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Abstract

Synthetic aperture sonar image reconstruction relies on the coherence of overlapping phase centers to provide accurate micron-

avigation for a sensed scene. It is shown that phase centers lose coherence for near-range scattering from large SAS arrays

due to the fundamentally bistatic nature of these sensors. This effect is modeled using the van Cittert-Zernike theorem and a

point-based sonar scattering model. Reduction of the window length used in the delay estimation process can partially mitigate

the loss of coherence at the expense of increased variance in the resulting delay estimates.
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Synthetic aperture sonar image reconstruction relies on the coherence
of overlapping phase centers to provide accurate micronavigation for
a sensed scene. It is shown that phase centers lose coherence for near-
range scattering from large SAS arrays due to the fundamentally bistatic
nature of these sensors. This effect is modeled using the van Cittert-
Zernike theorem and a point-based sonar scattering model. Reduction
of the window length used in the delay estimation process can partially
mitigate the loss of coherence at the expense of increased variance in
the resulting delay estimates.

Background: Synthetic aperture sonar (SAS) sensors create high-
resolution imagery of the seafloor through the coherent combination
of transmissions from a moving array [1, 2]. Displaced phase center
micronavigation is a key technique that permits robust image formation
from mobile platforms (e.g. tow sleds or unmanned underwater vehicles)
[3, 4]. Many studies and algorithms have been designed leveraging this
technique for SAS motion estimation [5–11]. The displaced phase center
technique relies on comparisons between pairs of time series recorded
on successive pings of a SAS. Under the phase center approximation,
signals are fully coherent when their phase centers are co-located. Sig-
nals with non-overlapping phase centers may be partially coherent due
to the spatial coherence of seafloor scattering. Fundamentally, the dis-
placed phase center method searches for the temporal and spatial offsets
maximizing the coherence between signal pairs. These offset estimates
are then used to determine the synthetic aperture geometry created by
the sensing system.

The phase center approximation assumes the sensed scene is in the far
field of the Vernier array formed by the projector and multiple receivers.
Many early research SAS sensors deployed small receive arrays [12–
14], and the phase center approximation holds across the entire imaging
swath for these sensors. More recently developed commercial systems
are deploying large receive arrays, and in some cases, these arrays are up
to three meters in length [15]. The large separation between the projector
and the distal hydrophone on these arrays challenges the validity of the
phase center approximation.

This paper focuses on studying the impact of the breakdown of the
phase center approximation for a near-range scattered signal for SAS
sensors with receive arrays spanning a variety of lengths. First, the
phase center approximation itself is reviewed. A model based on the
van Cittert-Zernike theorem (vCZT) is utilized to predict the population
spatial coherence between signal pairs recorded on successive pings of a
bistatic sensor. The predicted population coherence is then compared to
a numerical estimate generated through the analysis of an ensemble of
pings generated from a point-based scattering model.

Phase Center Approximation: To review the phase center approxima-
tion, begin by considering a sonar system consisting of a single transmit-
ter, 𝑇𝑋, and receiver, 𝑅𝑋. At some instant in time, sensed field is given
by the coherent integration of returns from the scatterers located on an
isochronous ellipsoid of revolution. Figure 1 shows the ellipse formed by
the intersection of the ellipsoid and the x-y plane. The ellipse’s foci are
located at the transmitter and receiver positions. Except for reciprocal
arrangements, unique transmitter and receiver positions produce unique
ellipsoids and, therefore, unique sensed fields.

An approximation to the ellipsoidal form can be made for the case
where the distance to the ellipsoid’s surface is much greater than the
transmitter and receiver separation. Assuming that the transmitter and
receiver lie along the 𝑥-axis, that they are separated by 2𝑑, and the ori-
gin is the midpoint of the line joining the transmitter and receiver, the

2d

2R

rT rR

TX RX

y

x

2d

χ

Fig 1 For a bistatic transmitter (𝑇𝑋) and receiver (𝑅𝑋), the field received
at some instant in time is due to scattering from an isochronous ellipsoid of
revolution. The intersection of this ellipsoid and the x-y plane is shown as an
ellipse. For 𝑅 ≫ 𝑑 this ellipsoid is well approximated as a sphere of radius
𝑅 centered on the midpoint of 𝑇𝑋-𝑅𝑋. This midpoint is known as the phase
center.

ellipsoid of revolution is given by

𝑥2

𝑅2 + 𝑦2

𝑅2 − 𝑑2 + 𝑧2

𝑅2 = 1 (1)

𝑥2 + 𝑦2

1 − 𝑑2

𝑅2

+ 𝑧2 = 𝑅2. (2)

In the far field, 𝑅 ≫ 𝑑 and the ellipsoid is well approximated as a
sphere of radius 𝑅. Under this approximation, the scattered returns of
any bistatic sensor pair can be approximated by a monostatic sensor
located at the midpoint between the transmitter and receiver. This mid-
point is known as the phase center. The sensed field is due to the integra-
tion of scatterers distributed over this spherical surface, and any pair of
transmitters and receivers with a common phase center will produce an
identical signal. For this reason, the phase center approximation is also
described as the “principle of waveform invariance” [16, 17].

