𝐾0)2 + (𝑎�̄� −𝜛))

= −Γ +
√

Γ2 + 4𝑑𝑢𝑑𝑣𝑎𝑐𝑏2�̄�𝜛 + 2𝑑𝑣(𝑎�̄� −𝜛)

> 2𝑐𝑏2𝜛(𝑑𝑢 + 𝛼�̄�) > 0,
𝑑𝑣(𝐾0)2 − 𝑐𝑏2𝜛 = 2𝑑𝑢(𝑑𝑣(𝐾0)2 − 𝑐𝑏2𝜛)

= −Γ +
√

Γ2 + 4𝑑𝑢𝑑𝑣𝑎𝑐𝑏2�̄�𝜛 − 2𝑑𝑢𝑐𝑏2𝜛

= −2𝑑𝑣(𝑎�̄� −𝜛) + 2𝛼𝑐𝑏2�̄�𝜛 > 0,

(33)

which yields that 𝑠2𝐾0 − 𝑝2𝐾0 + 2𝜎𝐾0 < 0, that is to say, 𝑠2𝑘 − 𝑝2𝑘 + 2𝜎𝑘 < 0 for 𝑘 ⩾ 𝐾0 > 𝐾+. Hence, from (27), we know
that (26) has no positive root for 𝑘 ⩾ 𝐾0.

(𝑏) if 𝑟0 ⩾ 𝑟0, that is to say, 𝑎�̄� −𝜛 ⩾ 0, then 𝑑𝑢(𝐾0)2 + (𝑎�̄� −𝜛) > 0. It follows from (30) that 𝑑𝑣(𝐾0)2 − 𝑐𝑏2𝜛 > 0. By a
similar argument to (𝑎), (26) has no positive root for 𝑘 ⩾ 𝐾0, either.

Thus, due to Theorem 8, if the positive root 𝜔𝑘 = 𝜔+
𝑘 of (26) exists, denote the root of (25) in (0, 2𝜋] as 𝜏𝑘(𝛼). For

𝑎, 𝑏1, 𝑏2, 𝑚1, 𝑑𝑣 > 0, provided that 𝑐 > 𝑚1

𝑏1
, 𝑟0 > 𝑟0, then for 𝑑𝑢, 𝛼 > 0, denote the critical values for 𝜏 by

𝜏 (𝑗)𝑘 (𝛼) ∶= 𝜏𝑘(𝛼) +
2𝜋𝑗
𝜔+
𝑘
, 𝑗, 𝑘 ∈ ℕ0, 0 ⩽ 𝑘 < 𝐾0. (34)

Suppose that 𝜆2(𝑘, 𝜏, 𝛼) = 𝜉(𝑘, 𝜏, 𝛼)±i𝜔(𝑘, 𝜏, 𝛼) is a pair of conjugated complex roots of characteristic equation 𝐷𝑘(𝜆, 𝜏, 𝛼) =
0 near 𝜏 = 𝜏 (𝑗)𝑘 (𝛼) with 𝜉(𝑘, 𝜏 (𝑗)𝑘 (𝛼), 𝛼) = 0, 𝜔(𝑘, 𝜏 (𝑗)𝑘 (𝛼), 𝛼) = 𝜔+

𝑘 > 0. According to4,43, we obtain the conclusion regarding the
transversality conditions.

Theorem 9. For 𝑎, 𝑏1, 𝑏2, 𝑚1, 𝑑𝑣 > 0, provided that 𝑐 > 𝑚1

𝑏1
, 𝑟0 > 𝑟0, then for 𝑑𝑢, 𝛼 > 0,

𝑠𝑖𝑔𝑛

(
𝑑𝜉(𝑘, 𝜏 (𝑗)𝑘 (𝛼), 𝛼)

𝑑𝜏

)
> 0, 0 ⩽ 𝑘 < 𝐾0, 𝑘 ∈ ℕ0.

