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Abstract

Numerical computations for natural systems and acquiring travelling wave solutions of nonlinear wave equations in relation to

sciences such as optics, fluid mechanics, solid state physics, plasma physics, kinetics, and geology have become very important

in the field of mathematical modeling recently. For this, many methods have been suggested. The strategy applied for this

article is to obtain more perfect numerical solutions of Modified Equal Width equation (MEW), which is one of the equations

used to model the nonlinear phenomena mentioned. For this purpose, the Lie-Trotter splitting technique is applied to the

MEW equation. Firstly, the problem is split into two sub-problems, one linear and the other nonlinear, containing derivative

with respect to time. Secondly, each subproblem is reduced to the algebraic equation system by using collocation finite element

method (FEM) based on the quintic B-spline approximate functions for spatial discretization and the convenient classical

finite difference approaches for temporal discretization. Then, the obtained systems are solved with the Lie Trotter splitting

algorithm. Explanatory test problems are considered, showing that the newly proposed algorithm has superior accuracy than

previous methods, and the numerical results produced by the proposed algorithm are shown in tables and graphs. In addition,

the stability analysis of the new approach is examined. Therefore, it is appropriate to state that this new technique can be

easily applied to partial differential equations used in other disciplines in terms of the results obtained and the cost of Matlab

calculation software.
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Selçuk Kutluay1 and Melike Karta2
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Abstract

Numerical computations for natural systems and acquiring travelling wave solutions of nonlinear
wave equations in relation to sciences such as optics, fluid mechanics, solid state physics, plasma
physics, kinetics, and geology have become very important in the field of mathematical modeling
recently. For this, many methods have been suggested. The strategy applied for this article is
to obtain more perfect numerical solutions of Modified Equal Width equation (MEW), which is
one of the equations used to model the nonlinear phenomena mentioned. For this purpose, the
Lie-Trotter splitting technique is applied to the MEW equation. Firstly, the problem is split
into two sub-problems, one linear and the other nonlinear, containing derivative with respect
to time. Secondly, each subproblem is reduced to the algebraic equation system by using
collocation finite element method (FEM) based on the quintic B-spline approximate functions
for spatial discretization and the convenient classical finite difference approaches for temporal
discretization. Then, the obtained systems are solved with the Lie Trotter splitting algorithm.
Explanatory test problems are considered, showing that the newly proposed algorithm has
superior accuracy than previous methods, and the numerical results produced by the proposed
algorithm are shown in tables and graphs. In addition, the stability analysis of the new approach
is examined. Therefore, it is appropriate to state that this new technique can be easily applied
to partial differential equations used in other disciplines in terms of the results obtained and
the cost of Matlab calculation software.

Keywords: Modified Equal Width equation; B-splines; Collocation method;Lie- Trotter splitting.

1 Introduction

The MEW equation with physical boundary conditions U → 0 when x → ±∞ associated with the
EW equation introduced by Morrisonet al. [2], used for modeling nonlinear disperse wave events, is
given in the following form

Ut + 3U2Ux − µUxxt = 0 (1)

