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Abstract

In everyday life, we use perception to guide our behaviour. While much effort has been devoted to neurophysiologically

study perception and behaviour in isolation from each other, studies that conjoin perception and behaviour are rarer. Here,

we devised a novel paradigm to dynamically study the action-perception loop, framed in terms of predictive processing as a

guiding framework for brain function. We tracked the electrophysiological markers of predictive processing by using hierarchical

frequency-tagging in an active foraging and recognition task. Participants had to forage a two-dimensional landscape to find

three target images. They freely selected their foraging paths and when to finish and move to the next landscape. Temporally

resolved analyses of hierarchical frequency-tagging signals revealed that putative prediction error signals triggered a cascade of

neural signalling events leading to recognition. In addition, our results show that the accumulation of uncertainty is correlated

with the decision to abort foraging and start a new search. For the first time, we tracked temporally-resolved frequency-

tagged signals in an action-perception paradigm; this is consistent with contemporary iterations of predictive processing that

increasingly focus on action (active inference). Our paradigm and findings open new ways to study such signals during the

action-perception cycle beyond passive settings.

INTRODUCTION

Sensory information is used to inform our behaviour. A number of proposals have posited that brains
evolved to predict interactions between behaving agents and their environment (Llinás, 2001; Pezzulo et al.,
2022). Predictive processing theories of brain function (Friston, 2010; Hohwy, 2013) are useful frameworks to
understand perception and behaviour in conjunction as they formally articulate how behaviour is updated
to consider new sensory information. According to predictive processing theories, the brain produces internal
generative models to predict outcomes of behaviour and perception, which in turn are continually updated
by current behaviour and perception, thus providing an explanatory framework to link both perception and
action. Under this explanatory framework, updating of the internal models is indicated through the different
signalling channels used to pass sensory information, predictions generated by the model and the mismatch
between them. These signalling channels are known as sensory evidence,predictions and prediction errors ,
respectively (Figure 1). In neurophysiological terms, sensory evidence corresponds to ascending neural signals
emerging from sensory areas (Ahissar & Hochstein, 2004), predictions correspond to descending feedback
signals from higher hierarchical areas (Bastos et al., 2012), and prediction error corresponds to signals
generated by the interaction and comparison between these signals at each hierarchical level (Wacongne et
al., 2012). Thus, when the internal model generates accurate predictions of the sensory input, prediction
error signals should be low, and, inversely, when sensory input is incongruent with the model, prediction
error signals should be high. Low prediction error then determines accurate perceptual inference of the states
of the world (Friston et al., 2017; Rao & Ballard, 1999).

Key elements of predictive processing have received empirical support from many independent studies (Aitken
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et al., 2020; Aitken & Kok, 2022; Alamia & VanRullen, 2019; Johnston et al., 2017; Kok et al., 2017). In
particular, it has been shown that the gain of sensory signals depends on their degree of compatibility with
inferred internal models (Kumar et al., 2021; Robinson et al., 2018; Tang et al., 2018). Experimental results
have shown that sensory information that has not been considered by the inferred internal models (in other
words, surprising sensory information ) is enhanced compared to expected information. These prediction
error signals, as hypothesized by sensory inference (Parr & Friston, 2019), can thus be used as a proxy to
tell how well internal models predict perceptual information. To gain a better understanding of these signals
beyond prediction error alone, we have developed a technique that tracks the main signalling components
of predictive processing: sensory evidence, predictions and prediction error (Gordon et al., 2017). In short,
this hierarchical frequency-tagging (HFT) technique uses SWIFT (Semantic Wavelet Induced Frequency
Tagging), to track high-level visual representations (Koenig-Robert & VanRullen, 2013), which, under HFT,
are considered to be encoding stimuli-specific predictions (Gordon et al., 2017, 2019). HFT also tracks lower
visual representations, or sensory evidence, with SSVEP (Steady State Visual Evoked Potentials) (Regan,
1977). To track prediction error signals, HFT uses the non-linear interactions between the tagging frequencies
of SWIFT and SSVEP (Gordon et al., 2017). Importantly, this method is constructed in such a way that
low-level image attributes are conserved across time (Gordon et al., 2017; Koenig-Robert & VanRullen,
2013), thus ensuring that the effects found are not the result of changes in low-level visual input. Using
HFT, studies have shown that prediction error related signals are modulated by expectation (Gordon et al.,
2017), attention (Gordon et al., 2019) and autistic traits (Coll et al., 2020), thus experimentally testing this
technique as well as the behaviour of putative key signalling elements of the predicting coding theory within
passive perceptual settings (see Figure 1).

However, these studies as well as many others, have focused on studying perception in isolation. Despite the
ecological importance of studying perception and action concurrently, as they naturally occur in everyday
life, much of what we know about perception and perceptual inferences has come from studies using passive
perceptual paradigms. Therefore, less is known about how predictive processing signals are modulated when
participants are allowed to freely close the action-perception loop. The predictive processing framework itself
is rapidly transitioning to a main emphasis on action and decision-making, including for perception, framed
in terms of active inference (Parr et al., 2022); this development implies that prediction error message passing
arises as agents close the action-perception loop. As mentioned, prior neurophysiological studies have been
conducted in passive tasks, so there is a gap in our knowledge between predictive processing in the active
inference framing and empirical studies of the conditions under which prediction error signals occur.

In this study, we contribute to closing this gap in knowledge about predictive processing by testing hypo-
theses, in a more ecologically valid setting, about the interplay among sensory signals during active foraging
and error minimisation (Friston et al., 2017; Schwartenbeck et al., 2019). We were interested in tracking
predictive processing signals while participants freely foraged a landscape to find targets, expecting to iden-
tify neural signatures of predictions, sensory evidence and prediction errors. Specifically, we reasoned that
participants’ motivation for foraging should be the guided by the imperative to minimize uncertainty about
the location of the targets. Thus, the working assumption of the participants is that the more they forage for
the images (i.e., explore the landscape), the more certainty they should have about the target identities and
their location, as they find them. A violation of these assumptions would consist in the inability of finding
targets after a period of foraging, which should be associated with curtailing foraging. In this circumstan-
ce, the hypothesis is that it would be attractive for the participant to decide to shift to a new foraging
patch. On the other hand, decreased prediction error should be associated with extended foraging activity,
as expectations match behaviour and perception (Mirza et al., 2018; Schwartenbeck et al., 2013).