Proof. For 0 ⩽ 𝑘 < 𝐾0 and 𝑘 ∈ ℕ0, denote

𝑃 (𝜆) ∶= 𝜆2 + 𝑝𝑘𝜆 + 𝜎𝑘, 𝑄(𝜆) ∶= 𝑠𝑘𝜆 + 𝑞𝑘(𝛼).

Obviously, 𝑃 (i𝜔+
𝑘 ) +𝑄(i𝜔+

𝑘 ) ≠ 0. For ∀𝜔𝑘 > 0, define

𝐹 (𝜔𝑘) ∶=∣ 𝑃 (i𝜔𝑘) ∣2 − ∣ 𝑄(i𝜔𝑘) ∣2= (𝜎𝑘 − 𝜔2
𝑘)

2 + 𝜔2
𝑘𝑝

2
𝑘 − (𝜔2

𝑘𝑠
2
𝑘 + 𝑞𝑘(𝛼)2). (35)

Hence, 𝐹 (𝜔𝑘) = 0 implies that (26) holds, and its roots are given by (27). If denoting

Δ𝜔 ∶= (𝑠2𝑘 − 𝑝2𝑘 + 2𝜎𝑘)2 − 4(𝜎2
𝑘 − 𝑞𝑘(𝛼)2),

then for 𝜔𝑘 = 𝜔+
𝑘 , it follows that

2(𝜔+
𝑘 )

2 − (𝑠2𝑘 + 2𝜎𝑘 − 𝑝2𝑘) =
√
Δ𝜔 > 0. (36)

By (35) and (36), we have
𝑑𝐹 (𝜔+

𝑘 )
𝑑𝜔𝑘

= 2𝜔+
𝑘 [2(𝜔

+
𝑘 )

2 − (𝑠2𝑘 + 2𝜎𝑘 − 𝑝2𝑘)] = 2𝜔+
𝑘

√
Δ𝜔 > 0. (37)

By (25), define
𝑆 (𝑗)
𝑘 (𝜏) ∶= 𝜏 −

𝜃𝑘(𝛼) + 2𝜋𝑗
𝜔+
𝑘

, 𝑗 ∈ ℕ0,

with

𝜃𝑘(𝛼) ∶= arccos

(
𝑞𝑘(𝛼)((𝜔+

𝑘 )
2 − 𝜎𝑘) − 𝑝𝑘𝑠𝑘(𝜔+

𝑘 )
2

𝑠2𝑘(𝜔
+
𝑘 )2 + 𝑞𝑘(𝛼)2

)
.

It follows from (34) that
𝜏 (𝑗)𝑘 (𝛼) ∶= 𝜏𝑘(𝛼) +

2𝜋𝑗
𝜔+
𝑘

=
𝜃𝑘(𝛼) + 2𝜋𝑗

𝜔+
𝑘

, 𝑗 ∈ ℕ0
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which is independent of 𝜏. Therefore,
𝑑𝑆 (𝑗)

𝑘 (𝜏 (𝑗)𝑘 (𝛼))
𝑑𝜏

= 1, 𝑗 ∈ ℕ0. (38)

Then, by4, we have

𝑠𝑖𝑔𝑛

{
𝑑𝜉(𝑘, 𝜏 (𝑗)𝑘 (𝛼), 𝛼)

𝑑𝜏

}
= 𝑠𝑖𝑔𝑛

{
𝑑𝐹 (𝜔+

𝑘 )
𝜔𝑘

}
𝑠𝑖𝑔𝑛

{
𝑑𝑆 (𝑗)

𝑘 (𝜏 (𝑗)𝑘 (𝛼))
𝑑𝜏

}
> 0.

Thus, we complete the proof.

Finally, we have the conclusion on the Hopf bifurcation of system (2).

