Carnosine-related dipeptides as potential therapeutics against cancer: in silico estimation of activity, synthesis and in vitro analysis Klaudia Chmielewska¹, Justyna Budka², Szymon Kowalski², Mateusz Daśko¹, Katarzyna Kozlowska-Tylingo¹, Krystyna Dzierzbicka¹, and Iwona Inkielewicz-Stepniak² January 5, 2023 ## Abstract Background and purpose: Peptides constitute an interesting starting point for drugs, although research on them is quite slowed by the fact that most of them are non-patentable. Given that carnosine, β -Ala-His dipeptide, was found useful in cancer treatment, we aimed to inspect whether its similar structures could also possess such activity. Experimental Approach: The interdisciplinary approach allows for the much more detailed analysis, hence our study presents computational analysis of potential targets and therapeutic activities of dipeptides with β -Ala or His at the N-end, synthesis and in vitro cytotoxicity and apoptosis tests against a chosen cancerous and non-cancerous cell line. Key Results: We preliminarily propose β -Ala-Ala, His-Val and His-Arg as most potent entities, in regard to carnosine, a known anticancer peptide. Conclusion and Implications: An interdisciplinary approach allows for a much more complex analysis and in silico tests should be a standard element of every toxicological report and we hope to popularize that concept worldwide. Peptides indeed possess activity against cancer, with little to no harm to non-cancerous cells, which is highly valuable. ## Hosted file Dipeptides_Chmielewska_BritishJournalOfPharmacology.docx available at https://authorea.com/users/573010/articles/617558-carnosine-related-dipeptides-as-potential-therapeutics-against-cancer-in-silico-estimation-of-activity-synthesis-and-in-vitro-analysis ¹Gdańsk University of Technology ²Medical University of Gdansk