In our paradigm, participants foraged a two-dimensional landscape (Figure 2) with the aim of finding three
target images (represented by 3 orange blobs on Figure 2) embedded in dynamic visual noise (black back-
ground). We had specific hypotheses about the responses tracked by HFT (Figure 1). Steady state visual
evoked potentials (SSVEP) have been shown to represent incoming sensory signals as their sources have
been identified predominantly in early visual cortex (Tsoneva et al., 2021). Incoming sensory signals have
been shown to be modulated by its precision or, in other words, their reliability (Den Ouden et al., 2012;
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Kok et al., 2012), therefore, we expect SSVEP signals to be modulated positively by reliability of sensory
information in our paradigm (Figure 1). Semantic wavelet induced frequency tagging (SWIFT), on the other
hand, have been identified as correlates of high-level object representations (Koenig-Robert et al., 2015;
Koenig-Robert & VanRullen, 2013). Within HFT, part of the signals tagged with SWIFT are considered
as predictions feeding back from higher visual areas to lower ones (especially those integrated with SSVEP
signals to produce intermodulation products). While there is not direct evidence testing this assumption,
previous studies have given indirect experimental support for their role as predictions (Gordon et al., 2017,
2019). Putative prediction signals tracked with SWIFT should then increase after recognition, as object
representations are only available once the image is found and recognized (Koenig-Robert & VanRullen,
2013). Finally, intermodulation frequencies (IM), as putatively indicating prediction error signals, should be
modulated by the mismatch between expectations and sensory evidence or, in other words, surprise . The
intensity of IM have been shown be inversely correlated with prediction errors (Coll et al., 2020; Gordon et
al., 2017, 2019). That is, IM intensity is stronger when prediction errors are low and weaker when prediction
errors are high.

We found that HFT signals corresponding to putative prediction errors triggered a cascade of neural signalling
events leading to recognition. In addition, our results show that the decision to stop foraging and start a
new search is correlated with an increase in uncertainty in the form of higher prediction error signals. For
the first time, we tracked HFT signals in a time resolved manner, thus uncovering the temporal dynamics
of perceptual inference during the action-perception loop. These results shed light into the neural signal
dynamics during perception and action and are consistent with the predictive processing framework as it
moves to an active inference framing.

Figure 1. Brain signals tracked by hierarchical frequency-tagging. A. Schema of the different hierarchical
visual levels. Note that while these hierarchies can be represented at different scales (such as cortical layers),
here, they represent different vision-related brain areas. B. The different elements of hierarchical frequency-
tagging (in bold) are aimed at tagging feedforward, feedback and the integration of both signals and the
putative components according to predictive coding (in italics). The assumed role of these putative signals
within the predictive processing framework have received experimental support (Gordon et al., 2017, 2019).
The frequency tagged components are semantic wavelet-induced frequency tagging (SWIFT at 1.55Hz),
steady-state visual evoked potentials (SSVEP at 11Hz) and the intermodulation frequencies (IM at 9.45
and 12.55Hz) produced by the non-linear interaction of these two tagging-frequencies. C. Cognitive factors
modulating (increasing or decreasing) the strength of different signals tracked by hierarchical frequency-
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tagging. While surprise should transiently increase prediction error, foraging should lead to its decrease
in the long run. Note that the strength of the intermodulation frequencies represents the inverse of the
prediction error. Thus, the strength of the IM increases when prediction error decreases and vice versa.

METHODS

Participants. Experimental procedures were approved by the University of New South Wales Human
Research Ethics Committee (HREC#: HC12030). All methods in this study were performed in accordance
with the guidelines and regulations from the Australian National Statement on Ethical Conduct in Human
Research (https://www.nhmrc.gov.au/guidelines-publications/e72). All participants gave informed written
consent to participate in the experiment. We tested a total of 20 participants. Three participants were
discarded due to issues in the signal acquisition and two due to excessive artefacts in the EEG data. Finally,
15 participants, 4 women, aged 29.6±1.4 years old (mean±SEM) were retained for analyses. We choose the
sample size based on previous studies using hierarchical frequency tagging (Coll et al., 2020; Gordon et al.,
2017, 2019). Post-hoc power analyses revealed that the power achieved for our principal analysis (dynamic
tracking of PC components, Figure 4) ranged between 1-β = 0.45 and 0.94, among the different frequencies
of interest and timepoints.

