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Abstract

Fish community biomass is generally thought to decline with increasing temperature due to higher metabolic losses resulting

in less efficient energy transfer in warm-water food webs. However, whether these metabolic predictions explain observed

macroecological patterns in fish community biomass is virtually unknown. Here we test these predictions by examining the

variation in demersal fish biomass across 21 productive shelf regions using high-resolution monitoring data from the North

Atlantic and Northeast Pacific. We find that biomass per km2 varies 40-fold across regions and is highest in cold waters and

areas with low fishing exploitation. We find no evidence that temperature change has impacted biomass within marine regions

over time. Yet, the cross-regional patterns suggest that long-term impacts of warming will be negative on biomass. These

results provide an empirical basis for predicting future changes in fish community biomass and its associated services for human

wellbeing i.e., food provisioning, under global warming.

Introduction

Climate change affects marine ecosystems through multiple drivers, including changes in ocean productivity
and temperature (Kwiatkowski et al. 2020). These changes are expected to alter fish distributions and
abundances and eventually impact the structure and functioning of marine ecosystems, as well as their
associated services for human wellbeing (Lotze et al. 2019; Petrik et al. 2020; Tittensor et al. 2021). To
anticipate and adapt to the ecological consequences of climate change, it is therefore important to better
understand and predict how changes in ocean productivity and temperature jointly affect fish production
and biomass.

Current model predictions of climate impacts on fish often rely upon basic ecological theories of how energy
flows from primary producers to top predators, as well as metabolic scaling of individual vital rates with
temperature. Specifically, warmer temperatures are expected to accelerate most physiological rates, e.g.
maximum consumption rate and metabolic rate, and, consequently, the turnover rate of biomass (Gillooly
et al. 2001; Brown et al. 2004). The increase in metabolic rate with temperature is further expected to
increase the fraction of energy that is lost through respiration. Consequently, the increasing metabolic costs
constrain the amount of energy that flows towards the upper trophic levels of food webs by lowering the
efficiency by which primary production is converted into fish biomass (Eddyet al. 2021).
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The effect of temperature on the bioenergetics at least partly underlies projected trophic amplification of
productivity, whereby fractional changes in primary production are amplified up through the trophic levels
(Lotze et al. 2019). Since marine fish dominate the upper trophic levels of ocean food webs worldwide (Hatton
et al. 2022), it can further be expected that the effects of temperature on both turnover rate and trophic
transfer efficiency will drive, at least in part, large-scale latitudinal variation in total fish community biomass.
More specifically, it can be hypothesized that fish community biomass should increase from the tropics to
the poles due to a lower turnover rate and more efficient energy transfer in cold-water environments. This
hypothesis is endorsed by theoretical and laboratory studies (O’Connoret al. 2009; Guiet et al. 2020) and
by some empirical studies demonstrating negative relationship between temperature and fish community
biomass (Maureaud et al. 2019). However, empirical support based on large-scale observational studies
across a pronounced temperature gradient is lacking.

There are several potential reasons why such macroecological patterns in fish biomass have not yet been
documented. Firstly, fish communities worldwide have been exposed to long-term commercial fishing that
changes total community biomass, as well as the underlying size- and trophic structure of fish communities
(Rice & Gislason 1996; Myers & Worm 2003; Andersen 2019). Consequently, the exploitation history may
mask potential temperature effects. Secondly, energy flows from primary producers to fish may be context-
or scale-dependent, especially since some regional variations in energy flows may themselves be driven by
temperature. Notably, warmer regions may have increased stratification and remineralization of detritus in
the water column (Pomeroy & Deibel 1986; Laufkötter et al. 2017), which increases pelagic production, but
lowers the detritus flux reaching the seafloor. This in turn limits the energy available to support benthic
prey production and the biomass of bottom-feeding (demersal) fish (van Denderen et al. 2018). Lastly, most
previous studies focused on the more easily estimated community catch rather than the more difficult to
measure community biomass (Friedland et al. 2012; Stock et al.2017). Most fish data collection of biomass
primarily serves to monitor trends and fluctuations in population-level abundances (especially of commerci-
ally important species for fisheries management purposes), while less attention is given towards representing
overall community composition and biomass (but see, for example, Maureaud et al.(2019) and Gislason et al.
(2020)). Taken together, data limitations and the inter-dependencies between predictor variables may have
complicated detecting overall relationships between ocean productivity, temperature and fish community
biomass.

