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Abstract

This paper considers the problem of adaptive control against deception attacks for a class of switched nonlinear cyber-physical

systems (CPSs), in which each subsystem has more general and unknown nonlinearities. Specifically, an adaptive controller is

designed for CPSs with unknown switching mechanisms to mitigate the impact of state-dependent sensor attacks and input-

dependent actuator attacks. Compared with the existing researches, the actuator attacks considered in our paper are input-

dependent, which means the controller is substantially attacked, besides, the signs of unknown time-varying gains caused by

state-dependent sensor attacks and input-dependent actuator attacks are all unknown. To deal with these scenarios, Nussbaum-

type functions are introduced. In addition, by constructing a common Lyapunov function for all subsystems, the closed-loop

system signals are proved to be globally bounded under arbitrary switchings. Finally, we give a simulation example of a

continuously stirred tank reactor system with state-dependent sensor attacks and input-dependent actuator attacks to illustrate

the effectiveness of our results.
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Abstract

This paper considers the problem of adaptive control against deception attacks for a class of switched nonlinear cyber-
physical systems (CPSs), in which each subsystem has more general and unknown nonlinearities. Specifically, an adaptive
controller is designed for CPSs with unknown switching mechanisms to mitigate the impact of state-dependent sensor attacks
and input-dependent actuator attacks. Compared with the existing researches, the actuator attacks considered in our paper
are input-dependent, which means the controller is substantially attacked, besides, the signs of unknown time-varying gains
caused by state-dependent sensor attacks and input-dependent actuator attacks are all unknown. To deal with these scenarios,
Nussbaum-type functions are introduced. In addition, by constructing a common Lyapunov function for all subsystems, the
closed-loop system signals are proved to be globally bounded under arbitrary switchings. Finally, we give a simulation example
of a continuously stirred tank reactor system with state-dependent sensor attacks and input-dependent actuator attacks to
illustrate the effectiveness of our results.

Key words: cyber-physical systems, sensor attack, actuator attack, adaptive control.

1. Introduction

Cyber-physical systems (CPSs) are large-scale engineering systems which realize real-time perception, dynamic
control and information service, they are widely used in environment perception, embedded computing, network
communication and network control, such systems include large-scale manufacturing systems, transportation systems,
power systems and so on. The physical equipments in CPSs communicate through the heterogeneous networks and
have great requirements for safety. Due to the structure and control mode of CPSs, they are vulnerable to be
damaged.

Cyber attacks are the main threats to CPSs and have great impacts on data and security, and hence, it is crucial
to develop strategies that can mitigate their effects on CPSs. Recently, many strategies for mitigating the impact of
attacks have been developed for various types of cyber attacks, for example, strategies for denial of service (DOS)
attacks[1]-[7], deception attacks[8]-[23] and replay attacks[24]-[27]. Deception attacks that inject false information
into sensors or actuators, cause property loss and even endanger personal safety. Many adaptive mechanisms have
been designed for deception attacks in recent years, which can automatically adjust the settings to adapt to the
changes and disturbances of the dynamic systems when systems suffer deception attacks. Yucelen, Haddad and
Feron provided an adaptive control architecture for linear system in [29] to mitigate sensor attacks, where the sign of
state gain caused by sensor attack is assumed to be known. Further, Jin, Haddad and Yucelen designed an adaptive
controller for linear system with both sensor attack and actuator attack in [30], where the actuator attack is state-
dependent. An and Yang constructed an improved adaptive resilient control mechanism for linear system in [28] to
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Fig 1. Flow system in the presence of state-dependent sensor attacks and input-dependent actuator attacks.

reduce the impact of sensor and actuator attacks, which used Nussbaum function to handle the unknown sign of
state gain caused by sensor attack.

For nonlinear CPSs with deception attacks, in [9], an adaptive resilient control strategy was designed for mitigating
the impact of sensor attack and actuator attack in the lower triangular form, which used dynamic surface design
method to avoid complex explosion problems. Ren and Yang provided an adaptive control method in [15] for nonlinear
CPSs with sensor attacks, which used new types of Nussbaum functions to deal with the time-varying gains and the
Nussbaum-type (Ñ) functions are proved to be always effective in the scenarios of time-varying control coefficients
and/or multivariable with unknown signs. In [31], an adaptive control mechanism was proposed for second-order
nonlinear strict-feedback CPSs, which introduced nonlinear functions to deal with unknown time-varying gains.
Further, for switched nonlinear CPSs with sensor attacks and actuator attacks, Li and Zhao [33] provided a resilient
adaptive control scheme, where the switched nonlinear CPSs can describe the industry manufacturing process more
accurately, the effectiveness of the proposed scheme is verified by a class of continuously stirred tank reactor (CSTR)
system. However, under the above adaptive control strategies for mitigating deception attacks, many strategies
only consider sensor attack or actuator attack. When two attacks co-exist, the actuator attack is depicted as state-
dependent, has no substantial impact on the controller. Relatively speaking, it is more necessary to study input-
dependent actuator attacks, which aim at the whole control input u, are more tally with the actual situation. For
example, if the flow system suffers actuator attacks, will affect the whole control input, not the system state, which
is shown in Fig. 1. In addition, in the previous results, the forms of nonlinear functions are usually linear-like or
strict-feedback. Correspondingly, for the nonlinear functions in the system, there are few studies on non-triangular
forms, which are more complex and can describe many practical industrial processes. As far as we know, developing
an adaptive control strategy for switched nonlinear CPSs with state-dependent sensor attacks and input-dependent
actuator attacks, remains a challenging problem.

Inspired by the researches above, an adaptive controller is proposed for switched nonlinear CPSs with state-
dependent sensor attacks and input-dependent actuator attacks. Firstly, we assume that each subsystem of the
switched nonlinear system encounters state-dependent sensor attacks and input-dependent actuator attacks, and
the switching mechanism is unknown. Then, we design an adaptive control mechanism for the compromised system
to recover the system performance as ideal as possible. For better understanding, the following summary of our
contributions are given.