Paradigm. The paradigm consisted of an interactive foraging game. Participants had to forage a two-
dimensional landscape to find three images embedded in dynamic visual noise (Fig 2). In each trial of a
total of 15, three unique images were positioned pseudo randomly in the landscape (see stimuli construction
for details). The total amount of time that a participant could spend foraging across all 15 trials (divided
in 5 blocks of 3 trials each) was 60min, therefore imposing a time trade-off between finding all the images in
a trial and finishing all the trials in the experiment. We used a system of points to encourage participants
to forage and in a more general way, reduce uncertainty (see details below). In each trial, the image triads,
which composed the targets, were chosen such that they represented three exemplars of a common semantic
category (see Table 1 for details). Participants pressed the arrows on a computer keyboard to forage for
the target images within the landscape. Eight movement directions were allowed: four Cartesian directions
plus diagonal orientations (achieved by pressing two contiguous arrows). While foraging, an arrowhead
indicating the direction of movement was shown at fixation. Once the edge of the landscape was reached,
a line indicated that further movement in that direction was not possible. Participants thus foraged the
landscape in a freely chosen manner, which defined a foraging path for every trial that was recorded for
further analysis (represented by a red line on Fig 2). As soon as participants found and recognized a
target image, they pressed the space bar, indicating the discovery. Participants could abort the trial at any
point, which could be before or after finding the 3 target images. In different trials, participants foraged
the landscape to different extents. As an objective measure of foraging, we measured the path length (in
pixels) in a given trial. Thus, the longer the path, the more the extent of the foraging. At the end of the
trial, participants had to choose each image they found among a list of 4 distractors (this was repeated 3
times so all the target image labels were shown; see table 1 for details). Participants were instructed not to
guess their answers. In order to encourage participants to find target images, we used a scoring system to
reward (+10 points) correct recognition while also penalizing (-10 points) incorrect recognition to discourage
guessing. If participants were not sure or had not seen a particular target image, they could choose option
6. “None”, which led to no change in their score. Three prompts, one for each target image, were shown.
After providing answers for the labels of the target images, participants had to choose the common concept
shared by the triad. This was done to encourage participants to search for as many target images as possible,
since the common concept becomes less uncertain as more images are found. After each target image and
concept question (answered differently than “none”), participants were asked to rate their confidence from 1
to 5. Common concept labelling was rewarded or penalized with +/- 15 points. A “Current score” prompt
showed the points earned across the entire experiment. After completing all questions, a prompt showing
the remaining exploration time in the experiment was shown. The answering time (Figure 2, B to E) did
not count toward the remaining exploration time, thus participants could have breaks during these prompts.

Stimuli construction. The key of our paradigm was to equalize the principal low-level image features
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through the trial while tracking the different signal components of predictive coding using frequency-tagging.
This allowed us to track genuine changes in the signalling strength rather than changes due to low-level image
attributes. To do this, we employed hierarchical frequency-tagging (HFT) to track putative bottom-up, top-
down and the interaction of both signals (Gordon et al., 2017). Full details of the HFT technique can
be found elsewhere (Gordon et al., 2017; Koenig-Robert & VanRullen, 2013). In short, grey scale natural
images were cyclically scrambled (at 1.55Hz) in the wavelet domain using semantic-wavelet image frequency-
tagging (SWIFT) to track the higher-level representations of the images (putative predictions) using 3
individual scrambling cycles randomly selected during the presentation to avoid low-level responses at the
tagging frequency (Koenig-Robert & VanRullen, 2013). On the other hand, to primarily track sensory input
signals, we sinusoidally modulated (at 11Hz) the opacity (alpha channel) envelope of SWIFT sequences thus
triggering steady-state visual evoked potentials (SSVEP) (Regan, 1982). The interaction of these signals was
measured by tracking the second order intermodulation products (at 9.45 and 12.55Hz). While foraging the
landscape, participants saw either dynamic visual noise (constructed using SWIFT) composed by an equal
mix of the wavelet scrambled version of the three natural images, or one of the target images blended with
the scrambled version of the other two (Figure 2, panels 1 to 4). Thus, the aim of participants was to move
from areas containing only noise (plateau on Figure 2) to those containing the target images (peaks on Figure
2). The three target images were represented by 3 individual and non-connecting patches on the landscape.
These patches were built by mapping each image into a portion of the landscape by randomly picking one
pixel per image in a seed matrix filled with zeroes obeying two rules: the pixels cannot be contiguous and
they cannot be part the edges. Zeroes were switched to ones at these 3 locations. After this, the seed matrix
was resized into the landscape dimensions using spline interpolation thus producing smooth transitions from
noise areas to target image areas.

EEG signal pre-processing. Electroencephalogram signals were recorded from 64 active scalp electrodes
following the 10/20 placement using the Biosemi ActiveTwo system (Biosemi, The Netherlands). Signals
were acquired at 1024 samples per second. We imported the data into MATLAB (R2015a, The Mathworks,
Natick, USA) using the EEGLab toolbox v13.4.4b, (Delorme & Makeig, 2004) and the BIOSIG plugin. Noisy
channels (> 400 μV) were replaced by a spline interpolation of neighbour channels using Andreas Widmann
“repchan” function. To avoid slow drifts of the signal, we high-pass filtered the data at 0.5Hz, using two-way
least-squares FIR filtering as implemented in EEGFILT in EEGLab. We then epoched the continuous data
into individual trials. Note that trials had different lengths as participants were free to end trials at any
time. We finally removed linear trends from the data before saving each trial in a file. From every trial,
we then extracted epochs for every recognition report (from -10 to 10s). Additional detrending was then
performed and data were saved for further analysis.

Tagging-frequencies analysis. We performed a fast Fourier transform (FFT) in the time domain data
in order to extract the power at each temporal frequency. For each tagging-frequency and intermodulation
products, we zero padded recognition epochs to the next integer multiple of their periods. We calculated
the signal-to-noise ratio (SNR) in the frequency domain by dividing each frequency (signal) for the average
of their neighbours (noise, 0.15Hz half bandwidth) and took the loge of it. We selected a ROI for each of
the four frequencies of interest consisting of six electrodes where the SNR at the frequency of interest was
the greatest (see ROI section for details).

Time-resolved analysis of the frequency-tagged signals. In order to study the temporal dynamics of
the frequencies of interest, we developed a time-resolved analysis of the strength of each signal. For each
frequency of interest, we used a time-windowed FFT analysis elapsing three times the frequency period
(1.936, 0.273, 0.318 and 0.239 seconds for SWIFT, SSVEP, IM1 and IM2 respectively). For each window
and frequency, we calculated the signal-to-noise ratio by dividing the power at the frequency of interest by
the power at neighbouring frequencies (the noise, ˜0.15Hz half bandwidth). To avoid discontinuity artefacts
(leakage), we used a Hann tapering on each window. The centre of each window was taken as the time
marker and windows were overlapped half length.