In this study, we perform a large-scale empirical investigation of the macroecological patterns and drivers
of fish community biomass using an extensive collection of scientific bottom-trawl surveys sampled across
pronounced temperature gradients in the North Atlantic and Northeast Pacific. The studied continental shelf
regions account for about 15% of global fisheries catch (Watson 2017). We find that temperature is a main
driver of large-scale latitudinal variation in demersal fish community biomass. This result is likely driven by a
reduced trophic transfer efficiency and a faster turnover rate of fish biomass in warmer waters. As expected,
demersal fish biomass is negatively related to fishing exploitation and positively related to zooplankton prey
production. All these findings are consistently observed across the different spatial scales studied.

Method

Method overview

We compiled bottom trawl survey data of fish biomass across marine ecosystems in the North Atlantic
and Northeast Pacific. We analyzed the effect of temperature, and other environmental variables, on fish
community biomass in four different ways. Using structural equation modelling, we examined whether relati-
onships between net primary production and demersal fish community biomass are mediated by temperature,
food-web structure, and the level of fishing exploitation. Subsequently, we used an explicit trophodynamic
modelling framework to compare and explore the robustness of our empirical results and relate it to past
investigations of fisheries catch (Friedland et al. 2012; Stock et al. 2017). Both analyses are focused on the
drivers of cross-regional variation in fish community biomass and are performed at large geographic scales.
In a third analysis, we used wavelet-revised model regression to analyze finer-scale fish biomass variability,
both across and within ecosystems. Lastly, we examined the effect of temperature on fish biomass within
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ecosystems over time using different recursive biomass and surplus production models.

Scientific trawl survey data

Scientific bottom trawl surveys, primarily sampling demersal commercial species, were obtained from the
Northeast Pacific and North Atlantic shelf regions. All data used are publicly available and were downloaded
in July 2021 (see Appendix S1 for details on data processing). We selected all scientific surveys that sampled
the fish community with otter trawls. For each tow in each survey, we selected all demersal teleost and
elasmobranch species and obtained species weight. We corrected these weights for differences in sampling
area (in km2) and trawl gear catchability to obtain a standardized fish biomass across hauls and surveys.
We estimated sampling area using information on wingspread, speed of vessel and tow duration. Weights
were corrected for trawl gear catchability using information for 80 species in the Northwest Atlantic (Link
et al.2008) and 128 species and 7 functional groups in the North Sea (Walkeret al. 2017). The adjustments
resulted in biomass estimates per unit area in metric tonnes (1000 kg) per km2.

We compared the corrected trawl survey biomasses with available fisheries stock assessment biomasses to
validate the range and distribution of the biomass estimates. To this end, we calculated spatial overlap
between the surveyed area and the bounding region of all fisheries assessment areas from the RAM Legacy
database (Ricard et al. 2012). For each area that overlapped at least 50% with the surveyed area, we
compared biomass of each assessed stock with the gear-corrected trawl survey biomass for the corresponding
species. The comparison shows that the corrected biomass has a reasonable match with the stock assessment
biomass and no apparent bias, for most of the 120 stocks in the Atlantic and Pacific (Figure S1.3). This
finding improves confidence that the gear-corrected trawl survey estimates, hereafter termed demersal fish
biomass and/or demersal community biomass, are representative and comparable across areas and surveys.

Using the individual haul coordinates, we estimated an average demersal community biomass, in tonnes
per km2, per equal area grid cell (6000 km2) and surveyed year. To reduce the effect of potential outlying
biomass estimates, we removed all individual observations 1.5 times less/greater than the interquantile range
per survey and year based on log-transformed biomass values (but note that the overall conclusions are robust
with or without such a data removal, not shown).