(1) An adaptive controller is designed for switched nonlinear systems in this paper, and the considered systems
encounter both state-dependent sensor attacks and input-dependent actuator attacks simultaneously, in addition,
external disturbances are taken into considered, too. By developing coordinate transformation in the backstepping
design, the provided adaptive control mechanism can effectively ensure the closed-loop system operation steadily.

(2) The considered actuator attacks are modeled as input-dependent actuator attacks related to control input
u, which means that the system encounters multiplicative actuator attacks, not state disturbances adding to the
controller. Further, the proposed control scheme is more tolerant to the occurrence of attacks; it is not only effective
when only sensor attacks or actuator attacks exists, but also when both sensor attacks and actuator attacks coexist.
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(3) By introducing Ñ functions, the problems of unknown time-varying gain signs are solved, which are caused by
state-dependent sensor attacks and input-dependent actuator attacks. Different from the works of Ren et al. [15],
An et al. [28], where only the sign of unknown time-varying state feedback coefficient caused by sensor attack is
assumed to be unknown, the signs of unknown time-varying gains caused by state-dependent sensor attacks and
input-dependent actuator attacks considered in our paper are all unknown, which make more drastic attacks be
tolerated.

The content of this article is organized as follows. The main features of state-dependent sensor attacks and input-
dependent actuator attacks are described in Section 2. Section 3 describes the design of controller using backstepping
method. Section 4 gives the simulation results on CSTR system. Finally, in Section 5, some conclusions are drawn.

2. System description and preliminaries

Consider the following switched nonlinear CPSs whose subsystems are described as

ẋm(t) =xm+1(t) + φσ,m(x̌m+1(t)) + dσ,m(t), m = 1, 2, . . . , n− 1,

ẋn(t) =uσ(t) + φσ,n(x(t)) + dσ,n(t), (1)

where x(t) = [x1, x2, . . . , xn]T ∈ Rn denotes system state; for each m, x̌m = [x1, x2, . . . , xm]T ∈ Rm; uσ(t) represents
the control input. φσ,i(·), i = 1, 2, . . . , n, are unknown and continuous nonlinear functions with φσ,i(0) = 0. dσ,i(t)

are disturbances with upper bounds dσ,i. σ := σ(t) : [0,∞) → S = {1, 2, . . . , Q} is the switching signal, where Q
is the number of subsystems. For clarity, the index σ(t) = s ∈ S denotes the s-th subsystem is activated at time
instant t. Without causing confusion, the argument t of variable x(t) is sometimes dropped for simplifying process.

In fact, the system (1) in CPSs is easily to suffer state-dependent sensor attacks and input-dependent actuator
attacks. However, in the actual industrial process with state-dependent sensor attacks and input-dependent actuator
attacks, xi(t), i = 1, 2, . . . , n, uσ(t), ϕi(xi(t), t) and ϕa,σ(uσ(t), t) cannot be obtained accurately, where ϕi(xi(t), t)
are state-dependent sensor attacks and ϕa,σ(uσ(t), t) are input-dependent actuator attacks. Correspondingly, the
compromised system state x̃i(t) and control input ũσ(t) can be obtained and used in feedback. Next, we give the
compromised system state as

x̃i(t) = xi(t) + ϕi(xi(t), t), i = 1, 2, . . . , n. (2)

In the actual attack scenario, the state-dependent sensor attacks ϕi(xi(t), t), t ≥ 0 are time-varying, state-dependent
and parameterized with ϕi(xi(t), t) = µσ(t)xi(t), where µσ(t) 6= −1, t ≥ 0. The time-varying weights µσ(t) are
bounded with |µσ(t)| ≤ µσ and have bounded rate of change with |µ̇σ(t)| ≤ µ̇σ, where µσ and µ̇σ are unknown
positive constants. Further, the compromised control input can be specifically described as

ũσ(t) = uσ(t) + ϕa,σ(uσ(t), t). (3)

Correspondingly, the input-dependent actuator attacks ϕa,σ(uσ(t), t), t ≥ 0 are time-varying, input-dependent and
parameterized with ϕa,σ(uσ(t), t) = ρa,σ(t)uσ(t), where ρa,σ(t) 6= −1, t ≥ 0. The time-varying weights ρa,σ(t) are

bounded with |ρa,σ(t)| ≤ ρa,σ and have bounded rate of change with |ρ̇a,σ(t)| ≤ ρ̇a,σ, where ρa,σ and ρ̇a,σ are
unknown positive constants.

Remark 1: For non-switched nonlinear CPSs with deception attacks, Ren and Yang provided an adaptive control
method in [15] when sensor attack exist. In [9], an adaptive resilient control strategy was designed to mitigate the
impact of sensor attacks and actuator attacks for the systems in lower triangular form. Comparing with the triangular
form, the nonlinear functions in our system (1) are in non-triangular forms, which have more general nonlinearities
and can describe many practical industrial processes. For instance, the CSTR systems in Section 4 can be described
by our system (1).

This paper aims to design an adaptive controller for switched nonlinear CPS with state-dependent sensor attacks
and input-dependent actuator attacks, which can ensure system operation steadily under arbitrary switchings.

In order to achieve the above objectives, the following analysis will be provided. For state-dependent sensor attacks,
suppose ησ(t) = (1 + µσ(t))−1, xi(t) and ησ(t) have the following relationship

xi(t) = ησ(t)x̃i(t). (4)

Since µσ(t) are bounded, there exist positive constants ησ,m, ησ,M and ¯̇ησ such that ησ,m ≤ |ησ(t)| ≤ ησ,M and
|η̇σ(t)| ≤ ¯̇ησ.

Further, for input-dependent actuator attacks, suppose ωσ(t) = 1 + ρa,σ(t), then we can get

ũσ(t) = ωσ(t)uσ(t).
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Similarly, since ρa,σ(t) are bounded, there exist positive constants ωσ,m, ωσ,M and ¯̇ωσ such that ωσ,m ≤ |ωσ(t)| ≤ ωσ,M
and |ω̇σ(t)| ≤ ¯̇ωσ.