Stimuli strength analysis of frequency tagged signals. This analysis was analogous to the time
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resolved analysis (previous section) with the main difference being that instead of calculating SNR for each
time window, here we did it for each position along the path chosen by participants in each trial. Windowed
FFT analysis parameters were the same as in the temporally resolved analysis (Hanning window, window
length = 3 cycles, noise ˜ 0.15Hz, 50% overlap). Each window was then binned into one of 5 bins representing
the intensity of the target image (0 to 0.2, 0.2 to 0.4, 0.4 to 0.6, 0.6 to 0.8 and 0.8 to 1) and windows from
within each bin were averaged together.

Frequency of interest normalization. To compare different frequencies of interest, we normalized them
by taking their Z-score of their SNR across channels. This allowed us to visualize their amplitude changes
within a comparable scale, since they had very dissimilar strengths (SSVEP >> SWIFT > IM1 and IM2).

Condition comparison analysis. In Figures 5 and 6, to compare each condition, we subtracted the
averaged (across the channels of each ROI) z-scored SNR from the condition where the certainty is theo-
retically greater minus the condition where certainty should be lower (e.g., long foraging – short foraging)
for each participant. The differences were then compared to zero (H0) using a two-tailed one-sample t-test
against zero. Significant values thus represent differences in signal strength between the conditions that are
significantly different from zero.

ROI selection. We selected the same ROIs of 6 channels for the analyses presented in Main Figures 3 and
4 and also Supplementary Figure S2. The selection criteria consisted in the selection of the channels showing
the strongest loge(SNR) for each frequency of interest as showed on Figure 3. This yielded 4 ROI (each for
each frequency of interest) as follows:

SWIFT: FCz, FC2, Cz, FT7, C1 and FC1; SSVEP: Oz, POz, PO4, O2, Iz and O1; IM1: C1, Iz, Fp2, FC1,
P10 and CP2; IM2: F5, P2, POz, P1, T7 and Pz.

This procedure allowed optimizing the power of analyses. It is important to note that due to the nature of
the paradigm, most of the data were recorded out of periods of recognition, thus hindering the amount of
relevant data available for analyses.

For Figures 5 and 6, we selected ROI of 6 channels where the SNR was maximal for the condition that
theoretically represents the highest certainty (long foraging for Figure 5, correctly recognized for Figure 6A
and high confidence for Figure 6B). Note that the finding of significant differences is not trivial as the ROI
definition (SNR maxima in the highest certainty condition) is orthogonal to the research question (is there a
difference on these ROI between the conditions representing different certainty). These criteria yielded the
following ROI:

Figure 5. SWIFT: CP6, T8, P8, PO3, P6 and Afz; SSVEP: Oz, POz, PO4, Iz, O2 and O1; IM1: CP3, AF4,
C1, Afz, PO8 and Fpz and IM2: CPz, Cz, C4, TP8, CP2 and F6.

Figure 6A. SWIFT: POz, FCz, FC2, PO4, FC1 and F1; SSVEP: Oz, POz, O1, O2, Iz and PO4; IM1: CP2,
C2, C4, P2, FC4 and P7; IM2: P9, PO7, P7, FC2, T7 and C2.

Figure 6B. SWIFT: C6, FC3, FC4, CPz, PO4 and O1; SSVEP: O2, Oz, O1, POz, PO4 and Iz; IM1: FC2,
O1, Fp1, P9, FC4 and P5; IM2: P10, FC3, TP7, Fpz, FC4 and TP8.

RESULTS

Active exploration while tracking the signalling components of predictive coding using EEG.
We developed an active paradigm where participants had to forage a virtual two-dimensional landscape to
find three target images (Figure 2, see Methods for details). Briefly, target images were double frequency
tagged using SWIFT (1.55Hz, tagging high level visual representations) and SSVEP (11Hz, tagging low
level visual representations). Due to non-linear processing in the brain, intermodulation products (9.45 and
12.55Hz) indicate integration of these two streams (putative top-down and bottom up signals). When away
from the target image, participants saw a blend of wavelet scrambled versions of the 3 target images (Figure
2, panel 4), which would morph into one of the images when sufficiently approaching the position of the
orange blobs. Importantly, the low-level features of the 3 images (represented by their wavelet decomposition
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products) were always presented, thus ensuring that any changes in the frequency tagging signals was due
to finding and recognizing target images and not due to changes in low-level image features presented to
the participants. Participants were rewarded via a point system, as they correctly identified the images
and punished for incorrect identifications, thus encouraging foraging while hampering guessing. Participants
could abort trials at any time (i.e., before finding the three targets) to reach a new landscape, and we
limited the total of foraging time across all trials (N=15) to one hour. This imposed a trade-off between
the exploration time spent on every trial versus the total of trials a participant would be able to complete
during the whole session.