Analysis of spatial patterns in biomass across geographic scales

We analyzed the spatial patterns in demersal fish biomass for relationships with environmental and anthro-
pogenic drivers at three spatial scales (ecoregion n = 21, subdivision n = 45 and grid cell n = 1083, Appendix
S2, Figure S2.1), and using average demersal fish biomass data from three time periods (1990-1995, 2000-2005
and 2010-2015; note that all data is used in the time series analysis). For the ecoregion and subdivision scale,
we used a structural equation model (SEM), which is a multivariate analysis to describe a network of causal
relationships (Grace 2006). The network links were inspired by recent modelling predictions of demersal fish
biomass based on a trait-based food-web model (Petrik et al. 2019; van Denderen et al. 2021). As such, we
hypothesized that relationships between net primary production and demersal fish community biomass are
mediated by pelagic and benthic secondary production. Following the rationale laid out in the Introduction
and Figure S2.2, we further hypothesized that demersal fish biomass declines with increasing temperature,
fishing exploitation and the mean trophic level of the community. Lastly, we expected seafloor depth to have
an indirect effect on demersal fish biomass by changing the flux of detritus to the benthos (Figure S2.2).
SEM analyses were performed using the package ‘Lavaan’ in R (Rosseel 2012). Since ecoregions/subdivisions
varied in their characteristics, multiple sensitivity analyses were performed to test for potential effects of
differences in e.g., the number of grid cells and sampled depth range (Appendix S3, Figure S3.1-2).

We further analyzed spatial changes in demersal community biomass at the grid cell level. This analysis was
not done with SEM, as we expect our hypothesized causal structure to differ at more local spatial scales,
i.e. effects of fisheries may vary with depth and prey productivity within each region. We used wavelet-
revised model regression (Carl & Kühn 2010) to explain finer-scale “within region” variability in demersal
fish biomass from the same set of predictor variables included in the SEM. Wavelet-revised model regression
is designed for regular grid-based data while accounting for spatial autocorrelation and non-stationarity (i.e.
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spatial autocorrelation may vary across regions). This may be important for fish distributions due to biotic
and abiotic differences across marine regions that could affect fish movement patterns, e.g. Windle et al.
(2010). The spatial analysis at the individual grid cell level was done for the same three time periods as the
SEM. Both biomass and the exploitation rate (catch/biomass) were log10 transformed. Since a few grid cells
had zero catch, we added a small quantity (1 kg per km2 per year) to avoid taking the log of zero. Model
fits were assessed using the Akaike Information Criterion (AIC) and the model with the lowest AIC was
selected as best candidate. When other candidate models had a difference of 0–2 AIC units, we concluded
that models were essentially equivalent and the model with the fewest parameters was selected. The analyses
were performed using the package ‘spind’ in R (Carl et al. 2018).

The set of environmental variables used as predictors in both the SEM and wavelet-revised model regression
was compiled from several sources. Seafloor depths were measured in 96% of the survey hauls and extracted for
the remaining hauls, using the haul coordinates, from bathymetric data per 1/12° grid from the ETOPO1 Glo-
bal Relief Model with sea ice cover (Amante & Eakins 2009). Temperatures were estimated using the COBE
sea surface temperature data per 1° grid and year (www.esrl.noaa.gov/psd/data/gridded/data.cobe.html).
Data on bottom temperatures was not available for the entire time series but was used to verify some of
our results (Appendix S3, Figure S3.3-4). Fish mean trophic level (MTL ), describing the biomass-weighted
mean trophic level of the community, was calculated from the survey data using species-specific trophic
level information (Froese & Pauly 2018; Beukhof et al.2019). Fishing exploitation rates were estimated
by dividing annual fisheries catch of demersal fish with demersal fish survey biomass. Fisheries catch da-
ta, available on a 30-minute spatial grid, were obtained from Watson (2017) and estimated as the sum of
fisheries landings, illegal, unregulated and unreported catch and discards at sea. Net primary production
was obtained from the cafe algorithm using MODIS data per 1/6° grid and averaged between 2005 and
2010 (http://www.science.oregonstate.edu/ocean.productivity) (Silsbeet al. 2016). Estimates of pelagic and
benthic secondary production were based on output of GFDL’s Carbon, Ocean Biogeochemistry and Lower
Trophics (COBALT) ecosystem model from a climatology of the global earth system model (ESM2.6) re-
presentative of the contemporary ocean under 1990 greenhouse gas concentrations (Stock et al.2014, 2017).
Simulated mesozooplankton biomass and productivity in ESM2.6 broadly captures observed and estimated
contrasts across Large Marine Ecosystems (Stock et al. 2017), and the energy available to fish through this
pelagic pathway can be estimated as mesozooplankton production not consumed by other mesozooplankton
(Zflux ). ESM2.6-COBALT also simulates the detrital flux that reaches the seafloor, which is used as a proxy
for benthic secondary production (Dflux ). For all the predictor variables described above, we obtained an
estimate per area and year, averaged for each time period, with the exception of net primary production and
pelagic and benthic secondary production where a fixed mean value was used due to data limitations and
uncertainties in the estimated values over time.