where µ is a non-negative constant, U(x, t) is the wave amplitude and x and t indicate spatial and
temporal variables subindexes. Here, it is very important to state that solitary waves are known
as traveling waves in the literature retained their shapes and speeds because of the sensitive bal-
ance between nonlinearity and dispersive effects, whereas a soliton is a very private type of solitary
waves, retaining its shape and speed even after colliding with another wave. When examining the
literature, one can see that many authors have obtained both analytical and numerical solutions
for the modified equal width equation until present time. Some of them can be listed as: Wang et
al. [6] have used the method of dynamical system for the exact travelling wave solutions of the MEW
equation. Wazwaz [3] has studied on a sine–cosine ansatz and the tanh method. Jin [4] has proposed
an analytical approach based on the homotopy perturbation method for equation. Hamdi et al. [1]
have derived exact solitary wave solutions for the generalized EW and EW-Burgers equation. Lu [5]
has presented variational iteration method for analytical solution of the equation. Taghizadeh [7]
has applied the modified simple equation method. Taha and Noorani [8] have developed the G′/G-
expansion method. Rui et al. [9] have used integral bifurcation method. Cheng and Liew [10] have
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actualized an improved element-free Galerkin (IEFG) method for numerical solution of equation.
Both Esen [11] and Karakoç and Geyikli [12] have implemented Lumped Galerkin method combined
with quadratic and cubic B-splines respectively. Gardner and Gardner [13] solved with Galerkin’s
method to the EW equation. Esen and Kutluay [14] and Raslan et al. [15] have utilized finite differ-
ence method. Essa [16] has worked the multigred method. Geyikli and Karakoç [17] and Karakoç
and Geyikli [18] have investigated the approximate solutions of the equation by Subdomain finite el-
ement method using both quartic and sextic B-splines respectively. While Geyikli and Karakoç [19]
have solved the MEW equation with the Petrov Galerkin method, Roshan [20] has solved the GEW
equation with the same method. Evans and Raslan [21] have submited a collocation method with
quadratic B-splines for the GEW equation. Dereli [22] has researched by utilizing meshless method
based on collocation with the well-known radial basis functions. Başhan et al. [23] have worked the
finite difference method combined with differential quadrature method. Karakoç et al. [24] have used
different linearization techniques with the help of cubic B-spline collocation FEM. Çelikkaya [25]
has solved the equation with Strang splitting scheme using collocation method with the cubic B-
spline. Zaki [26] has studied the MEW equation by Petrov Galerkin method with quintic B-spline.
Saka [27] has implemented collocation algorithms with Quintic B-spline. Additionally, as the work
of recent years, Başhan et al. [28] have submitted a new perspective for equation. Yağmurlu and
Karakaş [29] have proposed Trigonometric cubic B-spline method.
In the present article, the Lie-Trotter splitting algorithm is going to be applied by using the collo-
cation finite element method combined with the quintic B-spline to obtain the most perfect results
in finding approximate solutions of the MEW equation in line with the works done in recent years
with the condition given at initial time

U(x, 0) = g0(x), (2)

and the conditions given at the boundaries

U(xL, t) = U(xR, t) = 0,

Ux(xL, t) = Ux(xR, t) = 0,

Uxx(xL, t) = Uxx(xR, t) = 0 t > 0.

(3)

The strategy here is based on the fact that the Lie-Trotter splitting technique along with quintic
B-spline base functions is an easier, faster, less costly and successful approach to solving problems
such as the MEW equation. The outline of this article can be briefly outlined section by section
as follows: First of all, an extensive literature search is made about the studies carried out for the
MEW equation until today, and information about its physical properties are given. In Section 2,
the Lie-Trotter splitting technique is briefly explained. In Section 3, the collocation method with the
quintic B-spline base functions is introduced and the MEW equation is split into two subequations
that each of them includes derivative in the direction of time and are numerically solved with the
help of Lie-Trotter splitting algorithm by applying quintic B-spline collocation FEM to both sub-
equations. Section 4 explains how to find the initial vector. In Section 5, the stability analysis of
the numerical scheme obtained by Lie-Trotter splitting technique is examined. In section 6, the
approximate results generated by the proposed algorithm and their comparison with tables and
graphs are given. At last, section 7 provides comments on the newly generated results and the
performance of the numerical algorithm.

2 Time-Splitting Technique

It can sometimes be difficult for a scientist to find an efficient way to do approximate calculations
of a complex problem. As a way to achieve this, operator splitting algorithms have emerged,
which are based on the concepts of divide and conquer and divided a complex problem into simpler
subproblems. There are simple and easy-to-apply methods for each sub-problem that arises. As a
result of the application of these methods, approximate schemes are found and these schemes are
combined with the operator splitting algorithm, resulting in easy numerical solutions with programs
such as Matlab calculation software used in the proposed study. In this study, the Cauchy problem
given in the following form will be discussed

dU(t)

dU
= ÂU(t) + B̂U(t), U(0) = U0, t ∈ [0, T ] , (4)
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in which X is the Banach space and U0 ∈ X is the initial function. Â, B̂ can be assumed as bounded
linear operators in the space X such that Â, B̂ : X → X. The general forms of first-order diagrams
by means of dividing time step ∆t with the Lie-Trotter splitting algorithm given in [32] having the
schemes ′′Â− B̂′′ and ′′B̂ − Â′′ can be presented as follows

dU∗(t)

dt
= ÂU∗(t), U∗(0) = U0 over [0,∆t],

dU∗∗(t)

dt
= B̂U∗∗(t), U∗∗(0) = U∗(∆t) over [0,∆t].