After being attacked, the signs of unknown time-varying gains (1 + µσ(t)) and (1 + ρa,c(t)) caused by sensor
attacks and actuator attacks may be changed. The signs of unknown time-varying gains caused by sensor attacks in
[29] and [30] are assumed to be known. Further, Ren and Yang [15], An and Yang [28] used Nussbaum functions to
deal with unknown time-varying gains caused by sensor attacks. Different from the cases that the unknown signs of
time-varying gains considered in them, the signs of unknown time-varying gains (1 + µσ(t)) and (1 + ρa,c(t)) caused
by state-dependent sensor attacks and input-dependent actuator attacks in our work are all unknown.

In this paper, Ñ functions will be introduced for dealing with the unknown signs caused by the unknown time-
varying gains, the definition of Ñ functions and some useful lemmas are as follows.

Definition 1 [35]: If a continuous function N(λ) ∈ N satisfies

lim
h→∞

inf
h−

∫ h
0
N−(λ)d(λ)∫ h

0
N+(λ)d(λ)

= 0,

lim
h→∞

inf
h+

∫ h
0
N+(λ)d(λ)

−
∫ h

0
N−(λ)d(λ)

= 0,

then N(λ) is named as Ñ function and expressed as N(λ) ∈ Ñ ⊂ N, where N is the set of Nussbaum functions,
N+(λ) ≥ 0 and N−(λ) ≤ 0 are truncated functions with N(λ) = N+(λ) +N−(λ).

Lemma 1: [36] Let V (·) and λ(·) be smooth functions defined on [0,∞) with V (t) > 0, λ̇(t) ≥ 0, ∀t ≥ 0, if there
exist time-varying functions ςj(t) ∈ L = [l−m, l

+
m] with 0 /∈ L, positive constants A and B that make the following

inequality holds:

V̇ (t) ≤ −AV +B +

n∑
j=1

(ςj(t)N(λ(t)) + 1)λ̇(t),

where l−m and l+m are constants, N(·) ∈ Ñ, then V (t) and λ(t) are bounded for t ∈ [0,∞).
Remark 2: Nussbaum functions are used to solve the stabilization problem of systems with uncertain control

coefficients, for example, they can be used for missile guidance system to deal with gain issues. However, for dealing
with systems which have time-varying and/or multivariable control coefficients with unknown signs, not all Nussbaum

functions are effective [34]. This paper introduce Ñ ⊂ N functions to deal with the unknown signs caused by unknown

time-varying gains, and Ñ are proved to be effective when dealing with systems which have time-varying and/or

multivariable control coefficients with unknown signs. For example, functions eλ
2

cos(π2λ) and eλ
2

sin(π2λ) are all Ñ
functions.

Remark 3: For clarity, we give a simple example to illustrate the principle of Ñ, Fig. 2 shows N(λ) = cos(2πλ)λ2.
From the example, we know that with the continuous switching of symbols and the increase of amplitude, the system
state is driven to swing constantly, so that the state can swing up and down again and again. When the system
state is close to 0, the system state and the derivative of Nussbamn function become 0. In this case, it is no longer
necessary to know whether the control direction of the system is positive or negative.

The following lemma will be presented to handle the nonlinear terms φσ,m(·) which related to the unavailable
state x̌m+1(t), where φσ,m(·) in system (1) are non-triangular.

Lemma 2: [37] For any continuous function φ(z, x), there always exist smooth functions r(z) ≥ 1 and l(x) ≥ 1
such that |φ(z, x)| ≤ r(z)l(x).

Remark 4: For the non-triangular nonlinear item φs,m(x̌m+1(t)), the state vector x̌m+1(t) in which are the abbre-
viation of (x1, x2, . . . , xm, xm+1), i.e. the first m+1 component of state x. Further, the system state suffered attacked
and the (m+ 1)-th component of compromised system state are x̃m+1(t). From the relationships between xm+1 and
x̃m+1(t), (4), then φs,m(x̌m+1(t)) can be regarded as functions of ηs and ˇ̃xm+1, where ˇ̃xm+1 = (x̃1, x̃2, · · · , x̃m+1).

It is denoted by φs,m(ηs, ˇ̃xm+1) , φs,m(x̌m+1(t)). From Lemma 2 and the boundedness of ηs, there exist smooth

functions rs(ηs), l̄s,m(ˇ̃xm+1) and unknown constants r̄s such that φs,m(ηs, ˇ̃xm+1) ≤ rs(η)l̄s(ˇ̃xm+1) ≤ r̄s l̄s,m(ˇ̃xm+1),
where r̄s are the upper bound of rs(ηs).

Remark 5: The works in [28] and [30] have studied adaptive control strategies for linear systems with sensor
attacks and actuator attacks. Further, the works in [9], [33] and [31] have studied adaptive control strategies for
nonlinear system with sensor attacks and actuator attacks, which, formally, the actuator attacks in their studies
can be regarded as state disturbances adding to the controller. The system we are considering is fundamentally
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Fig 2. The imagine of Nussbaum function.

different from the system in the work of [9] and [33]. The actuator attacks in our system are input-dependent, which
have direct multiplier effects on the controller itself. In fact, it is more realistic to represent actuator attacks as
direct multiplier effects on the controller as a whole. Further, the unknown gains caused by the input-dependent
actuator attacks need to be considered separately, which makes the design of step n more complicated. Therefore,
the controller design we are considering is much more difficult.

3. Adaptive control design for input-dependent actuator attacks

Without loss of generality, we introduce the backstepping design process for the s-th subsystem. First, the following
coordinate transformations are introduced to serve the design of the controller,

e1 = x1, ei = xi − ηsαi−1, i = 2, 3, . . . , n, (5)

where, for ηs, the bound of it is denoted by 0 < ηs,m ≤ |ηs| ≤ ηs,M , and the bounded rate of change is denoted
by |η̇s| ≤ ¯̇ηs, ηs,m, ηs,M and ¯̇ηs are unknown positive constants. Combining (4) and (5), the following equations are
obtained,

ẽ1 = x̃1, ẽi = x̃i − αi−1, (6)

where αi−1 are virtual controllers to be designed. Further, according to (4), (5) and (6), the relation ei = ηsẽi holds.
In the following, we will give the steps of designing the adaptive controller for the s-th subsystem.
Step 1: From (1) and (5), we have

ė1 = ẋ1 = x2 + φs,1(x̌2(t)) + ds,1(t) = e2 + ηsα1 + φs,1(x̌2(t)) + ds,1(t).