In order to compare and explore the robustness of our empirical SEM results, we used a trophodynamic
model to predict demersal fish biomass for each subdivision and ecoregion. We compared these with the
observed estimates using linear regression and obtained the explained variance (R2) and Root Mean Square
Error (RMSE). In the trophodynamic model, modified from Stock et al . (2017), we assumed that energy flux
into the fish community is in equilibrium with the fisheries harvest out of the community after accounting
for food chain length variations and trophic transfer efficiency. Demersal fish biomass B in each region i can
then be estimated by dividing the flux with the observed fisheries exploitation rate (ER ):

Bi = (Dflux,i×TEi
MTLi−1 + pi × Zflux,i×TEi

MTLi−2.1)/ERieq. 1

Following the approach of Pauly & Christensen (1995) and Stock et al. (2017), zooplankton were assigned to
trophic level 2.1 and detritus to 1, such that the number of trophic steps separating the zooplankton/detritus
flux (Zflux andDflux ) from the fisheries catch was estimated byMTL minus 2.1 or 1. We further assumed that
only part of the zooplankton production is available to demersal fish and this fraction is proportional to p ,
which is estimated as the fraction of demersal fish catch relative to total fish catch in each region. The value
of p was obtained from Watson (2017). The final parameter is the trophic transfer efficiency (TE ). This
parameter controls the decay of energy between trophic levels and was varied from 0.05 to 0.15 (Eddy et al.
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2021). Additionally, we varied the thermal sensitivity (Q 10) of TE from 0.2 to 2.5:TEi = TE • Q10

Ti−10

10

,with T being the average temperature in each region i .

Analysis of temporal biomass variation in ecoregions

We examined whether the changes in demersal fish biomass with temperature, as observed in the SEM
and WMR spatial analyses, also drive biomass changes in ecoregions over time. We estimated the influence
of temperature on demersal community biomass and production by fitting different recursive biomass and
surplus production models to the data (see Table 1 for model details). We used different models to vary
how temperature may affect the demersal fish community. In each model, ecoregion was included as a
random effect and fishing catch was treated as an offset. The temperature term was centered on the mean
temperature per ecoregion (obtained from the COBE sea surface temperature data but see Figure S3.4)
to limit our analysis to temperature changes within each region. We scaled biomass and production to the
maximum biomass per ecoregion. We evaluated each model with/without a temperature term using AIC,
where a model with temperature was considered the most parsimonious if it is at least 2 AIC units lower.

Data availability

The scripts and data can be found on https://github.com/Dvandenderen/DemFish trawl. The data proces-
sing scripts are modified based on earlier work from Pinsky et al . (2013) and Maureaud et al . (2019). The
final dataset contains 180,000 unique tows and includes data from 1970 to 2019. The processed dataset will
be stored on a data archive upon manuscript acceptance.

Results

Demersal fish biomass was highest in the northern regions of the Northeast Pacific (Gulf of Alaska, Eastern
Bering Sea and Aleutian Islands) and Northeast Atlantic (Barents Sea and Norwegian Sea) (Figure 1a).
Conversely, demersal fish biomass was lowest in the Gulf of Mexico and temperate regions of the North
Atlantic (Baltic Sea, southern North Sea, Gulf of Saint Lawrence).