Theorem 10. For 𝑎, 𝑏1, 𝑏2, 𝑚1, 𝑑𝑣 > 0, provided that 𝑐 > 𝑚1

𝑏1
, 𝑟0 > 𝑟0, then for 𝑑𝑢, 𝛼 > 0, there exists 𝑘2 ∈ [0, 𝐾0) such that

𝜏𝑘2(𝛼) ∶= min
𝑘∈[0,𝐾0), 𝑘∈ℕ0

𝜏𝑘(𝛼). (39)

So,

(1) when 𝜏 = 𝜏𝑘2(𝛼), 𝐷𝑘2(𝜆, 𝜏, 𝛼) = 0 has a pair of purely imaginary roots for 𝜆, and all other roots of (6) have strictly negative
real parts for 𝑘 ∈ ℕ0. When 𝜏 ∈

[
0, 𝜏𝑘2(𝛼)

)
, steady state �̄� is locally asymptotically stable.

(2) if 𝑘2 is unique, system (2) undergoes mode-𝑘2 Hopf bifurcation when 𝜏 = 𝜏𝑘2(𝛼); and if there are exactly 𝑘2 and �̃�2
satisfying (39), with 𝑘2, �̃�2 ∈ [0, 𝐾0) and 𝑘2 ≠ �̃�2, system (2) will undergo mode-(𝑘2, �̃�2) Hopf-Hopf bifurcation when
(𝜏, 𝛼) = (𝜏𝑘2(𝛼𝐻 ), 𝛼𝐻 ), where 𝛼𝐻 denotes the root of 𝜏𝑘2(𝛼) = 𝜏�̃�2(𝛼).

Remark 2. (Hopf patterns and Hopf-Hopf patterns) In Theorem 8, the range of wave numbers in which system (2) undergoes
Hopf bifurcation is completely determined, which is upper bounded by 𝐾0.

Hopf bifurcation sets are given in Figure 7 (𝑎), where some Hopf bifurcation curves for different modes are plotted, and the
regions where multiple periodic patterns exist are marked, including Hopf bifurcation regions 𝐷𝐻

0 , 𝐷𝐻
1 , 𝐷𝐻

2 where stable spa-
tially homogeneous or inhomogeneous periodic patterns are expected to appear, Hopf-Hopf bifurcation regions 𝐷𝐻

0,1, 𝐷
𝐻
1,2, 𝐷

𝐻
2,3

where periodic patterns with different spatial wave frequencies coexist, or quasi-periodic patterns are anticipated to emerge.
And the corresponding first Hopf bifurcation curve is plotted in Figure 7 (𝑏), which is formed by connecting Hopf bifurcation

curves of mode-0, mode-1, mode-2, ⋯, mode-⌊𝐾0⌋ with Hopf-Hopf bifurcation points 𝐻0,1, 𝐻1,2, … , 𝐻⌊𝐾0⌋−1,⌊𝐾0⌋, indicating
that the positive constant steady state can be destabilized by mode-𝑘 Hopf bifurcation, thus system (2) will harvest the spatial
homogeneous or inhomogeneous staggered periodic solutions shaped like cos 𝑘𝑥 cos𝜔𝑡, and also suggesting that the positive
constant steady state can be destabilized by mode-(𝑘, 𝑘+ 1) Hopf-Hopf bifurcation, thus system (2) will harvest more complex
spatiotemporal patterns, such as coexistence of periodic solutions with two different spatial wave frequencies, or some quasi-
periodic solutions, where 𝜔 is a positive constant, and 0 ⩽ 𝑘 < 𝐾0, 𝑘 ∈ ℕ0. This is completely different from systems with only
self-diffusion17,31, where the positive constant steady state can only be destabilized by mode-0 Hopf bifurcation, producing a
stable spatially homogeneous periodic solution.

Combing Theorems 6 and 10, it is found that predator-taxis 𝛼 and delay 𝜏 can induce other high co-dimensional bifurcations
under certain conditions, such as Turing-Hopf bifurcation, etc.

