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Abstract

Robots with telepresence capabilities are typically employed for tasks where human presence is not feasible due to geography,

safety risks like fire or radiation exposure, or other factors like any epidemic disease. Time delay is a significant consideration

in controlling a telepresence robot. This study proposes a deep learning-based approach to compensate for the delay by

predicting the behaviour of the teleoperator. We integrate a recurrent neural network (RNN) based on the Long Short-Term

Memory (LSTM) architecture with the reinforcement learning-based Deep Deterministic Policy Gradient (DDPG) algorithm.

The proposed method predicts the teleoperator’s angular and linear controlling commands by using data gathered by embedded

sensors on the specially designed and built telepresence robot. Simulations and experiments assess the operation of the proposed

technique in Gazebo simulation and MATLAB with ROS integration, which shows 2.3% better response in the presence of static

and dynamic obstacles.
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Robots with telepresence capabilities are typically employed for tasks where human presence is not feasible
due to geography, safety risks like fire or radiation exposure, or other factors like any epidemic disease. Time
delay is a significant consideration in controlling a telepresence robot. This study proposes a deep learning-
based approach to compensate for the delay by predicting the behaviour of the teleoperator. We integrate
a recurrent neural network (RNN) based on the Long Short-Term Memory (LSTM) architecture with the
reinforcement learning-based Deep Deterministic Policy Gradient (DDPG) algorithm. The proposed method
predicts the teleoperator’s angular and linear controlling commands by using data gathered by embedded
sensors on the specially designed and built telepresence robot. Simulations and experiments assess the
operation of the proposed technique in Gazebo simulation and MATLAB with ROS integration, which
shows 2.3% better response in the presence of static and dynamic obstacles.
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Introduction: Healthcare paramedical staff spends significant time and effort in the sensitive and critically
vital field of patient interaction. Robotics has been employed extensively in the healthcare environment for
at last few years. The Puma 560 robot performed neurosurgical biopsies in 1985, making it the first robotic
surgery [1-3]. The market for surgical robots has grown remarkably in recent years and is expected to reach
$15 billion by 2030, with a compound annual growth rate of 17.1%.

ICT and robotic solutions have been developed over the past decade and are legitimate support that could
enable persons to survive freely. Robots like Double robot from Double robotics and Nao from Softbank
are a few examples. Increasing attention towards telepresence robots has been seen recently in creating for
treating patients. Before testing the robot in a real-life environment, several researchers conduct brief robot
assessments in a lab setting. However, other works use focus groups or laboratory experiments to analyze
the system [4-5]. The telepresence robot generalized system is shown in Figure 1.

Fig 1: Generalized Telepresence Robot Framework

This study proposes a strategy for predicting teleoperator behaviour while controlling the telepresence robot
by using a recurrent neural model built on the architecture of LSTM [6] and integrate it with the DDPG
framework [7]. The goal is to create a single model that can handle all these distinct types of data from
embedded sensors, whether they are raw data or not. Additionally, this model is used to demonstrate the
significance of data considering the circumstances the telepresence robot will face. Thus, each entity should
specify a control signal like angular and linear velocity.

Proposed Methodology: One of the deep learning approaches known as RNN automatically chooses the proper
attributes from the practice cases. By storing a wealth of past data in its internal state, RNN is suitable
for data processing and has exceptional potential in time-series forecasting. The basic configuration of an
LSTM memory cell consisting of the long-term state component (Ct) and the short-term state component
(ht).

Input, forget, control, and output gates comprise LSTM’s basic architecture. The input gate is what decides
which data to transmit towards the cell and is described in Equation (1):

it = σWi × h(t−1)x(t) + bi (1)

The bias vector and weight matrix are represented by b and W in the above equation. Tanh is applied to
level the values in the range of [-1 to 1]. The proposed approach is to increase the cumulative future reward
Rt, which is defined as Equation (2):

Ot = σWo × ht−1x (t) + bo(2)

With gamma ranging from (0-1]. Under the state st and actionat, the estimation of Rt is defined as the
value function in Equation (3):

Rt = rt + Υ.rt+1 + Υ2.rt+2 + . . . =
∑∞
k=0 Υkrt+k(3)

To find the best action value P ∗(st, at), that is usually the major of all policies π. Afterwards, the optimal
policy selects the action as Equation (4) to comprehensively train the optimal action value.
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Pπ (st, at) = Eπ [Rt|st, at] = Eπ[
∑∞
k=0 Υkrt+k|st, at](4)

This study recommends deep reinforcement learning for teleoperator-controlling behaviour prediction (DRL).
Modified LSTM is primarily used to predict the transmitted commands’ linear and angular velocity and
turning angle. The anticipated output of LSTM is then forwarded to the DDPG algorithm. The suggested
workflow is shown in Figure 2.