At the ecoregion scale, Pearson correlations between demersal fish biomass and temperature (Figure 1b, r
= -0.54), fishing exploitation (Figure 1c, r = -0.34), net primary production (Figure 1d, r = -0.40) and
detrital bottom flux (r = -0.33) were negative, while depth correlated positively with biomass (r = 0.23).
Demersal fish biomass had no correlation with zooplankton production (r = 0.04) and mean trophic level
(r = -0.04). Whether the correlations with biomass were direct effects of the predictor variable or indirect
effects governed by other predictor variables were examined with the SEM.

Including all predictors resulted in a SEM that was too complex for the available number of observations at
the ecoregion scale to assess goodness-of-fit (Figure S2.2). Hence, we simplified the full model by removing
the detrital bottom flux, which had an insignificant relation with biomass in 6 out of 6 runs (2 spatial scales
× 3 time periods). We also removed depth, which became irrelevant for the SEM network after removing
the detrital bottom flux. The final model, including the remaining five predictors, had a meanΧ 2 of 6.02
(standard deviation from the 6 runs is 2.4) with 6 degrees of freedom, and p-values ranging between 0.21
and 0.88, indicating that our hypothesized causal structure is supported by the data (an insignificant result
indicates good model fit).

Among the individual pathways, demersal fish biomass at the ecoregion and subdivision scale was negatively
related to temperature, fishing exploitation and mean trophic level and positively related to zooplankton
production (Figure 2). The pronounced spatial variation in demersal fish biomass was reasonably well
explained (mean R2 = 0.59) with no clear spatial pattern in the residuals (Figure S2.3). The effects of
temperature and fishing were almost equally strong (Figure S2.4). For most other pathways, the directionality
conformed with the initial expectations (Figure 2 vs Figure S2.2). A partial effect size plot showed that
demersal fish biomass is approximately twice as high with a decline in temperature from 15 to 5°C and
a decline in exploitation rate from 0.3 to 0.03, whereas the effect of mean trophic level and zooplankton
production on biomass were more variable (Figure 3).
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Similar to the SEM analyses, the grid-cell analysis using wavelet-revised model regression showed a negative
relationship between demersal fish biomass and fishing exploitation and temperature, while zooplankton had
a positive relationship with biomass for all three time periods (Table 2). In contrast to the previous analysis,
the detrital bottom flux, which was excluded in the SEM, had a mixed effect on biomass (positive in one
period and negative in the two others). Mean trophic level was not part of the best candidate model in any
of the time periods.

The best fit between observed and predicted demersal fish biomass with the trophodynamic model (i.e., eq.
1) was obtained with a trophic transfer efficiency of 0.075 and a Q 10temperature scaling of trophic transfer
efficiency between 0.4 and 0.7 (Figure 4, S2.5), implying that trophic transfer declines with increasing tem-
perature. Replacing the temperature dependent trophic transfer efficiency with a single mean value sharply
reduced the R2 of the trophodynamic model from 0.66 to 0.42. Furthermore, replacing the exploitation rate
in eq. 1 with a single mean value and refitting led to an R2 of 0.55. The results of the trophodynamic model
are thus consistent with the SEM in suggesting temperature-linked trophodynamic effects, i.e., a trophic
transfer efficiency decrease with increasing temperature, and exploitation rates as the primary drivers of
demersal fish biomass across the range of systems considered.

Finally, we found no evidence that temporal changes in temperature have impacted demersal community
biomass within ecoregions during the period 1980-2015 (Table 1). All models with and without a temperature
term differed less than 2 AIC units. The models without the temperature term were therefore selected as
best candidate as they have the fewest parameters.

Discussion

Our study supports the hypothesis that temperature is a main driver of large-scale latitudinal variation in fish
community biomass. This result is likely driven by a reduced trophic transfer efficiency and a faster turnover
rate of fish biomass in warmer waters. As expected, demersal community biomass is negatively related to
fishing exploitation and positively related to zooplankton prey production. All these findings are consistently
observed across the different spatial scales studied. We find no evidence that temperature fluctuations and
recent warming have impacted demersal community biomass. Even though we found no effect of recent
warming, our study provides an empirical basis for long-term climate predictions and suggests a set of
explanatory variables that are most important.