Theorem 11. For 𝑎, 𝑏1, 𝑏2, 𝑚1, 𝑑𝑣 > 0, provided that 𝑐 > 𝑚1

𝑏1
, 𝑟0 < 𝑟0 < 𝑟0, then

(1) if 𝑑𝑢 ∈ (𝑑𝑘1,𝑘1+1
𝑢 , 𝑑𝑘1−1,𝑘1

𝑢 ) for some 𝑘1 ⩾ �̄� and 𝑘1 ∈ ℕ, system (2) undergoes mode-(𝑘1, 𝑘2) Turing-Hopf bifurcation near
�̄� when (𝜏, 𝛼) = (𝜏𝑘2(𝛼∗(𝑑𝑢)), 𝛼∗(𝑑𝑢)), where �̄� is defined as in (14) and 𝑘2 is uniquely determined by (39).

(2) if 𝑑𝑢 ∈ (𝑑𝑘1,𝑘1+1
𝑢 , 𝑑𝑘1−1,𝑘1

𝑢 ) for some 𝑘1 ⩾ �̄� and 𝑘1 ∈ ℕ, system (2) will undergo mode-(𝑘1, 𝑘2, �̃�2) Turing-Hopf-Hopf
bifurcation near �̄� when (𝑑𝑢, 𝜏, 𝛼) = (𝑑𝐻

𝑢 , 𝜏𝑘2(𝛼𝐻 ), 𝛼𝐻 ), where 𝑑𝐻
𝑢 denotes the root of 𝛼∗(𝑑𝑢) = 𝛼𝐻 , and 𝛼𝐻 is defined in

Theorem 10, �̄� is defined as in (14) and 𝑘2, �̃�2 are determined by Theorem 10.

(3) if 𝑑𝑢 = 𝑑𝑘1,𝑘1+1
𝑢 for some 𝑘1 ⩾ �̄� and 𝑘1 ∈ ℕ, system (2) will undergo mode-(𝑘1, 𝑘1+1, 𝑘2) Turing-Turing-Hopf bifurcation

near �̄� when (𝑑𝑢, 𝜏, 𝛼) = (𝑑𝑘1,𝑘1+1
𝑢 , 𝑡𝑎𝑢𝑘2(𝛼∗(𝑑

𝑘1,𝑘1+1
𝑢 )), 𝛼∗(𝑑

𝑘1,𝑘1+1
𝑢 )), where �̄� is defined as in (14) and 𝑘2 is determined by

(39).
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(a) (b)

Figure 7 (𝑎): Stable region, Hopf bifurcation regions and Hopf-Hopf bifurcation regions. (𝑏): The first Hopf bifurcation curve.
The non-smooth points 𝐻0,1, 𝐻1,2, ⋯ are Hopf-Hopf bifurcation points.

Next, we illustrate some examples to support and extend our analytical results.
With reference to parameter selections in37, let

𝑟0 =2.1155, 𝑎 = 0.8481, 𝑏1 = 4.5677,
𝑚1 =1.6615, 𝑐 = 0.9130, 𝑏2 = 1.4380.

(40)

Then (9) is satisfied, and �̄� = (0.2412, 0.2533) is locally asymptotically stable for local ODE system.
In the following discussions, we observe that the spatiotemporal distribution types of the two populations are always analo-

gous. Therefore, we only take the prey distribution as examples to show distribution patterns. Besides, the distribution patterns
in (𝑢, 𝑥, 𝑡)-plane and (𝑥, 𝑡)-plane are presented separately in each of the following figures.

Example 3. (Hopf bifurcation and spatially inhomogeneous staggered periodic patterns, Hopf-Hopf bifurcation and
bistable periodic patterns)

Let
𝑑𝑣 = 0.17, 𝑑𝑢 = 0.113.

It follows (14) that �̄� = 3 and 𝑑𝑢 > 𝑑 �̄�
𝑢 = 0.0284, then due to Theorem 6, for 𝛼 > 0, positive steady state �̄� is locally

asymptotically stable. According to Theorem 10, Hopf bifurcation curves in (𝛼, 𝜏)-plane for different modes can be characterized
as in Figure 7. And

𝛼0,1
𝐻 = 0.5846, 𝛼0,2

𝐻 = 0.7487, 𝛼1,2
𝐻 = 0.8554,

𝛼1,3
𝐻 = 1.2704, 𝛼2,3

𝐻 = 2.2277.
When

𝛼 ∈ (0, 𝛼0,1
𝐻 ), 𝛼 ∈ (𝛼0,1

𝐻 , 𝛼1,2
𝐻 ), 𝛼 ∈ (𝛼1,2

𝐻 , 𝛼2,3
𝐻 ),

respectively, either �̄� is locally asymptotically stable or system (2) may accordingly generate stable spatially homogeneous
periodic patterns, spatially inhomogeneous periodic patterns with spatial wave frequency 1 or 2, which are bifurcated from �̄�
through mode-0, mode-1 and mode-2 Hopf bifurcation respectively.