Fig 2 : Proposed Approach Framework to Control Telepresence Robot during Delay in Communication

The hybrid network divides into an online and targets part in the proposed approach structure comparable to
DDPG alone. Although the two networks have the same topology, their update patterns are different. Figure
3 illustrates the hybrid network topology, where an LSTM component along with the decision component
make up the main network. The main network’s job is identifying the best policy for converting the state-
to-action mapping.

Fig 3: Proposed hybrid network framework

3
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The algorithm for predicting teleoperator behaviour using LSTM and DDPG to control a telepresence robot
during delayed communication is as follows:

ALGORITHM 1: A hybrid approach of integrating LSTM and DDPG to predict teleoperator behaviour

1: define and declare the prediction function of teleoperator behaviour

2: // preprocess data

3: processed data = preprocess data(data)

4: // train LSTM network

5: lstm model = train lstm(processed data)

6: // make predictions using LSTM network

7: teleoperator actions = lstm model.predict(processed data)

8: // train DDPG algorithm

9: ddpg model = train ddpg(processed data)

10: // use DDPG algorithm to choose actions for telepresence robot

11: telepresenceRobot actions= ddpg model.choose actions(teleoperator

12: // update LSTM and DDPG models with new data DDPG algorithm to choose actions for telepresence
robot

13: lstm model.update(new data)

14: ddpg model.update(new data)

15: // use reinforcement learning to reward DDPG algorithm for positive outcomes

16: ddpg model.reward(positive outcomes)

17: // continuously update telepresence robot actions in real-time based on predicted teleoperator actions and
current state

18: while True:

19: teleoperator actions = lstm model.predict(current data)

20: telepresenceRobot actions =ddpg model.choose actions(teleoperator

21: execute actions(telepresenceRobot actions)

22: end while

The above algorithm outlines the basic steps for predicting teleoperator behaviour using LSTM and DDPG
to control an autonomous car. It includes preprocessing the data, training the LSTM and DDPG models,
making predictions using the LSTM model, choosing actions for the telepresence robot using the DDPG
model, continuously updating the models with new data, and using reinforcement learning to reward the
DDPG model for positive outcomes. The telepresence robot’s actions are continuously updated in a loop
based on the predicted teleoperator actions and the current state of the robot.

Experiment Setup and Result Discussion: In this section, the experimental setup and its results are both
explained with the proposed approach of controlling the telepresence robot during the delayed communication
with the teleoperator.

The setup consists of a custom-manufactured telepresence robot and a remote-controlled setup of a teleop-
erator, as shown in Figure 4. The telepresence robot is powered by two DC-geared motors of 200 watts. The
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telepresence robot was equipped in the actual experiments with two Lidar sensors at various heights with a
maximum measurement range of ten meters.

Fig 4: Custom built telepresence robot

The model is trained in four steps using our suggested multi-stage training mechanism-based technique.
Using the Gazebo simulation framework using ROS integration for Lidar sensor configuration, we created
four training scenarios, as shown in Figure 5. Each of the four simulation environments corresponds to one
of the three training phases.

‘

Fig 5 : Simulation of Four different Environment using Gazebo and integration of ROS for Lidar sensor
configuration

5
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The proposed framework is tested using hardware-in-the-loop in the MATLAB and Simulink to organize
and control the telepresence robot. During the simulation, a user uses the teleoperator controlling device
connected to a ROS node and the ROS node updates at 1 kHz. The simulation runs at a sample rate of
150 Hz and in real-time. Each communication channel has time-varying delays, withµt = 0.5 seconds and
σ2
t = 0.10seconds implemented. In Fig. 9, the agents fluctuate slightly as they avoid the obstacles, which

is a benefit of the proposed teleoperation approach.

Fig 6 : Comparison of succession rate of different approaches

We have illustrated the pathways of the navigation challenges, as shown in Figure 7, to illustrate the benefits
of our approach more clearly. The graph clearly shows that our proposed method produces softer paths
while the paths produced by the comparative methods oscillate to be different degrees.

Conclusion: We proposed a novel approach to control the telepresence robot during delayed signals by
integrating LSTM with the DDPG model. It utilizes supervised and reinforcement learning to combine the
indication and assessment signals. The proposed hybrid technique uses RNN in addition to the off-policy
actor-critic architecture to identify the best dynamic treatments. The comprehensive experiments on the
real-world manufactured telepresence robot generate a dataset by multiple traversing of the same path in
a healthcare environment. The proposed approach showed appreciative results in simulation experiments
compared to other methods. After the data generation, our proposed approach was used and revealed that
the suggested method could boost controllability by up to 2.3% and offer more control during the lack of
communication or commanding signals.

6



P
os

te
d

on
2

J
an

20
23

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
67

26
27

75
.5

51
04

38
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Fig 7 : Simulation result of controlling and navigating in multiple different environments with obstacles.
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