The lack of a relationship between demersal fish biomass and the detrital bottom flux and the positive but
weak relationship between zooplankton prey production and demersal fish biomass in the SEM were unex-
pected, as prey production should ultimately constrain the energy available to fish. From a trophodynamic
perspective, the weak relationship between prey production and biomass and the strong relationship with
temperature suggests that temperature-modulated impacts on fish turnover rates and/or trophic transfer
efficiencies are more important than the baseline prey resources in determining demersal fish biomass, at
least for the range of systems and scales considered here. This finding is supported by the trophodynamic
model, which required a strong negative relationship between the transfer efficiency and temperature to
obtain skillful demersal fish biomass predictions.

In retrospect, the weak relationship with prey production is not too surprising as the data compilation covers
a considerable thermal range (-1 to 27 °C), while the studied shelf systems have moderate to high productivity
and productivity varies less than a factor 4 (Figure 1d). It is thus expected that prey production could become
more important for predicting changes in demersal fish biomass in both the SEM and the trophodynamic
model along a broader productivity gradient. For example, a gradient from the shelf to the deep ocean that
covers larger differences in benthic prey production (Wei et al. 2011).

It is important to note that the negative relationship between demersal fish biomass and temperature does
not necessarily imply that the potential sustainable fishing catch will be lower in warmer shelf systems. Catch
is a flux (biomass removed per unit time) similar to production and is differently affected by temperature
compared to biomass. Increased biomass turnover times at higher temperatures, for example, decreases the
biomass associated with a given production after warming, e.g., du Pontavice et al . (2021). In contrast
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with the demersal fish biomass results herein, estimates of plankton food web production available to fish
can provide moderately skillful fisheries catch predictions at a global scale (Friedland et al. 2012; Stocket al.
2017). Similar to the demersal fish biomass results herein, a strong negative dependence between the transfer
efficiency and temperature significantly improved fisheries catch estimates (Stocket al. 2017).

Climate predictions of marine fish

Global climate model simulations of marine fish typically project declines in fish community biomass ranging
between 5 to 15% depending on the climate scenario (Tittensor et al. 2021). Most of these fish community
models have a temperature scaling of metabolic and feeding rates that is approximately doubled each 10°C
increase (Q 10 of 2). Since fish community biomass is inversely related to the effect of temperature on
individual rates, biomass declines as temperature increases. Both our SEM and trophodynamic model findings
support this parametrization.

The above parametrization of metabolic and feeding rates is naturally a simplification of temperature effects
on fish physiology. Studies have indicated that the temperature scaling of feeding rates is typically lower than
the scaling of metabolic rates (Vucic-Pestic et al.2011; Rall et al. 2012), as implemented in some global fish
models (Cheung et al. 2013; Petrik et al. 2019). The lower temperature scaling of feeding rates reduces the
fraction of energy that is available for fish growth in warmer waters. As a consequence, average fish growth
increases less along a temperature cline than the expected increase in metabolism (van Denderen et al. 2020).
So far, it has been difficult to predict how such temperature scaling at the individual level translate to the
overall community. Our empirical results provide evidence indicating that demersal community biomass is
equally constrained by temperature.

We observed no changes in demersal fish biomass that were correlated with temperature over the time
period of the survey data. Temperature and fisheries catch fluctuate in time and fish populations may have
lagged responses to both. We therefore expect that the observed variations in temperature were too small
to reveal a signal, at least during the study period. Other studies reporting changes in fish populations
and communities under recent warming investigated species-specific responses in recruitment, productivity
and/or distributional changes, as well as shifts in the trait-composition of the fish community (Pinsky et
al. 2013; Frainer et al.2017; Free et al. 2019; Friedland et al. 2020). The latter are likely more sensitive to
environmental changes than demersal community biomass, as these trait-based metrics account for changes
in both composition and relative abundances of individual species.