Analysis of participants’ behaviour revealed that the task was demanding (Misses = 49.62%, False alarms
= 14.76%), yet participants were able to find and identify the target images above chance (D’= 1.096,
p=1.57x10-6, one sample t-test against 0). For detailed analyses on behavioural performance refer to Sup-
plementary Figure S1. We defined the extent of foraging within a trial by taking the length of the path
(in pixels) traced by the participants while moving in the landscape (Figure 2). Supplementary Figure S1,
panel H shows that participants had idiosyncratic average levels of foraging paths from 8.1 x 103 to 2.9 x
104pixels, mean = 1.46x104 pixels across participants. Interestingly, the average time participants spent
searching for targets per trial was quite short as shown in Supplementary Figure S1 panel I, ranging from
18s to 1min10s, mean = 37s, for an average trial length of 4 minutes by design (60 minutes over 15 trials).
This shows that participants spent most of their time foraging (84.58%) as opposed to passive observation
of the target images (15.42%). It is important to note that the short time spent on the target images puts
constrains on the power of the EEG analysis presented below.
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Figure 2. Paradigm. A. Participants (N=18) freely explored a 2D space, represented by the black
rectangle, in order to find 3 target images (panels 1 to 3), represented by the 3 orange blobs (the more
intense the colour, the more visible the target was), by pressing arrows on a computer keyboard. Images were
double frequency tagged using SWIFT (1.55Hz, tagging high level visual representations) and SSVEP (11Hz,
tagging low level visual representations). Thanks to the non-linear processing in the brain, intermodulation
products (9.45 and 12.55Hz) indicate integration of the two information streams (putative sensory evidence
and predictions). When not on the blobs, participants saw a blend of wavelet scrambled versions of the 3
target images (panel 4), which would morph into one of the images as they approached the orange blobs
(see inset at the bottom). Importantly, the low-level features of the 3 images (represented by their wavelet
decomposition products) were always presented, thus ensuring that any changes in the frequency tagging
signals was due to recognizing the target image and not due to the presentation of its low-level features. In
this particular trial, the 3 images were: surfer, boat and fish. Participants explored the 2D space in a freely
chosen path, represented by the red line, to find the images. Participants could not see the layout of the
2D space nor the positions of the target images during the experiment but only the result of approaching to
or moving away from the target images (1 to 4). As soon as participants found and recognized the target
images, they pressed space bar. Participants were free to end a trial whenever they pleased, which could be
before or after finding the 3 target images. Participants could thus choose to forage more or less of a given
2D space. The path length in a given trial was taken as a proxy for the amount of foraging in such trial. The
total amount of time that a participant could spend foraging across all trials was 60min, so the amount of
foraging in a given trial was a compromise considering the time left to forage other trials. The image triads
were chosen such that they represented 3 exemplars of a common semantic category. In order to encourage
participants to find target images, we used a scoring system to reward correct recognition (B to E). B.
After ending the trial, participants had to choose the right target image among 4 distractors (see Table 1
for details). If not sure or not seen that particular target image, they chose option 6. “None”. Participants
were instructed to not guess. Three such prompts, one for each target image, was shown. C. After providing
answers for the labels of the target images, participants had to choose the common concept shared by the
triad. This was done to encourage participants to search for as many of target images as possible, since
the common concept becomes less uncertain as more images are seen. After each target image and concept
question (answered differently than “none”), participants were asked to rate their confidence from 1 to 5.
D. Scoring. Correctly identified target images were rewarded with 10 points, whereas incorrect labelling was
penalized by -10 points. When “None” was selected, no points were added. Analogously, common concept
labelling was rewarded or penalized with +/- 15 points. “Current score” showed the points earned across
the entire experiment. E. After completing the questions, a prompt showing the remaining exploration time
in the experiment, consisting in a maximum of 15 trials, was shown. The answering time (B to E) did not
count toward the remaining exploration time, thus participants could have breaks during these prompts.

Hierarchical frequency tagging of predictive coding signals under active foraging. We first
verified that the tagging frequencies could be found in the EEG signal. For this, we selected four frequency-
specific ROI comprised of the 6 electrodes where the signal was the strongest (Figure 3, white dots on
the topographies). We found significant (p<0.05, FDR-corrected for multi-comparisons, right-tailed t-test
against baseline = 0) peaks at the tagging frequencies (SWIFT, 1.55Hz and SSVEP, 11Hz) as well as their
intermodulation products (IM1, 9.45Hz and IM2, 12.55Hz). The topographies of the frequencies are largely
consistent with previous reports despite the different paradigms (Coll et al., 2020; Gordon et al., 2017, 2019),
pointing to the robustness of the loci of these generators.
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Figure 3. Frequencies of interest spectra and topographies.Tagging frequencies elicited significant
spectral responses (p<0.05, FDR-corrected for multicomparisons, q=0.05) albeit reaching relatively low
signal-to-noise ratios, which is likely the result of the dynamic nature of the paradigm (i.e., participants
saw the target images momentarily while exploring the landscape). Tagging frequencies show distinctive
topographies: central-frontal for SWIFT, occipital for SSVEP, central, frontal and occipital-temporal for
IM1 and centro-occipital and parietal for IM2. Spectra were calculated around recognition time (-10 to +10
from recognition) on the 6 channels showing strongest responses for a given frequency (white dots). Full
vertical lines represent tagging frequencies, dotted lines represent tagging frequency harmonics.

Time-resolved putative error prediction signals trigger a cascade of events leading to recog-
nition. We then focused on the time of recognition as we assumed it to be a key moment of updating
perceptual inferences. We devised a time resolved analysis of the frequency-tagged signals (see Methods for
details) with the aim of answering two questions. First, how are perceptual signals modulated at the time
of recognition? Second, what is the temporal order of appearance of these signals?

We had specific hypotheses regarding the sign of the modulation of each signal at the time of recognition
(see Figure 1). As participants found and recognized target images, we expected that putative predictions
tracked with SWIFT would increase. This was based on results from previous studies showing that SWIFT
selectively tracks higher-level visual representations of recognized images, while being largely insensitive
to unrecognized images and meaningless visual textures (Koenig-Robert et al., 2015; Koenig-Robert &
VanRullen, 2013). Thus, when a target image was found and recognized, target image representations and
putative image-specific prediction signals should increase. On the other hand, we expected that putative
sensory evidence tracked with SSVEP should decrease briefly at the moment of recognition. This, while
perhaps counterintuitive, is a result of the inherent sensory ambiguity of the stimuli. As target images are
embedded in a large amount of visual “noise”(scrambled versions of the other two target images, Figure 2 and
Methods for details), signals tagged with SSVEP are mostly composed of irrelevant information. A decrease
in the SSVEP signal would then be the result of selectively filtering irrelevant information (visual noise)
from the stimuli. The ambiguity of the stimuli should thus turn the balance towards predictions (signals
tagged with SWIFT) at the moment of recognition while weighting down the sensory evidence (SSVEP),
which is noisy and unreliable (Kanai et al., 2015; Weilnhammer et al., 2020). Finally, we expected a short-
liveddecrease in the intermodulation frequencies as a result of surprise due to the finding and recognition

9
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of the target image. As shown in previous studies, the intensity of intermodulation products isinversely
proportional to the prediction error or surprise (Coll et al., 2020; Gordon et al., 2017, 2019). Since the
discovery and recognition of the target images is inherently surprising (participants do not know a priori
what exact image they will find), prediction error signals are expected to transiently increase at the moment
of recognition thus decreasing the amplitude of the intermodulation frequencies, with respect to the local
baseline. This effect is of course expected to be transient as the discovery of the target ultimately leads to
a decrease of prediction error over time, as certainty about the identity of the other images increases, in the
long term, since target images are semantically related (the more target images found, the least surprising
a new one should be), as we show later.