Similar to Remark 4, φs,1(x̌2(t)) can be regarded as functions of ηs and ˇ̃x2, where ˇ̃x2 = (x̃1, x̃2). And it is denoted

by φs,1(ηs, ˇ̃x2) , φs,1(x̌2(t)). Further, from Lemma 2 and the boundedness of ηs, there exist smooth functions rs(ηs),

l̄s,1(ˇ̃x2) and unknown constants r̄s such that φs,1(ηs, ˇ̃x2) ≤ rs(ηs)l̄s,1(ˇ̃x2) ≤ r̄s l̄s,1(ˇ̃x2).
By choosing the following Lyapunov function candidate

Vs,1 =
1

2
e2

1 +
1

2
δ̃2
1 ,

we can get

V̇s,1 =e1(e2 + ηsα1 + φs,1(x̌2(t)) + ds,1(t)) + δ̃1
˙̃
δ1

≤e1e2 + e1ηsα1 + e1r̄s l̄s,1(ˇ̃x2) + e1ds,1(t) + δ̃1
˙̃
δ1
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≤1

2
e2

1 +
1

2
e2

2 + e1ηsα1 +
1

2
ε1e

2
1r̄

2
s l̄

2
s,1(ˇ̃x2) +

1

2
ε1e

2
1d

2

s,1 + δ̃1
˙̃
δ1 +

1

ε1
, (7)

≤1

2
e2

1 +
1

2
e2

2 + e1ηsα1 +
1

2
ε1ẽ

2
1δ1 l̄

2
s,1(ˇ̃x2) +

1

2
ε1e

2
1d

2

s,1 + δ̃1
˙̃
δ1 +

1

ε1
,

where ε1 is a positive constant to be determined and δ1 = η2
s,M r̄

2
s is an unknown constant.

Design the virtual controller as

α1 = −b1ẽ1 +N(λ1)β1 −
1

2
ε1ẽ1d

2

s,1, (8)

with

β1 =
1

2
ε1ẽ1δ̂1 l̄

2
s,1(ˇ̃x2),

where δ̂1 is the estimate of δ1, δ̃1 = δ̂1 − δ1, b1 is a positive constant to be designed, λ1 is a smooth function with
λ̇1 = ẽ1β1. Substitute (8) into (7), we have

V̇s,1 ≤
1

2
e2

1 +
1

2
e2

2 + e1ηs(−b1ẽ1 +N(λ1)β1 −
1

2
ε1ẽ1d

2

s,1) +
1

2
ε1ẽ

2
1δ1 l̄

2
s,1(ˇ̃x2)

+
1

2
ε1e

2
1d

2

s,1 + δ̃1
˙̃
δ1 +

1

ε1

=
1

2
e2

1 +
1

2
e2

2 − b1e2
1 +

1

2
ε1N(λ1)ẽ2

1η
2
s δ̂1 l̄

2
s,1(ˇ̃x2)− 1

2
ε1e

2
1d

2

s,1

+
1

2
ε1ẽ

2
1δ1 l̄

2
s,1(ˇ̃x2) +

1

2
ε1e

2
1d

2

s,1 + δ̃1
˙̃
δ1 +

1

ε1

=− (b1 −
1

2
)e2

1 +
1

2
e2

2 + (η2
sN(λ1) + 1)ẽ1

1

2
ε1ẽ1δ̂1 l̄

2
s,1(ˇ̃x2)− 1

2
ε1ẽ

2
1δ̃1 l̄

2
s,1(ˇ̃x2) + δ̃1

˙̃
δ1 +

1

ε1

=− b̄1e2
1 +

1

2
e2

2 + (ς1(t)N(λ1) + 1)λ̇1 + δ̃1(
˙̃
δ1 −

1

2
ε1ẽ

2
1 l̄

2
s,1(ˇ̃x2) + kδ̂1)− kδ̃1δ̂1 +

1

ε1
(9)

=− b̄1e2
1 +

1

2
e2

2 + (ς1(t)N(λ1) + 1)λ̇1 + δ̃1(
˙̃
δ1 − π1,1)− kδ̃1δ̂1 +

1

ε1
,

where b̄1 = b1 − 1
2 , b1 ≥ 1

2 and ς1(t) = η2
s , π1,1 = ξ1,1 − kδ̂1, k is a constant. The intermediate variable ξ1,1 =

1
2ε1ẽ

2
1 l̄

2
s,1(ˇ̃x2).

Step 2: Based on (1) and (5), we have

ė2 = ẋ2 − η̇sα1 − ηsα̇1

= x3 + φs,2(x̌3(t)) + ds,2(t)− η̇sα1 − ηsα̇1

= e3 + ηsα2 + φs,2(x̌3(t)) + ds,2(t)− η̇sα1 − ηs(
∂α1

∂x̃1

ηsẋ1 − η̇sx1

η2
s

+
∂α1

∂δ̂1

˙̂
δ1 +

∂α1

∂λ1
λ̇1).

Similar to Remark 4 and the proof described above, φs,2(x̌3(t)) can be regarded as functions of ηs and ˇ̃x3, where
ˇ̃x3 = (x̃1, x̃2, x̃3). And it is denoted by φs,2(ηs, ˇ̃x3) , φs,2(x̌3(t)). Further, from Lemma 2 and the boundedness of

ηs, there exist smooth functions rs(ηs), l̄s,2(ˇ̃x3) and unknown constants r̄s such that φs,2(ηs, ˇ̃x3) ≤ rs(ηs)l̄s,2(ˇ̃x3) ≤
r̄s l̄s,2(ˇ̃x3).