The phase center approximation is valid in the far field of the Vernier
array when 𝑅 is larger than the Fraunhofer distance 𝑅 ≫ 2𝑑2/_ , where
_ is the wavelength [5]. As the range decreases and begins to approach
the Fraunhofer distance, the effect of the approximation’s breakdown is
the introduction of a delay between the signal observed from the mono-
static phase center and the signal observed from the bistatic sensor. Cor-
rection of this delay is required to achieve high-resolution imagery for
most (if not all) practical SAS sensors [18]. When 𝑅 is much less than
the Fraunhofer distance, the monostatic and bistatic signals begin to lose
coherence with each other. This effect is similar to the baseline decorre-
lation of interferometric sonars and radars [19].

Analytic Model for Ping-to-Ping Coherence: The van Cittert-Zernike
theorem was developed in the field of statistical optics, and it relates
the spatial distribution of the intensity of a incoherent radiator to the
coherence of the radiated field measured between two points [20]. This
theorem has been adapted to address the spatial coherence of scattered
acoustic fields [21, 22]. It has recently been extended to consider the
impact of temporal windowing for seabed scattering of pulsed active
sonar systems [23]. vCZT-based models for the spatial coherence of the
scattered field have motivated the development of algorithms for SAS
along-track motion estimation [24, 25].

The vCZT model provided by Brown, Gerg, and Blanford expresses
the covariance of a pair of receivers observing temporally-windowed
returns of the scattered field generated from a single transmission [24].
This single ping model is applicable to the multi-ping along-track
estimation problem when the phase center approximation is valid. To
directly evaluate the impact of the bistatic geometry for large synthetic
aperture sonar arrays requires explicit consideration of the transmitter
and receiver positions on a pair of successive pings.
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Fig 2 The vCZT is applied in Equation 3 using a geometry where a bistatic
sonar transmits a pair of pings from �̄�′

1 and �̄�′
2. After scattering from the

surface Ψ, the field is received at �̄�1 and �̄�2.

The vCZT model can be directly expanded to consider sequential
pings of a bistatic sonar. The covariance, less constant scaling factors,
of the field measured on the temporal interval [𝑡1 𝑡2] is

𝛾12 (𝑡1, 𝑡2 ) ∝
∫
𝜓

𝑏′
1 ( �̄�)𝑏1 ( �̄�)
𝑅′

1𝑅1
Λ1 ( �̄�,

𝑡2 + 𝑡1
2

, 𝑡2 − 𝑡1 )

𝑏′
2 ( �̄�)𝑏2 ( �̄�)
𝑅′

2𝑅2
Λ2 ( �̄�,

𝑡2 + 𝑡1
2

, 𝑡2 − 𝑡1 )

𝜎 ( �̄�)𝑒𝑖𝑘 (𝑅′
1+𝑅1−𝑅′

2−𝑅2 )d�̄�. (3)

The geometry for this equation is provided in Figure 2. The sonar trans-
mits at the positions �̄�′

1 and �̄�′
2 and receives the scattered field at �̄�1

and �̄�2, where numeric subscripts indicate ping number. For a high-
frequency SAS system, the scattered signal is dominated by the scat-
tering from the surface Ψ. The transmit and receive directivity functions
are 𝑏′ and 𝑏 respectively. 𝜎 ( �̄�) is the interface scattering strength, and
𝑘 is the acoustic wavenumber. The temporal interval [𝑡1 𝑡2] creates a
spatial “masking” of the seafloor, so only a finite region contributes to
the field observed at any instant in time. This effect is captured in the
masking function, Λ𝑚, which is defined for ping 𝑚 ∈ [1, 2] as

Λ𝑚 ( �̄�, 𝑡 , 𝜏 ) =


0 if 1

𝜏

��𝑡 − 1
𝑐
| �̄� − �̄�𝑚 | − 1

𝑐
| �̄� − �̄�′

𝑚 |
�� > 1

2
1
2 if 1

𝜏

��𝑡 − 1
𝑐
| �̄� − �̄�𝑚 | − 1

𝑐
| �̄� − �̄�′

𝑚 |
�� = 1

2
1 if 1

𝜏

��𝑡 − 1
𝑐
| �̄� − �̄�𝑚 | − 1

𝑐
| �̄� − �̄�′

𝑚 |
�� < 1

2 ,

(4)

where 𝑐 is the sound speed, and 𝜏 is the pulse length. Finally, many of
the terms in the integrand are shown as dependent on �̄� to emphasize
their role in determining the spatial distribution of intensity creating the
scattered field. By using this expression for the covariance of the field,
the correlation coefficient can be calculated as