Here, the final values are acquired by utilizing U∗∗(∆t). An error called splitting error occurs when
the main problem turns into sub-problems. The local turncation error of this technique is

Te =
1

∆t
(e∆t(Â+B̂) − e∆tB̂e∆tÂ)U(tn)

=
1

∆t
[
∆t2

2
(ÂB̂ − B̂Â)U(tn) +O(∆t3)]

=
1

∆t
[Â, B̂)U(tn) +O(∆t2)]

Here [Â, B̂] = ÂB̂ − B̂Â. Consequently, this indicates to be first-order of present technique [32].

3 Scheme I: Lie-Trotter Splitting Technique with Qintic B-
Spline Collocation Method

For the numerical approximation of the MEW equation, the solution region is first confined to the
closed interval [xL, xR]. The interval [xL, xR] can be partitioned into finite elements uniformly in

terms of knot points xj such that xL = x0 ≤ x1 ≤ ... ≤ xN = XR, h = xj+1 − xj =
xR − xL

N
for

j = 0(1)N − 1. The quintic B-spline base functions φj(x) at knot points xj for j = −2(1)N + 2 are
given as [33]

φj(x) =
1

h5



p0 = (x− xj−3)
5, x ∈ [xj−3, xj−2]

p1 = p0 − 6(x− xj−2)
5, x ∈ [xj−2, xj−1]

p2 = p1 − 6(x− xj−2)
5 + 15(x− xj−1)

5, x ∈ [xj−1, xj ]

p3 = p2 − 6(x− xj−2)
5 − 20(x− xj)

5, x ∈ [xj , xj+1]

p4 = p3 − 6(x− xj−2)
5 + 15(x− xj+1)

5, x ∈ [xj+1, xj+2]

p5 = p4 − 6(x− xj−2)
5 − 6(x− xj+2)

5, x ∈ [xj+2, xmj3]

0, otherwise.

(5)

The all of quintic B-spline base functions φ−2(x), φ−1(x), . . . , φN+2(x) compose a base for the
functions on [xL, xR]. The approximate ones UN (x, t) corresponding to the exact solutions U(x, t)
can be presented in the following form

UN (x, t) =

N+2∑
j=−2

φj(x)δj(t). (6)

Here, the unknown time parameters δj(t) is determined with both boundary and collocation condi-
tions. On a typical element [xj , xj+1] by the local coordinate transformation described as h = x−xj
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for 0 ≤ ζ ≤ h, the quintic B-spline base functions on [0, h] in terms of ζ can be submitted as follows

φj−2 = 1− 5ζ + 10ζ2 − 10ζ3 + 5ζ4 − ζ5,

φj−1 = 26− 50ζ + 20ζ2 + 20ζ3 − 20ζ4 + 5ζ5,

φj = 66− 60ζ2 + 30ζ4 − 10ζ5,

φj+1 = 26 + 50ζ + 20ζ2 − 20ζ3 − 20ζ4 + 10ζ5,

φj+2 = 1 + 5ζ + 10ζ2 + 10ζ3 + 5ζ4 − 5ζ5,

φj+3 = ζ5.

(7)

The all of quintic B-spline base functions are zero outside of ϕj−2, φj−1, φj , φj+1, φj+2 and φj+3.

The knot points Uj , U
′

j , U
′′

j are presented in terms of the parameter δj(t) in the following form

Uj = δm−2 + 26δj−1 + 66δj + 26δj+1 + δj+2

U
′

j =
5

h
(−δj−2 − 10δj−1 + 10δj+1 + δj+2)

U
′′

j =
20

h2
(δj−2 + 2δj−1 − 6δj + 2δ)j+1 + δj+2),

(8)

and the variation of U with the interval [xj , xj+1]

U =

N+2∑
j=−2

φjδj . (9)

Now let the MEW equation be split into to include the derivative with respect to time as follows

Ut − Uxxt = 0, (10)

Ut − Uxxt + 3U2Ux = 0. (11)

When the values of nodes Uj , U
′

j , U
′′

j given in (8) are written in (10) and (11) and necessary pro-
cedures are applied, the systems of ordinary differential equation presented in the form below are
obtained

δ̇j−2 + 26δ̇j−1 + 66δ̇j + 26δ̇j+1 + δ̇j+2 −
20µ

h2
(δ̇j−2 + 2δ̇j−1 − 6δ̇j + 2δ̇j+1 + δ̇j+2) = 0, (12)