The Lyapunov function candidate is chosen as

Vs,2 = Vs,1 +
1

2
e2

2 +
1

2
δ̃2
2 +

1

2
δ̃2
0 ,

then

V̇s,2 =V̇s,1 + e2(e3 + ηsα2 + φs,2(x̌3(t)) + ds,2(t)− η̇sα1

6



− ηs(
∂α1

∂x̃1

ηsẋ1 − η̇sx1

η2
s

+
∂α1

∂δ̂1

˙̂
δ1 +

∂α1

∂λ1
λ̇1)) + δ̃2

˙̃
δ2 + δ̃0

˙̃
δ0. (10)

Using Young’s inequality, the following inequality holds,

e2φs,2(x̌3(t)) ≤ 1

2
ε1η

2
s ẽ

2
2r̄

2
s l̄

2
s,2(ˇ̃x3) +

1

2ε1
. (11)

Based on (1) and Lemma 2, we have

e2ηs
∂α1

∂x̃1

ηsẋ1 − η̇sx1

η2
s

=e2
∂α1

∂x̃1
ẋ1 − e2

∂α1

∂x̃1

η̇sx1

ηs

=e2
∂α1

∂x̃1
(x2 + φs,1(x̌2(t)))− e2

∂α1

∂x̃1

η̇sx1

ηs
(12)

≤e2ηs
∂α1

∂x̃1
x̃2 +

1

2
ε1η

2
s ẽ

2
2(
∂α1

∂x̃1
)2r̄2

s l̄
2
s,1(ˇ̃x2) +

1

2ε1
− η̇se2

∂α1

∂x̃1
x̃1.

Substituting (11) and (12) into (10),

V̇s,2 ≤V̇s,1 +
1

2
e2

2 +
1

2
e2

3 + e2ηsα2 +
1

2
ε1ẽ

2
2δ2 l̄

2
s,2(ˇ̃x3) +

1

2
ε1e

2
2d

2

s,2

− e2ηs(
∂α1

∂x̃1
x̃2 +

∂α1

∂δ̂1

˙̂
δ1 +

∂α1

∂λ1
λ̇1) +

1

2
ε1ẽ

2
2(
∂α1

∂x̃1
)2δ1 l̄

2
s,1(ˇ̃x2) (13)

+
1

2
ε1ẽ

2
2(
∂α1

∂x̃1
x̃1 − α1)2δ0 + δ̃2

˙̃
δ2 + δ̃0

˙̃
δ0 +

2

ε1
,

where δ2 = η2
s,M r̄

2
s and δ0 = ¯̇η2

sη
2
s,M are unknown constants.

Design the virtual controller as

α2 = −b2ẽ2 +
∂α1

∂x̃1
x̃2 +

∂α1

∂δ̂1
π1,2 +

∂α1

∂λ1
λ̇1 +N(λ2)β2 −

1

2
ε1ẽ2d

2

s,2, (14)

with

β2 =
1

2ẽ2
ε1(δ̂1ξ1,2 + δ̂2ξ2,1 + δ̂0ξ0,1),

where δ̂0 and δ̂2 are the estimates of δ0 and δ2, respectively, b2 is a positive constant to be designed, ξ1,2 =

ẽ2
2(∂α1

∂x̃1
)2 l̄2s,1(ˇ̃x2), ξ2,1 = ẽ2

2 l̄
2
s,2(ˇ̃x3), ξ0,1 = ẽ2

2(∂α1

∂x̃1
x̃1 − α1)2, π1,2 = ξ1,2 + π1,1 and λ2 is a smooth function with

λ̇2 = ẽ2β2. Further, denote π2,1 = ξ2,1 − kδ̂2 and π0,1 = ξ0,1 − kδ̂0 , where k is a constant. Substitute (14) into (13),
we have

V̇s,2 ≤− b̄1e2
1 − b̄2e2

2 +
1

2
e2

3 +

2∑
j=1

(ςj(t)N(λj) + 1)λ̇j +

2∑
j=1

δ̃j(
˙̃
δj − πj,2−j+1)

+ kδ̃0(
˙̃
δ0 − π0,1)− e2ηs

∂α1

∂δ̂1
(
˙̂
δ1 − π1,2)− k

2∑
j=0

δ̃j δ̂j + 6× 1

2ε1
,

with b̄2 = b2 − 1, b2 ≥ 1 and ς2(t) = η2
s .

Step i (3 ≤ i ≤ n− 1): Based on (1) and (5), we have

ėi =ẋi − η̇sαi−1 − ηsα̇i−1

7



=xi+1 + φs,i(x̌i+1(t)) + ds,i(t)− η̇sαi−1 − ηsα̇i−1

=ei+1 + ηsαi + φs,i(x̌i+1(t)) + ds,i(t)− η̇sαi−1 − ηs(
i−1∑
j=1

∂αi−1

∂x̃j

ηsẋj − η̇sxj
η2
s

+

i−1∑
j=0

∂αi−1

∂δ̂j

˙̂
δj +

i−1∑
j=1

∂αi−1

∂λj
λ̇j).

From Remark 4, φs,i(x̌i+1(t)) can be regarded as functions of ηs and ˇ̃xi+1, where ˇ̃xi+1 = (x̃1, x̃2, · · · , x̃i+1). And

it is denoted by φs,i(ηs, ˇ̃xi+1) , φs,i(x̌i+1(t)). By Lemma 2 and the boundedness of ηs, there exist smooth functions

rs(ηs), l̄s,i(ˇ̃xi+1) and unknown constants r̄s such that φs,i(ηs, ˇ̃xi+1) ≤ rs(η)l̄s(ˇ̃xi+1) ≤ r̄s l̄s,i(ˇ̃xi+1), where r̄s are the
upper bound of rs(ηs).