𝜌12 (𝑡1, 𝑡2 ) =
𝛾12 (𝑡1, 𝑡2 )√︁

𝛾11 (𝑡1, 𝑡2 )𝛾22 (𝑡1, 𝑡2 )
. (5)

Signal coherence is commonly expressed using a correlation coeffi-
cient. Evaluation of Equations 3 and 5 gives the population correlation
of the scattered field for a given sensor, geometry, and environment. For
realistic sensors and environments, the integral in Equation 3 is evalu-
ated numerically with a model for the seafloor scattering strength and
measurements of the sensor directivity functions.

Simulation and Analysis of Ping-to-Ping Coherence: The vCZT model
developed above predicts the population coherence of signals received
in sequential pings of a SAS system. In this section, the time series mea-
sured by a sensor is directly simulated using a point-based sonar scatter-
ing model (PoSSM) [26]. The simulated sensor operates with a center
frequency of 200 kHz and a bandwidth of 30 kHz at an altitude of 15 m.
The transmitters and receivers are modeled with omnidirectional verti-
cal beam patterns and sinc patterns corresponding to transmit and receive
element widths of 4 cm. The SAS is simulated with a single channel of

overlap from ping to ping, and the transmitter and leading receiver chan-
nel are assumed to be co-located. Receive array lengths of 0.2 m, 1.2 m,
1.8 m, 2.4 m, and 3.0 m are simulated. The phase center coherence is
estimated by the peak magnitude of the complex correlation coefficient
calculated from pairs of sliding-window short-time Fourier transforms
(STFT). The STFTs are calculated with either 64-point or 128-point win-
dows using rectangular weighting. Sequential short-time windows have
50% overlap.

The vCZT-based population correlation coefficient predicted by
Equation 5 is compared to the mean sample correlation coefficient mag-
nitudes calculated from the PoSSM simulations in Figure 3. The cor-
relation coefficient was estimated using the two STFT lengths shown in
Figure 3a and 3b, respectively. The model-model agreement is good over
most of the simulated sensor ranges. This demonstrates that a long-range
SAS sensor’s loss of coherence observed at near operating ranges is well
captured using a vCZT model. Also, this pair of figures shows that the
near-range coherence can be partially recovered by reducing the window
length used in the coherence estimation process. There is a disagreement
between the models for weakly correlated signals at near ranges. The
PoSSM-based simulations exhibit window length dependent asymptotic
behavior between 0.2 and 0.3, while the vCZT models predict correla-
tion coefficients that extend to zero.

The vCZT-based approach provides a model predicting the true
population coherence, while the PoSSM-based approach estimates the
coherence from the simulated time series. Therefore, the PoSSM-based
approach is subject to the bias error associated with estimation of the
magnitude of the complex correlation coefficient. The bias associated
with the estimation of the magnitude of the complex correlation coeffi-
cient has been widely discussed [27–29]. This bias is further exacerbated
by the fact that the coherence estimates are found by calculating the cor-
relation coefficient across a set of temporal lags.

For large receive array lengths, the population coherence does not
monotonically increase with increasing range. Instead, |𝜌 | oscillates
between approximately 0 and 0.2. This effect is observed in Figure 3a
for the 300 cm array and in Figure 3b for the 240 cm and 300 cm arrays.
This ripple phenomenon is a function of both the bistatic separation and
the number of points in the STFT window. The complex covariance of
the scattered field (mutual intensity in the statistical optics literature)
originates at the ensonified region of the seafloor. It propagates to the
sensor according to a pair of second-order differential equations [30].
Mathematically, this is similar to the propagation of acoustic pressure
via the linearized wave equation. Given the mathematical similarity in
their wave equations, there is a close analogy between the spatial coher-
ence in this example and the acoustic pressure radiated from a piston
transducer. In the far field of the piston, the acoustic pressure changes
slowly with position relative to the source. In the near field, however, the
acoustic field has a fine structure with peaks and nulls dependent upon
position. The bistatic spatial coherence behaves similarly: the popula-
tion coherence is very sensitive to position at near range and insensitive
to position at far ranges.

This sensitivity is tied to the complex exponential in Eq. 3. The range
of phase angles in the complex exponential term in the integrand is small
when the bistatic separation is small compared to the range. At nearer
ranges, this term spans a much wider range of angles and the complex
exponential term oscillates over the integral. These oscillations cause the
value of the integral to be very sensitive to positions.