δ̇j−2 + 26δ̇j−1 + 66δ̇j + 26δ̇j+1 + δ̇j+2 −
20µ

h2
(δ̇j−2 + 2δ̇j−1 − 6δ̇j + 2δ̇j+1 + δ̇j+2)

+
5zj
h

(−δj−2 − 10δj−1 + 10δj+1 + δj+2) = 0,

(13)

in which the first derivative according to time t is shown with symbol ′′.′′ and zj is gotten as

zj = 3(δj−2 + 26δj−1 + 66δj + 26δj+1 + δj+2)
2

for linearization operation. If
δn+1
j + δnj

2
instead of the parameter δj and

δn+1
j − δnj

∆t
instead of

the parameter δ̇j in Eqs.(12) and (13) are written, system of equations given in the following are
obtained

k1δ
n+1
m−2+k2δ

n+1
m−1+k3δ

n+1
m +k4δ

n+1
m+1+k5δ

n+1
m+2 = k6δ

n
m−2+k7δ

n
m−1+k8δ

n
m+k9δ

n
m+1+k10δ

n
m+2 (14)

l1δ
n+1
m−2 + l2δ

n+1
m−1 + l3δ

n+1
m + l4δ

n+1
m+1 + l5δ

n+1
m+2 = l6δ

n
m−2 + l7δ

n
m−1 + l8δ

n
m + l9δ

n
m+1 + l10δ

n
m+2 (15)

k1 = 1− 20µ

h2
, k2 = 26− 40µ

h2
, k3 = 66 +

120µ

h2
, k4 = 26− 40µ

h2
,

4



k5 = 1− 20µ

h2
, k6 = 1− 20µ

h2
, k7 = 26− 40µ

h2
, k8 = 66 +

120µ

h2
,

k9 = 26− 40µ

h2
, k10 = 1− 20µ

h2

l1 = 1− 20µ

h2
− 5zj∆t

2h
, l2 = 26− 40µ

h2
− 25zj∆t

h
, l3 = 66 +

120µ

h2
, l4 = 26− 40µ

h2
+

25zj∆t

h
,

l5 = 1− 20µ

h2
+

5zj∆t

2h
, l6 = 1− 20µ

h2
+

5zj∆t

2h
, l7 = 26− 40µ

h2
+

25zj∆t

h
, l8 = 66 +

120µ

h2
,

l9 = 26− 40µ

h2
− 25zj∆t

h
, l10 = 1− 20µ

h2
− 5zj∆t

2h
.

The systems submitted in (14) and (15) contain (N + 5) unknown δj time-parameters and (N +
1) equations. In each system, the imaginary parameters δ−2, δ−1, δN+1, δN+2 are not within the
solution region. These ones are eliminated first, due to the fact that only one solution of each
system is obtained. For this reason, U and U

′
in Eq.(8) and the boundary conditions U(xL, t) =

U(xR, t) = 0 and Ux(xL, t) = Ux(xR, t) = 0 are utilized. Thus, for systems (14) and (15) given
above, (N +1) x (N +1) matrix system are obtained. The systems (14) and (15) are solved by Lie
Trotter splitting algorithm and the nonlinear term zj in Eq.(15) are implemented 3 or 5 times inner

iteration submitted as (δ∗)n = δn +
1

2
(δn − δn−1) throughout the computer run to ensure that the

approximate results are fairly close to the analytical ones.

4 The initial vector δ0j

Let us now show how to find the initial vector δ0j needed in the solution of systems (14) and (15). This

initial vector δ0j will be derived from the initial condition given as U(xj , 0) = UN (xj , 0) = g0(xj), j =
0(1)N and the boundary conditions. When this vector is used in numerical approximation (6) at
time t = t0 = 0, the following system of algebraic equations is obtained

Um = δ0j−2 + 26δ0j−1 + 66δ0j + 26δ0j+1 + δ0j+2, j = 0(1)N,

U0 = δ0−2 + 26δ0−1 + 66δ00 + 26δ01 + δ02 ,

U1 = δ0−1 + 26δ00 + 66δ01 + 26δ02 + δ03 ,

.

.

.

UN−1 = δ0N−3 + 26δ0N−2 + 66δ0N−1 + 26δ0N + δ0N+1,

UN = δ0N−2 + 26δ0N−1 + 66δ0N + 26δ0N+1 + δ0N+2.