Further, when
𝛼 ∈ (𝛼0,1

𝐻 , 𝛼0,2
𝐻 ), 𝛼 ∈ (𝛼0,2

𝐻 , 𝛼1,3
𝐻 ),

respectively, in addition to the above mentioned periodic patterns, system (2) may also generate quasi-periodic patterns, the
coexisting periodic patterns with different spatial wave frequencies, which are bifurcated from �̄� through mode-(0, 1) and mode-
(1, 2) Hopf-Hopf bifurcation, respectively. Specifically speaking,

(1) Let (𝛼, 𝜏) = (1.2, 0.72). By (32), we have 𝐾0 = 5.1978, and

𝜏 (0)0 (1.2) = 0.8870, 𝜏 (0)1 (1.2) = 0.7585,

𝜏 (0)2 (1.2) = 0.7004, 𝜏 (0)3 (1.2) = 0.7748,

𝜏 (0)4 (1.2) = 1.0375, 𝜏 (0)5 (1.2) = 2.8230.

(41)
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Figure 8 Let (𝛼, 𝜏) = (1.2, 0.72), then spatially inhomogeneous staggered periodic patterns with wave frequency 2 appear.

Figure 9 Let (𝛼, 𝜏) = (0.7, 0.87), then spatially inhomogeneous staggered periodic patterns with wave frequency 1 appear.

Thus, (𝛼, 𝜏) ∈ 𝐷𝐻
2 . It follows Theorem 10 that system (2) undergoes mode-2 Hopf bifurcation when 𝜏 = 𝜏 (0)2 (1.2) =

0.7004 and spatially inhomogeneous staggered periodic patterns shaped like cos 2𝑥 cos𝜔𝑡 are theoretically expected to
appear, where 𝜔 is a positive constant. The numerical results are shown in Figure 8.

Let (𝛼, 𝜏) = (0.7, 0.87), then by a similar process, (𝛼, 𝜏) ∈ 𝐷𝐻
1 , thus system (2) undergoes mode-1 Hopf bifurcation when

𝜏 = 𝜏 (0)1 (0.7) = 0.8607, and spatially inhomogeneous staggered periodic patterns shaped like cos 𝑥 cos𝜔𝑡 are theoretically
expected to appear, where 𝜔 is a positive constant, see Figure 9.

(2) Let (𝛼, 𝜏) = (0.61, 0.91364). By (32), we have 𝐾0 = 4.4040, and

𝜏 (0)0 (0.61) = 0.8870, 𝜏 (0)1 (0.61) = 0.8819,

𝜏 (0)2 (0.61) = 0.9525, 𝜏 (0)3 (0.61) = 1.2115,

𝜏 (0)4 (0.61) = 2.4037.

(42)

Thus (𝛼, 𝜏) ∈ 𝐷𝐻
0,1. Then bistable spatiotemporal periodic patterns shaped like cos𝜔𝑡 and cos 𝑥 cos𝜔𝑡 or their su-

perposition are theoretically expected to appear, where 𝜔 is a positive constant. When choosing (0.2412, 0.2533) and
(0.2412+0.01 cos 𝑥, 0.2533+0.01 cos 𝑥) as initial values respectively, as shown in the first two columns of Figure 10, spa-
tially homogeneous and inhomogeneous staggered periodic patterns coexist. When choosing (0.2412, 0.2533+0.01 cos 𝑥)
as an initial value, transient quasi-periodic patterns are presented in the third column of Figure 10. Hence, these phenomena
are bistable periodic patterns.