The role of fishing

The Northeast Atlantic region was found to have the highest fisheries exploitation rates, whereas Aleutian
Islands and Barents Sea had the lowest rates (Figure S2.7). This finding is consistent with previous work
on the footprint of bottom trawling, where around 2% of the total area was trawled in the Aleutian Islands
and 45% in the North Sea (Amoroso et al. 2018). The exploitation rates in the North Sea showed the most
pronounced temporal decline in catch per biomass (i.e., from 0.4 in the 1980s to 0.2 year-1 in recent years),
supporting previous studies documenting a strong reduction of fishing pressure on the demersal community
(Couce et al. 2020). All North American regions had exploitation rates <0.06 year-1. These lower rates,
compared with the Northeast Atlantic region, may be due to a different fisheries management strategy
(Battista et al. 2018) and/or because fewer demersal species are commercially exploited.

We found a strong negative relationship between demersal community biomass and a log10-transformed
fishing exploitation rate. This implies that small increases at low exploitation rate (based on the untransfor-
med data) may cause large declines in demersal community biomass. We expect that this non-linear effect is
caused by the decline of large and long-lived individuals that have accumulated biomass over their lifetime.
Additionally, fishing had a weak but negative relationship with the mean trophic level of the community,
which in turn had a negative relationship with biomass (see Figure S2.2 for hypothesized mechanisms). This
indirect effect of fishing channeled through mean trophic level is thus positive on demersal community bio-
mass but is weaker than the direct negative effect of fishing. The sensitivity of the demersal fish community
to fishing highlights that reducing fishing mortality is an effective way of reducing the impacts of climate
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change on the fish community, sensu Brander (2007). Our results further stress the need for future exploita-
tion rate scenarios in line with the Shared Socioeconomic Pathways for making climate change projections
of fish biomass (Hamon et al.2021).

Demersal and pelagic fish

Changes in community biomass were solely analyzed for the demersal part of the fish community. However,
higher proportions of pelagic fish catch relative to demersal fish catch are observed in the three ecoregions with
the highest temperatures, i.e. Northern Gulf of Mexico, Carolinian and Floridian. These higher proportions
support previously documented patterns in global fish catches towards dominance of pelagic fish towards
the tropics (van Denderen et al. 2018) and could have contributed to the observed declines of demersal
fish biomass with temperature. The trophodynamic model implicitly accommodated regional variation in
pelagic and demersal fish (by way of parameter p ). Although the trophodynamic model confirmed the SEM
outcome, it is important to note that not all the decline in demersal fish biomass with temperature should
be associated with a direct bioenergetic effect of temperature on fish.

Conclusion

To anticipate the consequences of climate change on marine ecosystem function and services (e.g., food
provisioning and climate regulation through carbon sequestration) it is critical to understand how changes
in ocean productivity and temperature may affect the upper trophic levels of marine ecosystems. Our large-
scale empirical investigation showed a pronounced latitudinal increase in demersal fish community biomass
from the subtropics to the poles. The changes in demersal community biomass are linked to differences in
temperature, fishing, and ocean productivity. The observed negative relationship between temperature and
community biomass indicates that the long-term impacts of climate warming on community biomass will be
negative. This finding is consistent with model predictions of fish biomass (Lotze et al. 2019; Tittensor et al.
2021). Hence, our results provide an important empirical basis to formally validate and ground truth such
model-based predictions in order to evaluate sound and robust management actions in the face of global
change.
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Figure 1. (a) Average demersal fish biomass per grid cell (6000 km2) in the different ecoregions between
1990-2015. Bivariate correlations between average demersal fish biomass and temperature (b), exploitation
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rate (c) and net primary production (d) aggregated per ecoregion. The lines in the bivariate plots were fit
with linear regression.

Figure 2. Final structural equation model (SEM) showing the direct and indirect effects of predictors on
demersal fish biomass averaged across model runs (conducted at the broader spatial scales for each time
period; Figure S2.4). The color and thickness of the arrows shows the sign (blue arrow = positive, red oval
= negative) and strength of each relationship based on linear scaling of the mean standardized coefficients
across model runs. The coefficient of determination (R2) is also indicated for each response variable. We
removed the grey predictor variables and pathways in the final SEM to limit the number of predictors relative
to the number of observations and to assess goodness-of-fit.