Construct the following Lyapunov function

Vs,i = Vs,i−1 +
1

2
e2
i +

1

2
δ̃2
i ,

then,

V̇s,i =V̇s,i−1 + ei(ei+1 + ηsαi + φs,i(x̌i+1(t)) + ds,i(t)− η̇sαi−1

− ηs(
i−1∑
j=1

∂αi−1

∂x̃j

ηsẋj − η̇sxj
η2
s

+

i−1∑
j=0

∂αi−1

∂δ̂j

˙̂
δj +

i−1∑
j=1

∂αi−1

∂λj
λ̇j)) + δ̃i

˙̃
δi. (15)

Using Young’s inequality, the following inequality holds,

eiφs,i(x̌i+1(t)) ≤ 1

2
ε1η

2
s ẽ

2
i r̄

2
s l̄

2
s,i(ˇ̃xi+1) +

1

2ε1
. (16)

Based on (1) and Lemma 2, one has

eiηs

i−1∑
j=1

∂αi−1

∂x̃j

ηsẋj − η̇sxj
η2
s

=ei

i−1∑
j=1

∂αi−1

∂x̃j
ẋj − ei

i−1∑
j=1

∂αi−1

∂x̃j

η̇sxj
ηs

=ei

i−1∑
j=1

∂αi−1

∂x̃j
(xj+1 + φs,j(x̌j+1(t)))− ei

i−1∑
j=1

∂αi−1

∂x̃j

η̇sxj
ηs

≤eiηs
i−1∑
j=1

∂αi−1

∂x̃j
x̃j+1 +

1

2
ε1η

2
s ẽ

2
i

i−1∑
j=1

(
∂αi−1

∂x̃j
)2r̄2

s l̄
2
s,j(ˇ̃xj+1) +

1

2ε1
− η̇sei

i−1∑
j=1

∂αi−1

∂x̃j
x̃j

≤V̇i−1 +
1

2
e2
i +

1

2
e2
i+1 + eiηsαi +

1

2
ε1e

2
i d

2

s,i (17)

− eiηs(
i−1∑
j=1

∂αi−1

∂x̃j
x̃j+1 +

i−1∑
j=0

∂αi−1

∂δ̂j

˙̂
δj +

i−1∑
j=1

∂αi−1

∂λj
λ̇j)

+
1

2
ε1ẽ

2
i δi l̄

2
s,i(ˇ̃xi+1) +

1

2
ε1ẽ

2
i δ0(

i−1∑
j=1

∂αi−1

∂x̃j
x̃j − αi−1)2

+
1

2
ε1ẽ

2
i

i−1∑
j=1

(
∂αi−1

∂x̃j
)2δj l̄

2
s,j(ˇ̃xj+1) + δ̃i

˙̃
δi + (i+ 2)× 1

2ε1
,

where δi = η2
s,M r̄

2
s .
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The virtual controller is designed as

αi =− biẽi −
1

2
ε1ẽid

2

s,i +

i−1∑
j=1

∂αi−1

∂x̃j
x̃j+1 +

i−1∑
j=1

∂αi−1

∂δ̂j
πj,i−j+1 +

i−1∑
j=1

∂αi−1

∂λj
λ̇j +

∂αi−1

∂δ̂0
π0,i−1

+N(λi)βi +
1

ẽi

i−2∑
q=1

i−1∑
j=1+q

ẽj
∂αj−1

∂δ̂q
ξq,i−q+1 +

1

ẽi

i−1∑
j=3

ẽj
∂αj−1

∂δ̂0
ξ0,i−1, (18)

with

βi =
1

2ẽi
ε1(

i∑
j=1

δ̂jξj,i−j+1 + δ̂0ξ0,i−1),

where δ̂i is the estimate of δi, δ̃i = δ̂i − δi, λi is a smooth function with λ̇i = ẽiβi, bi is a positive constant

to be designed, denote ξj,i−j+1 = ẽ2
i (
∂αi−1

∂x̃j
)2 l̄2s,j(ˇ̃xj+1), ξ0,i−1 = ẽ2

i (
∑i−1
j=1

∂αi−1

∂x̃j
x̃j − αi−1)2, ξi,1 = ẽ2

i l̄
2
s,i(ˇ̃xi+1),

πj,i−j+1 = ξj,i−j+1 + πj,i−j , π0,i−1 = ξ0,i−1 + π0,i−2 and πi,1 = ξi,1 − kδ̂i. Substitute (16)-(18) into (15), we have

V̇s,i ≤−
i∑

j=1

b̄je
2
j +

1

2
e2
i+1 +

i∑
j=1

δ̃j(
˙̃
δj − πj,i−j+1) +

i∑
j=1

(ςj(t)N(λj) + 1)λ̇j

+ δ̃0(
˙̃
δ0 − π0,i−1)− ηs

i−1∑
q=1

i∑
j=q+1

ej
∂αi−1

∂δ̂q
(
˙̂
δq − πq,i−q+1)− ηs

i∑
j=3

ej
∂αi−1

∂δ̂0
(
˙̂
δ0 − π0,i−1)

− k
i∑

j=0

δ̃j δ̂j + (
(i+ 1)(i+ 4)

2
− 3)× 1

2ε1
,

where b̄j = bj − 1, bj ≥ 1 and ςj(t) = η2
s for j = 3, 4, . . . , n− 1.

Step n: From (1) and (5), one has

ėn =us(t) + ϕa,s(us(t), t) + φs,n(x(t)) + ds,n(t)− η̇sαn−1 − ηsα̇n−1

=(1 + ρa,s(t))us(t) + φs,n(x(t)) + ds,n(t)− η̇sαn−1 − ηsα̇n−1

=ωs(t)us(t) + φs,n(x(t)) + ds,n(t)− η̇sαn−1 − ηs(
n−1∑
j=1

∂αn−1

∂x̃j

ηsẋj − η̇sxj
η2
s

+

n−1∑
j=0

∂αn−1

∂δ̂j

˙̂
δj +

n−1∑
j=1

∂αn−1

∂λj
λ̇j).

Similar to the proof described above, we can also get that φs,n(x(t)) can be regarded as functions of ηs and
ˇ̃xn, where ˇ̃xn = (x̃1, x̃2, . . . , x̃n). And it is denoted by φs,n(ηs, ˇ̃xn) , φs,n(xn(t)). Further, from Lemma 2 and the

boundedness of ηs, there exist smooth functions rs(ηs), l̄s,n(ˇ̃x(t)) and unknown constants r̄s such that φs,n(ηs, ˇ̃x(t)) ≤
rs(ηs)l̄s,n(ˇ̃x(t)) ≤ r̄s l̄s,n(ˇ̃x(t)).