This near-range ripple effect, however, may be difficult to observe in
experimental data. Statistical estimation error introduces bias and vari-
ance to the magnitude of complex correlation coefficient, both of which
increase with decreasing population coherence [29]. This effect of esti-
mation bias has been observed in SAS systems for speckle coherence
[31] and for DPC micronavigation [25]. The challenges with observing
this ripple effect are apparent in the PoSSM simulated time-series data.
Statistical estimation error causes the correlation coefficient magnitude
estimates to plateau at short range to values greater than the ripple ampli-
tude. The increased variance in these estimates (compared to the regions
of higher coherence in the plot) further obscures the ripples.

Nonetheless, figure 3 exhibits a trend that is an important consid-
eration for motion estimation design: at near ranges, there is a loss of
coherence that depends both on the window length and the bistatic sepa-
ration. Figure 4 shows the slant range at which the population coherence
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Fig 3 The population coherence predicted by the vCZT model is compared
to the mean sample coherence estimated from PoSSM simulated time-series
using STFT windows of (a) 64 points and (b) 128 points. Mismatch for low
coherence values is due to bias in estimation of the magnitude of the complex
correlation coefficient from the time-series data.

of overlapping phase centers exceeds 0.99 ( |𝜌12 > 0.99 |) as a function
of the bistatic separation length for several STFT window lengths. At
this value of population coherence, the breakdown of the phase center
approximation has essentially no effect on motion estimation. This loss
of coherence is the same as would be experienced for perfectly coherent
signals with 20 dB signal-to-noise ratio (SNR) above additive incoher-
ent noise. As the bistatic separation increases, it is necessary to compare
signals from further out in range to ensure they will be coherent. This
minimum range, however, also increases for longer STFT windows.

As the range increases, the bistatic separation gradually becomes
small compared to the distance to the ensonified region of the seafloor.
This trend of the bistatic separation becoming small compared to the
range eventually results in the validity of the phase center approxima-
tion. This relationship explains some of the recovery in coherence. Note,
however, that the Fraunhofer distance at the center frequency for the
300 cm array is 2.4 km, assuming 𝑐 = 1500 m s−1. The |𝜌12 > 0.99 |
threshold occurs at ranges much shorter than the Fraunhofer distance for
all of the bistatic separations considered here. The STFT window length
is proportional to the size of the ensonified region of the seafloor, and
this dimension also is a factor. (When the range exceeds the Fraunhofer
distance for the array, the coherence is no longer dependent on the size of
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Fig 4 Loss of coherence is observed at near operating ranges for increas-
ing bistatic separation. The slant range at which the population coherence
degrades to 𝜌12 = 0.99 is plotted as a function of the bistatic separation
for STFT windows of 32, 64, 128, and 256 points. As the bistatic separa-
tion increases it becomes necessary to use shorter STFT windows in the time
delay estimation process used in DPC motion estimation algorithms.

the ensonified patch of seafloor.) At long ranges, however, SNR may be
less than 20 dB and cause the coherence to degrade below this threshold.
Lower thresholds may be appropriate for very long-range sensors.

These effects have implications for designing long range SAS arrays
and motion estimation algorithms. Using short windows can recover
some coherence loss, but it comes at the expense of increased statisti-
cal estimation error in the magnitude of the complex sample correlation
coefficients and the estimation error of the associated time delays. The
variance in the correlation coefficient estimates is inversely proportional
to the length of the window used in the estimate. For the time delays,
the variance in the estimates is inversely proportional to the square root
of the length of the window. Greater variance in the sample correlation
coefficient magnitudes and the estimated time delays will lead to greater
ping-to-ping errors in the sensor’s along-track and cross-track motion
estimates, respectively.

Conclusion: This paper has investigated the breakdown of the phase
center approximation for near-range scattering observed by SAS sen-
sors. This was accomplished through modeling with the vCZT to predict
the population coherence and PoSSM to generate an ensemble of pings
from which the sample coherence can be estimated. The vCZT method
was extended to address fully bistatic scattering from sequential pings
of a SAS. The vCZT and PoSSM models agree well, showing that near-
range coherence is impacted by the bistatic collection geometry of large
arrays. With increasing bistatic separation, a ripple effect is observed in
the population coherence at near range; however, this phenomenon was
found to be challenging to observe in data as it is obscured by statisti-
cal estimation error. The bistatic coherence was found to depend on the
window length used to estimate the correlation coefficient, which pro-
vides a method to mitigate coherence loss at near ranges. These effects,
however, may have important implications for the design of long-range
SAS arrays and motion estimation algorithms. Most long-range SAS
surveys will operate at altitudes that mitigate these issues. For short-
range imaging with a long-range sensor, the degradation of coherence
by the breakdown of the phase center approximation and additive noise,
when compounded by statistical estimation error, may place practical
limits on how the SAS sensor is employed and the design of the associ-
ated motion estimation algorithms.
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