Let (𝛼, 𝜏) = (0.87, 0.8415), then by a similar process, we know that (𝛼, 𝜏) ∈ 𝐷𝐻
1,2. Then spatiotemporal periodic patterns

shaped like cos 𝑥 cos𝜔𝑡 and cos 2𝑥 cos𝜔𝑡 or their superposition are theoretically expected to appear, where 𝜔 is a positive
constant. When choosing (0.2412 + 0.01 cos 𝑥, 0.2533 + 0.01 cos 𝑥) and (0.2412 + 0.01 cos 2𝑥, 0.2533 + 0.01 cos 2𝑥) as
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(a) Spatially homogeneous, inhomogeneous straggered periodic patterns and transient quasi-periodic patterns, respectively.

(b) The according projections of (𝑎) on (𝑥, 𝑡)-plane.

Figure 10 Bistable periodic patterns and transient quasi-periodic patterns when (𝛼, 𝜏) = (0.61, 0.91364).

(a) Spatially inhomogeneous staggered periodic patterns with spatial wave frequencies 1, 2, and transient quasi-periodic patterns, respectively.

(b) The according projections of (𝑎) on (𝑥, 𝑡)-plane.

Figure 11 Bistable periodic patterns and transient quasi-periodic patterns when (𝛼, 𝜏) = (0.87, 0.8415).

initial values respectively, as shown in the first two columns of Figure 11, spatially inhomogeneous staggered periodic
patterns with wave frequencies 1 and 2 coexist. When further choosing (0.2412 + 0.01 cos 𝑥, 0.2533 + 0.01 cos 2𝑥) as an
initial value, transient quasi-periodic patterns are presented in the third column of Figure 11. That is, bistable periodic
patterns are also found, but the spatial wave frequencies are different from those shown in Figure 10.

Example 4. (Turing-Hopf bifurcation and bistable spatially inhomogeneous synchronous periodic patterns)
Let

𝑑𝑣 = 0.17, 𝑑𝑢 = 0.0113,
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(a) (b)

Figure 12 (𝑎): Turing-Hopf bifurcation sets in (𝛼, 𝜏)-plane. (𝑏): The first bifurcation curve. The point 𝑇𝐻0 is a mode-(3, 0)
Turing-Hopf bifurcation point. The points 𝐻0,1,𝐻1,2,⋯ are Hopf-Hopf bifurcation points.

then 𝑑𝑢 ∈ (𝑑3,4
𝑢 , 𝑑1,2

𝑢 ) = (0.0084, 0.0334), and by Theorems 6 and 10, we conclude 𝑘1 = 3, 𝑘2 = 0. It follows Theorem 11 that
system (2) undergoes mode-(3, 0) Turing-Hopf bifurcation when (𝜏, 𝛼) = (𝜏0(𝛼∗(0.113)), 𝛼∗(0.113)) = (0.887, 0.1712).

We plot the according bifurcation sets for system (2) in Figure 12 (𝑎), and the intersection of mode-3 Turing bifurcation curve
𝛼 = 𝛼∗(0.0113) = 0.1712 and mode-0 Hopf bifurcation curve 𝜏 = 𝜏∗ = 0.8870 is denoted by 𝑇𝐻0. We mark Turing-Hopf
bifurcation region and Turing bifurcation region as 𝐷𝑇𝐻0

and 𝐷𝑇 , respectively.
In particular, we plot the corresponding first bifurcation curve in Figure 12 (𝑏), which is formed by connecting the first Turing

bifurcation curve 𝛼 = 𝛼∗(𝑑𝑢), 0 < 𝑑𝑢 < 𝑑 �̄�
𝑢 , Hopf bifurcation curves of mode-0, mode-1, mode-2, … , mode-⌊𝐾0⌋ with Turing-