Construct the following Lyapunov function

Vs,n = Vs,n−1 +
1

2
e2
n +

1

2
δ̃2
n +

1

2
δ̃2
n+1,

then,

V̇s,n ≤V̇s,n−1 + en(ωsus − ηsαn + ηsαn)− enηs(
n−1∑
j=1

∂αn−1

∂x̃j
x̃j+1 +

n−1∑
j=0

∂αn−1

∂δ̂j

˙̂
δj +

n−1∑
j=1

∂αn−1

∂λj
λ̇j)

+
1

2
ε1e

2
nd

2

s,n +
1

2
ε1ẽ

2
nδn l̄

2
s,n(ˇ̃x(t)) +

1

2
ε1ẽ

2
i δ0(

n−1∑
j=1

∂αn−1

∂x̃j
x̃j − αn−1)2 (19)
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+
1

2
ε1ẽ

2
n

n−1∑
j=1

(
∂αn−1

∂x̃j
)2δj l̄

2
s,j(ˇ̃xj+1) + δ̃n

˙̃
δn + δ̃n+1

˙̃
δn+1 +

(n+ 2)

2ε1
,

where δn = η2
s,M r̄

2
s and δn+1 = η4

s,M .
The virtual controller is designed as

αn =− bnẽn −
1

2
ε1ẽnd

2

s,n +

n−1∑
j=1

∂αn−1

∂x̃j
x̃j+1 +

n−1∑
j=1

∂αn−1

∂δ̂j
πj,n−j+1 +

n−1∑
j=1

∂αn−1

∂λj
λ̇j +

∂αn−1

∂δ̂0
π0,n−1

+N(λn)βn +
1

ẽn

n−2∑
q=1

n−1∑
j=1+q

ẽj
∂αj−1

∂δ̂q
ξq,n−q+1 +

1

ẽn

n−1∑
j=3

ẽj
∂αj−1

∂δ̂0
ξ0,n−1, (20)

with

βn =
1

2ẽn
ε1(

n∑
j=1

δ̂jξj,n−j+1 + δ̂0ξ0,n−1),

where δ̂n is the estimate of δn, δ̃n = δ̂n − δn, bn is a positive constant to be designed, λn is a smooth function

with λ̇n = ẽnβn, ξj,n−j+1 = ẽ2
n(∂αn−1

∂x̃j
)2 l̄2s,j(ˇ̃xj), j = 1, 2, . . . , n − 1,, ξ0,n−1 = ẽ2

n(
∑n−1
j=1

∂αn−1

∂x̃j
x̃j − αn−1)2, ξn,1 =

ẽ2
n l̄

2
s,n(ˇ̃x(t)), πj,n−j+1 = ξj,n−j+1 + πj,n−j and π0,n−1 = ξ0,n−1 + π0,n−2.

The adaptive laws of the parameters are designed as

˙̂
δ0 = π0,n−1,

˙̂
δj = πj,n−j+1, j = 1, 2, . . . , n, (21)

where πn,1 = ξn,1 − kδ̂n.
Then,

V̇s,n ≤ ˙̃Vs,n + en(ωsus − ηsαn) + δ̃n+1
˙̃
δn+1,

where

˙̃Vs,n ≤ −
n∑
j=1

b̄je
2
j − k

n∑
j=0

δ̃j δ̂j +

n∑
j=1

(ςj(t)N(λj) + 1)λ̇j +
n2 + 5n− 2

4ε1
,

with b̄n = bn − 1, bn ≥ 1 and ςn(t) = η2
s .

Then we have the actual control law

u =N(λn+1)βn+1,

βn+1 =ẽnδ̂n+1α
2
n, (22)

λ̇n+1 =ẽnβn+1,

and the adaptive law of δ̂n+1

˙̂
δn+1 = ẽ2

nα
2
n − kδ̂n+1, (23)

where δ̃n+1 = δ̂n+1 − δn+1 and δ̂n+1 is the estimate of δn+1.
Then,

V̇s,n ≤ −
n∑
j=1

b̄je
2
j − k

n+1∑
j=0

δ̃j δ̂j +

n+1∑
j=1

(ςj(t)N(λj) + 1)λ̇j +
n2 + 5n− 2

4ε1
,
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Fig 3. The schematic diagram of CSTR.

where ςn+1(t) = ωsηs.
Define

A = min{2b̄1, 2b̄2, . . . , 2b̄n, k} and B =

n+1∑
j=0

1

2
kδ2
j +

n2 + 5n− 2

4ε1
.

Using the Young’s inequality, the following relations hold

−kδ̃j δ̂j ≤ −
1

2
kδ̃2
j +

1

2
kδ̂2
j , j = 0, 1, 2, . . . , n+ 1.

Then, we can get

V̇s,n(t) ≤ −AVs,n +B +

n+1∑
j=1

(ςj(t)N(λj))λ̇j(t).

From Lemma 1, the following theorem can be obtained.
Theorem 1: For system (1) with state-independent sensor attacks ϕi(xi(t), t) and input-independent actuator

attacks ϕa,s(us(t), t), the proposed controller (22) with adaptive laws (21), (23) and constants b1 ≥ 1
2 , bj ≥ 1,

j = 2, 3, . . . , n ensure that all signals of the closed-loop system are bounded under the arbitrary switchings.

4. Simulation results

To verify the theoretical results of the provided adaptive control mechanism for switched nonlinear CPSs in the
presence of state-dependent sensor attacks and input-dependent actuator attacks, simulation example of a class
of CSTR system with state-dependent sensor attacks and input-dependent actuator attacks is introduced in this
section. Fig. 3 shows the schematic diagram of CSTR system. The kinetic equation of CSTR system in the work of
Li and Zhao [33] is employed in this section, which is described as

ẋ1 =
Fs(x1,in,s − x1)

V
+Ksψs(x1, x2),

ẋ2 =
Fs(x2,in,s − x2)