Figure 4 shows amplitude modulation of the tagging frequencies at the time of recognition. As expected,
SWIFT-tracked signals showed an increase in amplitude (Figure 4, blue line); while SSVEP signals showed a
decrease (Figure 4, green line). As for the intermodulation frequencies, IM1 and IM2 both showed a decrease
in amplitude, consistent with our predictions (Figure 1) and previous studies (Coll et al., 2020; Gordon et
al., 2017, 2019).

As for the second aim, namely investigating the temporal dynamics of the signals at the moment of recog-
nition, we identified the time at which each of the signals was significantly different from baseline (p<0.05,
two-tailed, FDR-corrected, dashed lines). We found that the first signal to cross this threshold was IM1 at
–1.73s from recognition followed by SSVEP at 0.16s and IM2 at 0.21s. The last signal to cross the threshold
was SWIFT after 0.64s from recognition. This finding is interesting as it suggests that prediction error, as
tracked by IM1, precedes by more than a second the recognition of the image. In other words, these results
indicate that a transient increase of prediction error triggers the dampening ambiguous sensory evidence
while enhancing image-specific predictions. See the Discussion section for further discussion.

Figure 4. Dynamic modulation of tagging frequencies around recognition. Tagging frequencies
were significantly modulated around behaviourally indicated recognition (time-windowed FFT at the tag-
ging frequencies, dotted lines, p<0.01). Signals tagged with SWIFT (putative predictions carried by high
level representations, blue line) were positively modulated around recognition time, which is consistent with
high-level representations appearing at the moment of recognition. SSVEP signals (putative low-level repre-
sentations or sensory evidence, green line) were negatively modulated around recognition, likely as a result
of the filtering out of the noisy background in which the target images were embedded. Intermodulation
frequencies (putative inverse of the prediction errors, red and brown lines) were also negatively modulated
around recognition, consistent with the notion that prediction errors should diminish when the target image
is found and recognized. Interestingly, the onset differed among different signals shedding light into the
cascade of events around recognition. Intermodulation signals represented by IM1 reached significance the
earliest (-1.73s from recognition) suggesting that the decrease of prediction errors precedes recognition. Both
SSVEP and IM2 reached significance after recognition (0.16 and 0.21s from recognition). While SWIFT sig-
nals seem to raise from earlier than recognition, the relatively low SNR and the variability (shaded area) of
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the signal resulted in its late reach of significance (0.6s from recognition). Topographies represent signals
before (-4 to -2s) shortly after (1 to 3s) and long after recognition (4 to 6s). Signal-to-noise ratios were
averaged across ROI channels shown on Figure 3.

Perceptual signalling streams are modulated by the scrambling level of the images in the
landscape. Next, we verified whether the target image visibility or intensity (the inverse of the distance
to the target image) modulated signals similarly as recognition did. We performed this analysis as a sanity
check in which, instead of time from recognition, we analysed the signals as a function of the intensity of the
target image (Supplementary Figure S2). In our design, the lower-level image features (wavelet scrambled
versions) of all 3 target images are always presented to the participants (see Methods for details). These
ensures that changes in the tagging frequencies strength are due to the recognition of the images rather
than due to changes in low level image features as shown in previous studies (Gordon et al., 2017; Koenig-
Robert et al., 2015; Koenig-Robert & VanRullen, 2013). Importantly, the results from this control analysis
are smeared over time as participants could hover around the maximum intensity of the target image for
different lengths at each instantiation. Also, this analysis does not distinguish between the periods when
participants were getting closer and periods when they were getting further away from the target image;
neither does it discriminate instances where participants did not recognize the target image but got closer
to it. Despite of the above mentioned, stimulus intensity (target image visibility) and time from recognition
time modulated frequency tagged signals in a similar way (Figure 4 vs Supplementary Figure S2). As
previously, SSVEP, IM1 and IM2 showed a decrease in amplitude as participants got closer to the target
image, becoming significantly different from baseline (p<0.05, FDR-corrected, coloured dots) from the 40%
target image intensity bin (see Methods for binning and analysis details). On the other hand, SWIFT
signals became stronger as participants got closer to the target image, becoming significant at the 100%
intensity bin. This means that the behaviour of the signals seen in Figure 4 is not the result of an artefact
from the selection of the epochs around the time of recognition but the result of active foraging, discovery
and closeness to the target images. Again, it is important to note that these changes cannot be attributed
to changes in the low-level features of the visual stimulation as visual features of all the three images are
presented continuously with the same strength in the form of their wavelet-scrambled versions (see Methods
for details).

The extent of foraging modulates the amplitude of the intermodulation products (or inverse of
prediction error). We then sought to test whether foraging would translate into a modulation of putative
prediction error signals. In our paradigm, foraging is instrumental to the discovery of target images. As the
three target images are semantically related (e.g., surfer, boat, fish correspond to the common concept sea ),
the discovery of target images should decrease uncertainty about the identity of the remaining target images.
Thus, prediction error should decrease in the long term as exploration increases, because the uncertainty
(about the targets) should be reduced by gathering more information (foraging from the landscape).