(16)

As can be seen from here, the matrix system (N + 1) x (N + 5) is obtained. In order to obtain
a single solution of this system, the number of unknowns and the number of equations must be
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equalized. For this, the parameters δ−2, δ−1, δN+1, δN+2 are eliminated. To do this, the boundary
conditions Ux(xL, t) = Ux(xR, t) = 0 and Uxx(xL, t) = Uxx(xR, t) = 0 are used as follows

δ0m−2 + 26δ0m−1 + 66δ0m + 26δ0m+1 + δ0m+2 = g0(xm),m = 0(1)N

−δ0−2 − 10δ0−1 + 10δ01 + δ02 = g
′

0(xL)

δ0−2 + 2δ0−1 − 6δ00 + 2δ01 + δ02 = g
′′

0 (xL)

δ0N−2 + 2δ0N−1 − 6δ0N + 2δ0N+1 + δ0N+2 = g
′′

0 (xR)

−δ0N−2 − 10δ0N−1 + 10δ0N+1 + δ0N+2 = g
′

0(xR).

(17)

Hence, using the equations in system (16), (N +1) x (N +1) dimensional matrix equation that can
be solved with variant of Thomas algorithm for the initial vector δ0 is obtained as

54 60 6
25.25 67.5 26.25 1
1 26 66 26 1

. . .

1 26 66 26 1
1 26.25 67.5 25.25

6 60 54





δ00
δ01
δ02
.
.
.

δ0N−2

δ0N−1

δ0N


=



U0

U1

U2

.

.

.
UN−2

UN−1

UN


.

5 Stability Analysis

The stability analysis of the systems (14) and (15) is carried out by the Von Neumann method.
Firstly, the Fourier modes, δnj = ϱn1 e

ijΦ in approximation (14) and Ψn
j = ϱn2 e

ijΦ in approximation

(15), are substituted. It should be stated here that the moment the 3U2 in the term 3U2Ux is
linearized, zj will immediately behave as a local constant and hence the von Neumann method
becomes applicable for the stability of the system (15). When the Euler formula eiΦ = cosΦ+ isinΦ
is used, growth factors given in the following form are obtained

ϱ1 =
A1 − iB1

A1 + iB1
, ϱ2 =

A1 − iC1

A1 + iC1
, (18)

and for the expressions k1, k2, ..., k9, k10 and l1, l2, ..., l9, l10 in section 3

A1 = 2a1 −
40ϵ

h2
a2, B1 = 0, C1 =

5κ∆t

h
a3

a1 = cos2Φ + 26cosΦ+ 33, a2 = cos2Φ + 2cosΦ− 3,

a3 = sin2Φ + sinΦ

|ϱ1| = |ϱ2| = 1 from Equation (18) and therefore |ϱ1|.|ϱ2| = 1. It can be clearly stated that the
systems (14) and (15) are unconditionally stable. Because the conditions |ϱ1| ≤ 1, and |ϱ2| ≤ 1 are
satisfied.

6 Numerical experiments and discussion

In order to demonstrate the satisfactory accuracy and performance of the algorithm applied in the
present study, the error norms L2 and L∞, the three invariant formulas I1, I2, I3 as mass, momentum
and energy presented by Olver [31] and rate of convergence in both time and space pointwise in
Exp.(1) will be calculated by using the formulas presented in the form below for the proposed
numerical scheme.

L2 = ||U − UN ||2 =

√√√√h

N∑
j=0

(U − UN )2

6



L∞ = ||U − UN ||∞ = max
j

|U − UN |,

I1 =

∫ xR

xL

U(x, t)dx,

I2 =

∫ xR

xL

[U2(x, t) + µU2
x(x, t)]dx,

I3 =

∫ xR

xL

[U4(x, t)]dx,

and

Order =
log10(|Uexact − Unum

∆xm
|/|Uexact − Unum

∆xm+1
|)

log10(∆xm/∆xm+1)
,

Order =
log10(|Uexact − Unum

∆tm
|/|Uexact − Unum

∆tm+1
|)

log10(∆tm/∆tm+1)
.

For this goal, three examples will be considered.

6.1 Example I: The movement of a single solitary wave

Exact solution of the MEW equation with physical boundary conditions U(±∞) → 0 for a single
solitary wave is presented as

U(x, t) = csech[k(x− x0 − vt)]

and the initial condition is obtained from the exact solution for t = 0 as

U = (x, 0) = csech[k(x− x0)]

in which velocity of the wave is v =
c2

2
, c is the amplitude of the wave and k =

√
1

µ
. Invariants

I1, I2 and I3 are computed as numerically and analytically respectively as follows

I1 = h

N∑
j=0

Uj , I2 = h

N∑
j=0

[U2
j + µ(U ′

j)
2], I3 = h

N∑
j=0

U4
j

and

I1 =
cπ

k
, I2 =

2c2

k
+

2µkc2

3
, I3 =

4c4

3k
.