Hopf bifurcation point 𝑇𝐻0, Hopf-Hopf bifurcation points 𝐻0,1, 𝐻1,2, … , 𝐻⌊𝐾0⌋−1,⌊𝐾0⌋, indicating that the positive constant
steady state can be not only destabilized by mode-𝑘2 Hopf bifurcation or mode-(𝑘2, 𝑘2 + 1) Hopf-Hopf bifurcation, but also by
mode-(𝑘1, 0) Turing-Hopf bifurcation, where system (2) will harvest the spatial inhomogeneous synchronous periodic solutions
shaped like ℎ1 cos 𝑘1𝑥±ℎ2 cos𝜔𝑡, where ℎ1, ℎ2 are constants, 𝜔 is a positive constant, 𝑘1 = �̄�, �̄�+1,⋯ and 0 ⩽ 𝑘2 < 𝐾0, 𝑘2 ∈
ℕ0.

Further, let (𝛼, 𝜏) = (0.06, 0.9) ∈ 𝐷𝑇𝐻0
, and we find a pair of stably coexisting spatially inhomogeneous synchronous periodic

patterns, as shown in Figure 13. Differing from Figure 8 and Figure 9, the spatial non-homogeneity is caused by the occurrence
of Turing bifurcation in system (2). Actually, Turing-Hopf bifurcation can also reveal other spatiotemporal patterns15,16, which
we will explore later.

Remark 3. (Turing-Hopf patterns and other patterns) Although it is almost impossible to theoretically prove that for system
(2) with chemotaxis, Turing-Hopf bifurcation of mode-(𝑘, 0) usually occurs first when the positive constant steady state is
destabilized via Turing-Hopf bifurcation, some numerical simulations indicate that stable spatially inhomogeneous synchronous
periodic solutions can only be generated through mode-(𝑘, 0) Turing-Hopf bifurcation.

In Theorem 11, we assert that Turing-Turing-Hopf bifurcation can occur theoretically, but it is challenging to reveal spatiotem-
poral patterns resulting from this type of bifurcation. In addition, although we can not rule out the existence of Turing-Hopf-Hopf
bifurcation theoretically, we never numerically find Turing-Turing-Hopf bifurcation points after massive numerical practices.
But obviously, if Turing-Hopf bifurcation points, such as 𝑇𝐻1, 𝑇𝐻2,⋯ do not exist, Turing-Turing-Hopf bifurcation must not
occur.

Summarizing the results about Turing bifurcation in Section 3 and Hopf bifurcation in Section 4 in Table 2, we show the
possible bifurcations for system (2) when the parameters are chosen in different ranges. For convenience, we use notations T-T,
H-H, T-H, T-H-H and T-T-H instead of Turing-Turing, Hopf-Hopf, Turing-Hopf, Turing-Hopf-Hopf and Turing-Turing-Hopf
bifurcations.
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Figure 13 Let (𝛼, 𝜏) = (0.06, 0.9), then a pair of spatially inhomogeneous synchronous periodic patterns coexist.

Table 2 The possible bifurcations for system (2).

𝑟0 𝑑𝑢 𝛼 𝜏 Turing Hopf Other Theorems

⩾ 𝑟0 > 0 > 0 0 - - - 6, 7
𝜏𝑘2(𝛼) - Yes H-H 6, 10

< 𝑟0 ⩾ 𝑑 �̄�
𝑢 > 0 0 - - - 6, 7

𝜏𝑘2(𝛼) - Yes H-H 6, 10

< 𝑟0 < 𝑑 �̄�
𝑢 𝛼∗(𝑑𝑢)

0 Yes - - 6, 7
𝜏𝑘2(𝛼) Yes Yes T-H, H-H or T-H-H 6, 10, 11

< 𝑟0 𝑑𝑘1,𝑘1+1
𝑢 𝛼∗(𝑑𝑢)

0 Yes - T-T 6, 7
𝜏𝑘2(𝛼) Yes Yes T-T-H 6, 10, 11

5 CONCLUSIONS

The formation mechanisms of populations’ survival patterns in a predator-taxis model with conversion delay, such as multi-
stable spatial patterns and spatially staggered periodic patterns, are discussed by studying Turing bifurcation, Turing-Turing
bifurcation, Hopf bifurcation, Hopf-Hopf bifurcation, Turing-Hopf bifurcation of system (2), among others.