Figure 3. Partial effect of temperature (a), fishing exploitation rate (b), mean trophic level (c) and zoo-
plankton production (d) on demersal fish biomass as estimated from the SEM (Figure 2). The plots show
the change in demersal fish biomass along the range of each predictor while keeping the other variables fixed
at their mean values. The different lines represent different spatial scales and time periods (see legend and
Figure S2.4 for each SEM).
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Figure 4. Ecoregion comparison of predicted and observed demersal fish biomass (both in tonnes per km2)
averaged between 1990-2015. The predicted biomass is estimated using the trophodynamic model with a
trophic transfer efficiency of 0.075 and a temperature scaling (Q 10) of the trophic transfer efficiency of 0.55
(see Figure S2.5 for a range of values). The dashed line is the 1:1 line, and the solid line is a linear fit. R2

is the coefficient of determination, RMSE the Root Mean Square Error. Similar results are obtained when
analysis is done at subdivision scale (Figure S2.6).

Table 1. Analysis of temporal demersal biomass variation in ecoregions with different recursive biomass
models and surplus production models. The ΔAIC is obtained by subtracting the AIC of a model with a
temperature term θΤ from the AIC of a model without this term.

Formula Model information θ estimate (ΔΑΙ῝)

Recursive biomass
models

Recursive biomass
models
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Formula Model information θ estimate (ΔΑΙ῝)

(M1) Bi,t+1 =(
α− βBi,t + θiT i,t

)
Bi,t−

Ci,t + εi,t

Changes in biomass B in
ecoregion i over time t
depend on biomass in the
previous year, a growth
term α, a carrying
capacity term β and θ,
which describes the
influence of temperature
T on the fish community.
C is the observed
demersal catch and is
treated as an offset.

θ = 0.003 (2.0)

(M2)

Bi,t+1 =

(
α− βBi,t −

Ci,t
Bi,t

)
Bi,t•

selectlanguagegreek
eTi,t • εi,t

Same as M1, but now
temperature affects the
fish community with a
multiplicative
temperature term.

θ = 0.012 (1.9)

(M3)

Bi,t+1 = (1 − Ci,t
Bi,t

) •B
i,t

(α−βBi,t+θiT i,t)

•εi,t

Ricker inspired equation
with same terms as M1
and M2.

θ = 0.046 (-0.1)

Surplus production
models

Surplus production
models

(M4) Pi,t =

riBi, t

(
1 − Bi, t

Ki

)
•

selectlanguagegreek
eTi,t + εi,t

Surplus production model
with a temperature term
following Free et al.
(2019). Surplus
production Pi,t is
calculated as the change
in total biomass: Pi,t =
Bi,t+1 - Bi,t + Ci,t. r is
the intrinsic growth rate
and K the carrying
capacity. Temperature
affects the fish
community with a
multiplicative
temperature term.

θ = -0.253 (1.0)

(M5) Pi,t =

riBi, t

(
1 − Bi, t

Ki•eθΤi,t

)
+

εi,t

Similar to M4, but now
temperature only affects
the carrying capacity K.

θ = -0.02 (1.9)

Table 2. Selected models using wavelet-revised model regression for spatial changes in demersal fish biomass
at the grid cell level. The models are tested with all five predictor variables from the original SEM. Mean
trophic level is not shown as it is not part of the best candidate model in any of the time periods. Temperature
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= T , fishing exploitation = ER , zooplankton production = Zflux and detrital bottom flux = Dflux .

Model estimated
intercept P-value Years Nb of grid cells

log10(B) = 0.70 –
0.04[?]T –
0.36[?]log10(ER) +
0.002[?]Zflux +
0.001[?]Dflux

All P <0.001 1990-95 846

log10(B) = 1.07 –
0.04[?]T –
0.27[?]log10(ER) +
0.002[?]Zflux –
0.0003[?]Dflux

PDflux = 0.008 All P
<0.001

2000-05 983

log10(B) = 1.10 –
0.04[?]T –
0.23[?]log10(ER) +
0.002[?]Zflux –
0.0002[?]Dflux

PDflux = 0.05; other P
<0.001

2010-15 972
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