In this example, to do comparison with previous available studies, the motion of a single solitary
wave is presented in 12 different implementations. In these applications, the amplitude values,
time increments and solution regions are different from each other. However, in all applications,
the solution region [0, 80] and [0, 70] and the parameters µ = 1, x0 = 30 are generally chosen.
The same parameter values used in previous studies given in the tables are used throughout all
applications. For the amplitude value c = 1 , the analytical solutions of these invariants are given
as I1 = 3.1415926535898, I2 = 2.6666666666667, I3 = 1.3333333333333 respectively. The computed
analytical values of the invariants for different amplitudes are presented in Table 1.
Implementation 1.1 In the first application, the comparison of approximate results with those in
previous studies [25]and [28] is presented in Table 2, with time increment ∆t = 0.05 for the largest
amplitude value c = 1.0. Fig.1 shows the movement of the single solitary wave and the absolute
error value. At time t=20, the current error norms are 1.05x10−3 and 6.53x10−4, lower than those
in the table. The three invariant values remain almost the same.
Implementation 1.2 In the second implementation, time increment ∆t = 0.01 is selected for
c = 1.0, and the comparison of the approximate solutions with those in previous studies is shown
in Table 3. At time t = 20, The current error norms are 4.40x10−5 and 2.81x10−5. It is clear from
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Table 1: Analytical values of the invariants I1, I2, I3 for different values of c of Example 1.

method c I1 I2 I3

analytic 0.25 0.7853981633974 0.1666666666667 0.00520833333333
0.50 1.5707963267949 0.6666666666667 0.08333333333333
0.75 2.3561944901923 1.5 0.421875
1 3.1415926535898 2.6666666666667 1.33333333333333

the table that the newly generated solutions are considerably smaller than those in [14], [17], [18]
and [24] and very close to the work [28], and it is also clear that the invariants are very well preserved
compared to those given in the table.
Implementation 1.3 In the third implementation, the amplitude value is taken as c = 0.75. As the
amplitude decreases, the speed also decreases. In this case, the displacement of the wave becomes
will be shorter. Tablo 4 exhibits the comparison of approximate results with those in previous stud-
ies [25] and [28] with time increment ∆t = 0.05. Table 4 shows that the achieved results are quite
small. The current error norms are 1.43x10−4 and 9.08x10−5 at t = 20. Fig.1 shows movement of
the single solitary wave and the absolute error value. Three invariants are very well preserved.
Implementation 1.4 In the fourth implementation, Tablo 5 submits comparison of the approxi-
mate results with works in Refs. [14], [17], [18], [24] and [28] for amplitude value c = 0.75 and time
increment ∆t = 0.01. The current error norms are 7.0110−6 and 4.8510−6 at time t = 20. One can
clearly see from this tablo that more excellent results than other results by applying Lie-Trotter
splitting technique have been achieved. Three invariants are very well preserved.
Implementation 1.5 In the fifth implementation, the movement of the single solitary wave with
the amplitude value c = 0.5 and time increment ∆t = 0.05 is researched. As the amplitude de-
creases, the speed also decreases. In this situation, the displacement of the wave becomes will be
shorter. The movement of the single solitary wave and the absolute error value are shown and plot-
ted at Figure 1. The comparison of approximate results with those in Strang splitting algorithm [25]
is given in Tablo 6. The current error norms are 9.2010−6 and 6.4010−6 at time t = 20. The current
error norms are considerably smaller than [25] and also three invariants are very well preserved.
Implementation 1.6 In the sixth implementation, for comparison with previous studies [14], [17],
[18], [24] and [28], the amplitude value c = 0.5 and time increment ∆t = 0.01 are utilized. Compar-
ison of newly found results with those of other methods is presented in Table 7. The current error
norms are 1.1810−6 and 9.510−7 at time t = 20. It can be clearly stated that the present results are
the most satisfactory of those given in the table. Three invariants are very well preserved.
Implementation 1.7 In the seventh implementation, for comparison with studies [22], [26], [27],
the solution region is taken as [0,70]. Comparison of the results of the present study with those
of the others are given in Table 8. At time t = 20, the current error norms are 8.94x10−6 and
6.10x10−6. It is clear that the results of the suggested algorithm are better than the others. More-
over, all invariants are constant.
Implementation 1.8 In the eighth implementation, the smallest amplitude, that is, for the small-
est speed, is chosen as c = 0.25. The numerical calculations of the error norms and invariants for the
largest time increment ∆t = 0.2 are made and the comparison of the solutions of these computations
with the ones of the previous methods are given in Table 9. The current error norms are 1.20x10−6