We thus partitioned trials with more or less foraging (path length mean split, refer to the Methods sections
for details). Figure 5 shows the difference in signal strength between long and short foraging trials. While
all signals showed a trend of increased amplitude for long foraging trials compared to short (0.04, 0.44, 0.30
and 0.19 SNR z-score for SWIFT, SSVEP, IM1 and IM2, Figure 5), only the IM1 signals showed a modest
but significant difference from 0 (p=0.022, two-tailed t-test against 0, uncorrected).

These results indicate that longer foraging paths lead to a reduction in prediction error (more IM strength) in
the long run, as expected from improving internal models of the environment (Mirza et al., 2018). This result
also suggests that the decision to keep foraging is correlated with the overall level of prediction error. In other
words, short foraging trials (trials where the decision of aborting the trial came earlier) are characterized
by higher prediction error (less intermodulation frequency amplitude) than longer foraging trials, where
prediction error is lower (more IM signal strength).

11
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Figure 5. The amount of foraging (path length) modulates intermodulation frequency strength.
Trials with longer path distances (more foraging) showed more intermodulation frequencies (IM1) amplitude
(less prediction error) than did shorter ones (p<0.05, uncorrected). This can be interpreted as that the
decision to stop foraging and pass to the next trial was correlated with an overall increase in prediction error
(i.e., violation of internal model predictions). Signals were averaged over a ROI of 6 channels defined as the
maxima in long foraging trials. Error bars represent SEM across participants.

Correct target image recognition and confidence, as behavioural markers of error minimiza-
tion, modulate putative prediction error signals. We then focused on how correct recognition of
the target images and confidence in their recognition were reflected in the strength of the signals. Both
correct recognition and confidence are evidence of error minimization, although in different ways: correct
recognition is an objective measure of error minimization while confidence is a subjective measure (how sure
participants were of their own answers). Thus, correct recognition should be associated with a reduction
in prediction error (more IM strength) when compared to instances of incorrect recognition, with a similar
effect of confidence. We thus partitioned data into correct and incorrect target recognition trials (Figure 6A),
and high and low confidence (Figure 6B, mean split). Correct recognition of target images was associated
with stronger SWIFT and intermodulation products (IM1 and IM2) compared to incorrect ones (Figure
6A, p<0.05, one-sample t-test against 0, uncorrected). Increase in SWIFT strength in correctly recognized
images is explained by stronger high-level representations and thus stronger image-specific priors (Gordon
et al., 2017; Koenig-Robert & VanRullen, 2013). The increase in the amplitude of intermodulation products
is expected as prediction error is minimized. Confidence modulated signals similarly (Figure 6B), however,
only the difference on IM1 signals was significantly different from zero (p<0.05, one-sample t-test against 0,
uncorrected). This could be a result of noisier subjective reports (confidence) compared to objective accounts
(objective recognition performance). Again, these results are consistent with the idea of error minimization,
in the form of increased certainty and decreasing prediction errors.
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Figure 6 Recognition and confidence modulate signals similarly. A. Correctly vs incorrectly
recognized target images. Signals for SWIFT, IM1 and IM2 were significantly higher for images success-
fully recognized than for unsuccessful ones (p<0.05, uncorrected).B. High vs low confidence recognized
images. Signals for IM1 were significantly higher for high confidence recognized images than for low confi-
dence ones (p<0.05, uncorrected). Signals were averaged over a ROI of 6 channels defined as the maxima in
correctly recognized targets (A) and high confidence targets (B).

DISCUSSION

Discovery and recognition of target images trigger a cascade of signalling events during active
foraging . We showed that the discovery and recognition of target images lead to a transient decrease
in the lower intermodulation product IM1 at 9.45Hz (i.e., an increase in putative prediction errors). This
decrease precedes the recognition of the images by 1.73s, which can be interpreted as surprise (prediction
error) related to the discovery of the target image.

Shortly after recognition (0.12s), SSVEP signals (or sensory evidence) decreased significantly below baseline.
This result can be interpreted as the correlate of decreasing the weighting on the noisy incoming sensory
evidence (the mixture of the target image and the scrambled version of the other targets) in favour of
predictions (Kanai et al., 2015; Weilnhammer et al., 2020).

Following closely afterward (0.21s), we observed a significant decrease in the IM2 (12.55Hz). It is unclear
whether differences in the temporal responses between both intermodulation frequencies IM1 and IM2 are due
to their specific temporal frequencies, that is, some frequency bands could be more sensitive for detecting
subtle effects due to their closeness to resonant modes of the visual system (Herrmann, 2001). Another
possibility is that different intermodulation products represent different channels of information as they
could originate from different types of physical integration of ascending and descending signals (i.e., different
neural circuits). Recent data supports the notion that different intermodulation frequencies represent signals
from different hierarchical levels (Gordon et al., 2019). Future research should expand on this.

Finally, at 0.6s from recognition, SWIFT signals (recognized object representations and putative predictions)
increased significantly above baseline. This is expected as SWIFT tracks complete object representations,
but not unrecognized images or complex textures (Koenig-Robert et al., 2015; Koenig-Robert & VanRullen,
2013). Part of the signals tracked with SWIFT could also be interpreted as image-specific predictions being
implemented and fed back to lower visual areas after recognition (Ahissar & Hochstein, 2004), although only
indirect experimental support for this is currently available (Gordon et al., 2017, 2019).

Altogether, we can tentatively interpret these results as follows. Surprise (prediction error) marks the
discovery of the target image. Prediction error signals then transiently increase above baseline leading on
to a decrease in the weighting of noisy sensory evidence in favour of the enhancement of target-specific
predictions once the target image is recognized. After this perceptual inference updating, the signals return
to baseline. These results could thus provide support for the hypothesis that predictive processing occurs in
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active foraging, for recognition of targets during the action-perception loop and consistent with contemporary
formulations of predictive processing in terms of active inference.