In the absence of a delayed effect of conversion of capture behavior into predator growth, the critical condition 0 < 𝛼 <
𝛼∗(𝑑𝑢), 0 < 𝑑𝑢 < 𝑑 �̄�

𝑢 that positive constant steady state loses stability and system (2) exhibits spatial patterns is provided,
which is not only sufficient but also necessary, thus can be regarded as a supplement to the sufficient conditions in37. With the
aid of the condition, one can predict potential spatial patterns with arbitrary wave frequencies that system (2) could exhibit. In
addition to this, it is also theoretically expected that positive constant steady state will be destabilized through Turing-Turing
bifurcation, resulting in superposition spatial patterns or the co-existences of spatially inhomogeneous patterns with different



Yue Xing ET AL 21

wave frequencies, see Theorem 6 and Figures 5, 6. Moreover, we suggest that the amplitude of changes in the spatial distributions
of the two populations are consistent with the corresponding eigenfunctions when Turing bifurcation occurs.

The above results theoretically show that with the increase of the sensitivity of the prey to predation, the spatial distributions
of the two populations will gradually transition from spatially heterogeneous patterns to spatially homogeneous patterns, see
Figures 3-4. Conversely, when the random movement speed of prey is sufficiently small or the random movement speed of
predator is sufficiently large, the spatial distributions homogeneity of the two populations disappear and heterogeneity appears,
see Figures 3, 5 or Figures 3, 6. In other words, relatively large predator-taxis can be regarded as accelerating the self-diffusion
of prey by complementing the self-diffusion of prey, and make two populations achieve their steady states eventually. And
larger self-diffusion rate of predator is equivalent to lowering prey’s ability to avoid the risk of predation, causing the spatial
distributions of the two populations to be heterogeneous, whereas the relatively large predator-taxis counteracts the spatially
heterogeneity distributed caused by the self-diffusion of predator, bringing the spatial distributions of the two populations back
to homogeneity.

When taking a delayed effect of conversion of capture behavior into predator growth into account, by choosing time delay
𝜏 as a parameter, we establish the critical conditions when �̄� is destabilized, which demonstrate that Hopf bifurcation, Hopf-
Hopf bifurcation, Turing-Hopf bifurcation, etc., can also destabilize the positive constant steady state, see Theorems 10 and 11,
leading to various spatiotemporal periodic patterns, such as stable spatially inhomogeneous staggered periodic patterns (Figures
8, 9), bistable spatiotemporal periodic patterns that two stable periodic patterns with different spatial wave frequencies coexist
(Figures 10, 11), stable spatially inhomogeneous synchronous periodic pattern (see Figure 13) and so on.

These phenomena are different from the results for the ratio-dependent predator-prey system without predator-taxis in31. We
assert that the existences of stable spatially inhomogeneous staggered periodic patterns and coexistence of bistable spatiotem-
poral periodic patterns are due to the addition of predator-taxis term. Therefore, the chemotactic behavior of prey makes the
populations’ survival patterns more diverse.

Further, there are still some issues to be resolved in theory. One is how to provide a definite order for these finite Hopf
bifurcation curves when the system generates stable spatially inhomogeneous periodic solutions via mode-𝑘 (0 ⩽ 𝑘 < 𝐾0) Hopf
bifurcation, as have been done for sorting Turing bifurcation curves in Lemma 4. Moreover, since we only numerically find
that it is always mode-(𝑘, 0) Turing-Hopf bifurcation destabilizes the positive constant steady state, how to prove this finding
theoretically is still a problem. Finally, it is worth mentioning that some other new spatiotemporal patterns can also arise via
Turing-Turing bifurcation, Hopf-Hopf bifurcation, Turing-Hopf bifurcation, and Turing-Turing-Hopf bifurcation as expected by
theory, so it will be of interest to establish the existences of other coexistence patterns analytically. We leave them as possible
future work.
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