and 1.01x10−6 at t = 20. It is clearly seen that the error norms produced are lower than those of the
collocation [14] and the finite difference [21] and T-collocation [29] methods, so it can easily be said
that there is an improvement thanks to the proposed scheme. All invariants are constant. Figure 1
displays numerical outlook of the single solitary wave and the absolute error value for c = 0.25.
Implementation 1.9 In the ninth implementation, to do the comparison with other studies [15],
time increment ∆t = 0.1 is utilized. Comparison of the gained results are done with three different
variants of the finite difference method and are submitted at Table 10. The current error norms are
2.18x10−8 and 2.11x10−8 at t = 1.0. They are considerably smaller than previous implementations.
Present invariants remain unchanged throughout the simulation.
Implementation 1.10 In the tenth implementation, Table 11 reports the comparison of existing

8



Table 2: A comparison of invariant values and the error norms of single solitary wave with param-
eters µ = 1,∆t = 0.05 for c = 1.0 on [0, 80].

method t I1 I2 I3 L2 x 103 L∞ x 103

LTS.Coll. 0 3.1415927 2.6666667 1.3333333 0.00000 0.00000
5 3.1415926 2.6666666 1.3333333 0.27608 0.18314
10 3.1415926 2.6666666 1.3333333 0.53590 0.33975
15 3.1415926 2.6666665 1.3333332 0.79149 0.49613
20 3.1415925 2.6666665 1.3333332 1.04683 0.65254

SS.Coll. [25] 20 3.1415922 2.6666685 1.3333329 2.49435 1.78185
HM(Pres.) [28] 20 3.1416760 2.6667600 1.3334280 1.50692 0.92893

Table 3: A comparison of invariant values and the error norms of single solitary wave with param-
eters µ = 1,∆t = 0.01 for c = 1.0 on [0, 80].

method t I1 I2 I3 L2 x 103 L∞ x 103

LTS.Coll. 0 3.1415927 2.6666667 1.3333333 0.00000 0.00000
5 3.1415927 2.6666667 1.3333333 0.01225 0.00871
10 3.1415927 2.6666667 1.3333333 0.02299 0.01517
15 3.1415927 2.6666667 1.3333333 0.03350 0.02162
20 3.1415927 2.6666667 1.3333333 0.04402 0.02808

FD. [14] 20 3.1415790 2.6666350 1.3333310 0.14945 0.09870
SD. [17] 20 3.1415838 2.6666592 1.3333251 3.61948 2.25768
SD. [18] 20 3.1415860 2.6666612 1.3333279 3.61297 2.25401
DL.Coll. [24] 20 3.1415842 2.6666609 1.3333253 3.98833 2.84859
HM(Pres.) [28] 20 3.1416120 2.6667230 1.3333890 0.02601 0.01908

implementations [11, 12], [14], [16–19], [21], [22–25], [28] and [29] in the literature with the new
application for time increment ∆t = 0.05 and amplitude c = 0.25. The current error norms are
2.66x10−7 and 3.19x10−7 at t = 20. It is clear that the results of the current algorithm are far
superior to all the previous ones presented. All invariants are very well preserved. For c = 0.25 on
[0.80], the convergence orders of the present approach by calculating the error norms L2 and L∞
for different space step values and fixed time step value ∆t = 0.05 are given at the Table 12. Also,
the convergence orders of the submitted approach by calculating L2 and L∞ for fixed space step
value h = 0.1 and different time step values are given at Table 13. It can be seen from the tables
that the convergence orders obtained by the Lie–Trotter splitting algorithm using quintic B-spline
collocation method are around 1 and 4 and so confirm the theoretical value.
Implementation 1.11 In the eleventh implementation, for comparison with existing implemen-
tations, time increment ∆t = 0.01 and amplitude c = 0.25. are selected and comparison of the
recommended one with other schemes [17], [18], [24] and [28] are reported at Table 14. The current
error norms are 2.32x10−7 and 2.74x10−7 at t = 20. It can be said that the results found are the
best of those in the table. Present invariants remain unchanged throughout the simulation.
Implementation 1.12 In the twelfth implementation, to do the comparison with other studies,
time increment ∆t = 0.05 and amplitude c = 0.25. are utilized and [0, 70] as solution region is taken.
Comparison of the obtained results with other ones [17], [18], [24] and [28] are presented at Table
15. At time t = 20, the current error norms are 1.7x10−7 and 2.0x10−7. It is clear that the results
of the present algorithm are much better than all of the presented previous ones. All invariants are
constant throughout the simulation.
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Table 4: A comparison of invariant values and the error norms of single solitary wave with param-
eters µ = 1,∆t = 0.05 for c = 0.75 on [0, 80].