V
+ χ(x2c − x2)−∆Hs(x1, x2)ψs(x1, x2), (24)

where s takes value from the set S = {1, 2}, x1,in,s, x1 ∈ R are the chemical species concentration in the input flow
and in the reactor respectively, x2,in,s, x2 ∈ R are the reactor and the input flow temperatures respectively. The
physical meaning of the rest part of the system (24) can be found in [32]. To convert the dynamic system (24) into
the form of System (1), the following variable transformations are introduced as Γ1 = x1 − x∗1, Γ2 = x2 − x∗2 and
u = x2c − x∗2c, where x∗1, x∗2 and x∗2c are the steady-state values. Further, suppose that the system (24) encounters
state-dependent sensor attacks and input-dependent actuator attacks, then (24) is rewritten as a switched nonlinear

11



Fig 4. The state of the switched system.

system in the following form

Γ̇1 =Γ2 + φs,1(Γ1,Γ2),

Γ̇2 =χus + ϕa,s(us(t), t) + φs,2(Γ1,Γ2), (25)

Γ̃i =Γi + ϕi(Γi, t),

which is exactly the switched nonlinear CPSs form described in our system (1), where x(t) = [Γ1,Γ2]T . Substitute

the above variable transformations into (24), we can get φs,1 =
Fs(x1,in,s−x∗

1−Γ1)
V +Ksψs(Γ1 + x∗1,Γ2 + x∗2)− Γ2 and

φs,2 =
Fs(x2,in,s−x∗

2−Γ2)
V + χ(x∗2c − x∗2 − Γ2) −∆Hs(Γ1 + x∗1,Γ2 + x∗2)ψs(Γ1 + x∗1,Γ2 + x∗2) − Γ2 with φs,1(0, 0) = 0,

φs,2(0, 0) = 0. Inspired by [32] and [38], the following nonlinear terms are taken into considered, for the first
subsystem,

φ1,1 =Γ2e
−1−Γ2

1 + (1− e−Γ1)/(1 + e−Γ1),

φ1,2 =Γ2
1 − Γ2,

and for the second subsystem,

φ2,1 =− 0.2Γ2 + 0.4 tanh(Γ1 + Γ2)Γ2 − 2Γ1,

φ2,2 =Γ1 cos(Γ1).

Further, we assume (25) encounters state-dependent sensor attacks (2) and input-dependent actuator attacks (3) as
ϕ1 = −3− 0.5 cos(t)Γ1, ϕ2 = 0.5 + 0.75 sin(t)Γ2 and ϕa,1 = esin(t)u1, ϕa,2 = cos(t)u2.

Next, let the proposed adaptive control mechanism in Section 3 be applied to the system (25), then, the provided
controller and adaptive laws are

α1 =− b1ẽ1 +N(λ1)β1 −
1

2
ε1ẽ1d

2

s,1,

α2 =− b2ẽ2 +
∂α1

∂Γ̃1

Γ̃2 +
∂α1

∂δ̂1
(ẽ2

2(
∂α1

∂x̃1
)2 l̄2s,1(ˇ̃x2) +

1

2
ε1ẽ

2
1 l̄

2
s,1(ˇ̃x2)− kδ̂1)

+
∂α1

∂λ1
λ̇1 +N(λ2)β2 −

1

2
ε1ẽ2d

2

s,2,

u =N(λ3)β3,

12



Fig 5. The control input.

Fig 6. The adaptive laws.

Fig 7. The switching signal.

with

β1 =
1

2
ε1ẽ1δ̂1 l̄

2
s,1(ˇ̃x2),

β2 =
1

2ẽ2
ε1(δ̂1ẽ

2
2(
∂α1

∂x̃1
)2 l̄2s,1(ˇ̃x2) + δ̂2ẽ

2
2 l̄

2
s,2(ˇ̃x3) + δ̂0ẽ

2
2(
∂α1

∂x̃1
x̃1 − α1)2),

β3 =ẽ2δ̂3α
2
2,

λ̇1 =ẽ1β1, λ̇2 = ẽ2β2, λ̇3 = ẽ2β3,

˙̂
δ0 =ẽ2

2(
∂α1

∂x̃1
x̃1 − α1)2,

˙̂
δ1 = ẽ2

2(
∂α1

∂x̃1
)2 l̄2s,1(ˇ̃x1) +

1

2
ε1ẽ1 l̄

2
s,1(ˇ̃x2)− kδ̂1,

˙̂
δ2 =ẽ2

2 l̄
2
s,2 − kδ̂2,

˙̂
δ3 = ẽ2

2α
2
2 − kδ̂3.
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The parameters are taken as b1 = 1.5, b2 = 3, k = 0.001, ds,1 = ds,2 = 0.1 sin(t), s ∈ {1, 2}, and the Ñ functions

are chosen as N(λi) = eλ
2
i cos(π2λi), i = 1, 2, 3. Based on the above design, through Theorem 1, we get that all

signals of the closed-loop system are bounded under the switching signal s.
The results show that under the switching signal shown in Fig. 7, the state of system (25) is shown in Fig. 4, the

control input is shown in Fig. 5, and the adaptive law of parameter λ̂k, k = 1, 2, 3 is shown in Fig. 6. The results
demonstrate the designed mechanism is effective when the system encounters state-dependent sensor attacks and
input-dependent actuator attacks.

Remark 6: The work of Li and Zhao [33] proposed an adaptive controller for state-dependent sensor attacks
and state-dependent actuator attacks, where the signs of time-varying gains are assumed to be known. In fact,
the signs of unknown time-varying gains caused by sensor attack and actuator attack may be changed after being
attacked. Different from the work of Li and Zhao [33], the input-dependent actuator attacks in our experiment are
more complex. In addition, the signs of unknown time-varying gains caused by state-dependent sensor attacks and
input-dependent actuator attacks are all unknown in our study, which is different from the work in [33].

5. Conclusions

This article develops an adaptive controller for switched nonlinear system with state-dependent sensor attacks
and input-dependent actuator attacks, especially when the controller is also attacked. The proposed controller can
mitigate the impact of attacks effectively. Specifically, a new coordinate transformation is used in backstepping design
process and new types of Nussbaum functions are introduced to deal with unknown time-varying gains cased by
state-dependent sensor attacks and input-dependent actuator attacks. A common Lyapunov function is constructed
for all subsystems, which can ensure that the signals are globally bounded under arbitrary switchings. In the future,
we can further consider sampling control design, event-driven control design and other methods to study the systems’
security control strategy.
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