Tracking active error minimization with hierarchical frequency-tagging. The use of a paradigm
that includes perception and action allowed us to explore error minimization as a function of behaviour
(exploration in the shape of foraging in a landscape). Our analyses suggest that more foraging is correlated
with less prediction error. This is expected as foraging is instrumental to the discovery of target images
and that the discovery of each target image reduces uncertainty of the identity of the to-be-discovered
targets as they are related semantically (e.g., surfer, boat, fish). By separating long and short foraging
trials, we observed that the amplitude of the lower second-order intermodulation product (IM1, 9.45Hz)
was significantly higher in long foraging trials (Figure 6). This can be interpreted as that the decision to
stick with the foraging policy is driven by a reduction in prediction error, while the decision to adopt a
policy to abort foraging (i.e., having a shorter foraging path) would be triggered by higher prediction error
(i.e., violation of internal model predictions). This result is thus consistent with predictions from theoretical
accounts of active inference (Mirza et al., 2018; Schwartenbeck et al., 2013). Other signals (SWIFT, SSVEP
and IM2) failed to show a significant difference between trials with more foraging compared to those with
less foraging, and further research is needed to resolve if this is a result of the limited data available (refer
to the next section, Limitations, for details).

Our results also suggest that objective and subjective behavioural measures of error minimization correlate
with an increase in the amplitude of intermodulation products (a decrease of prediction error). Accurate
recognition of target images, as an objective measure of error minimization, was correlated with higher
amplitude of both intermodulation products, IM1 and IM2. Also, SWIFT signals were higher for accurately
recognized target images when compared to incorrectly recognized ones. Since SWIFT signals have been
shown to represent recognized objects (Koenig-Robert & VanRullen, 2013), this result was indeed expected.
From a predictive coding perspective, the increase of SWIFT can be interpreted in this case as stronger
target-specific predictions for correctly recognized target images. Similarly, subjective behavioural accounts
of error minimization in the form of confidence for the recognition of target images correlated with an increase
of the lower intermodulation product IM1, representing a decrease of prediction error.

Limitations. There are some limitations inherent to our paradigm. First, the precise timing of the signals
around recognition can be smeared out by the windowed analysis (refer to the Methods for details). Specif-
ically, the lower the frequency, the more time is necessary to get an amplitude estimate at that frequency.
Thus, time dynamics of lower frequencies (SWIFT) are more smeared out than higher frequencies (IM2).
Another limitation is the amount of informative data through the experiment. Only about 15% of the time
were participants near target images and only a fraction of this time was employed recognizing the target
images. It is important to stress that the choice of the paradigm design was made to promote participants’
freedom at performing the task (and thus maximizing the changes of measuring genuine predictive processing
signals under action and perception) over maximal relevant data collection, as a passive paradigm would.
This design nonetheless puts constraints on the power of the analyses, potentially precluding identifying
more subtle effects.

Implications for predictive coding. These results suggest that putative indicators of message passing
in predictive coding, previously observed in passive perception studies, also arise when participants actively
forage to gather information and diminish uncertainty. This addresses a gap in knowledge that arises as
the predictive processing framework is moving towards a focus on action (Parr et al., 2022), showing that
indeed predictive coding appear to occur as agents close the action-perception loop. The results also add
to previous studies using hierarchical frequency tagging by demonstrating a time-resolved profile of the
indicators of predictions, evidence and prediction errors that is consistent with the hypothesised cascade of
signals under predictive coding. Finally, the results suggest that prediction error indeed scales with learning,
and provide some confirmation for the hypothesis that foraging decisions relate to accumulated uncertainty,
which is again consistent with an active inference framing of predictive processing.
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Time resolved hierarchical frequency-tagging reveals markers of predictive processing in the
action-perception loop

Roger Koenig-Robert, Thomas Pace, Joel Pearson and Jakob Hohwy.

SUPPLEMENTARY MATERIAL

Hosted file

image7.emf available at https://authorea.com/users/574720/articles/618323-time-resolved-

hierarchical-frequency-tagging-reveals-markers-of-predictive-processing-in-the-action-

perception-loop

Supplementary Table 1 . Target image labels (light grey) and their common concept (dark grey). Distrac-
tors grouped by colour and their common concept shown at the bottom. For example, in the first column,
the target common concept “sea” includes the target images “boat”, “fish”, and “surfer”. The distractor
common concept “beach” includes “sand castle”, “sunglasses”, and “beach towel”.
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Supplementary Figure S1. Behaviour . A. Performance on the recognition of target images. Par-
ticipants were able to discriminate correct labelling of the target images above chance. However, the task
was demanding as shown by the hit ratio. B. Hit rate as a function of path length. Hit rate was not
correlated with the path length (R= -0.122, p= 0.055). C. D-prime as a function of path length. D-prime
was not correlated with the path length (R= -0.293, p= 0.238). D. D-prime as a function of average time
per stimulus. D-prime was not correlated with the time spent on stimuli (R= 0.079, p=0.755). E. Path
length as a function of landscape size. Path length was not correlated with landscape size (R= -0.027, p=
0.676).F. Time on stimuli as a function of path length. Time spent on target images was correlated with
path length (R= 0.150, p=0.019). This might be a result of the difficulty on recognizing certain target
images: more difficult, more foraging and more time spent on a particular image to recognize it. G. Time
on stimuli as a function of landscape size. Time spent on images was not correlated with landscape size (R=
0.051, p=0.43). H. Average path per trial for every subject. Different participants showed different levels
of foraging (exploration) as shown by their average path lengths per trial.I. Average time spent on target
images per trial for each participant.

Supplementary Figure S2. Signal modulation as a function of target image strength. Signals
were modulated by stimulus intensity in a similar way than by recognition. Stimulus intensity (closeness
to the target image in the landscape) was binned into 5 intensities. SWIFT signals significantly increased
as a function of stimulus intensity (p<0.05, FDR-corrected, red dot), while SSVEP and IMs decreased as a
function of stimulus intensity. Interestingly, while SSVEP and IM seemed to show a linear behaviour as a
function of stimulus intensity, SWIFT on the other hand showed more of an all or none sigmoid behaviour.
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