method t I1 I2 I3 L2 x 103 L∞ x 103

LTS.Coll. 0 2.3561945 1.5000000 0.4218750 0.00000 0.00000
5 2.3561945 1.5000000 0.4218750 0.03775 0.02729
10 2.3561945 1.5000000 0.4218750 0.07404 0.0489
15 2.3561945 1.5000000 0.4218750 0.10889 0.0699
20 2.3561945 1.5000000 0.4218750 0.14323 0.09075

SS.Coll. [25] 20 2.3561944 1.5000012 0.4218750 2.03819 1.46910
HM(Pres.) [28] 20 2.3562210 1.5000350 0.4218947 0.14153 0.08585

Table 5: A comparison of invariant values and the error norms of single solitary wave with param-
eters µ = 1,∆t = 0.01 for c = 0.75 on [0, 80].

method t I1 I2 I3 L2 x 103 L∞ x 103

LTS.Coll. 0 2.3561945 1.5000000 0.4218750 0.00000 0.00000
5 2.3561945 1.5000000 0.4218750 0.00231 0.00223
10 2.3561945 1.5000000 0.4218750 0.00400 0.00301
15 2.3561945 1.5000000 0.4218750 0.00552 0.00393
20 2.3561945 1.5000000 0.4218750 0.00701 0.00485

FD. [14] 20 2.3561860 1.4999790 0.4218745 0.05193 0.03667
SD. [17] 20 2.3561893 1.4999973 0.4218732 1.48146 0.93623
SD. [18] 20 2.3561895 1.4999969 0.4218733 1.48020 0.93594
DL.Coll. [24] 20 2.3561896 1.4999982 0.4218733 2.24293 1.62010
HM(Pres.) [28] 20 2.3561560 1.4999630 0.4218543 0.01595 0.01218

Table 6: A comparison of invariant values and the error norms of single solitary wave with param-
eters µ = 1,∆t = 0.05 for c = 0.5 on [0, 80].

method t I1 I2 I3 L2 x 103 L∞ x 103

LTS.Coll. 0 1.5707963 0.6666667 0.0833333 0.00000 0.00000
5 1.5707963 0.6666667 0.0833333 0.00241 0.00203
10 1.5707963 0.6666667 0.0833333 0.00475 0.00387
15 1.5707963 0.6666667 0.0833333 0.00702 0.00516
20 1.5707963 0.6666667 0.0833333 0.00920 0.00640

SS.Coll. [25] 20 1.5707963 0.6666673 0.0833333 1.05855 0.86024
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Table 7: A comparison of invariant values and the error norms of single solitary wave with param-
eters µ = 1,∆t = 0.01 for c = 0.5 on [0, 80].

method t I1 I2 I3 L2 x 103 L∞ x 103

LTS.Coll. 0 1.5707963 0.6666667 0.0833333 0.00000 0.00000
5 1.5707963 0.6666667 0.0833333 0.00050 0.00060
10 1.5707963 0.6666667 0.0833333 0.00083 0.00091
15 1.5707963 0.6666667 0.0833333 0.00103 0.00092
20 1.5707963 0.6666667 0.0833333 0.00118 0.00095

FD. [14] 20 1.5707920 0.6666588 0.0833333 0.01864 0.01509
SD. [17] 20 1.5707930 0.6666655 0.0833330 0.42152 0.27116
SD. [18] 20 1.5707930 0.6666653 0.0833330 0.42111 0.27119
DL.Coll. [24] 20 1.5707931 0.6666660 0.0833330 1.06979 0.86864
HM(Pres.) [28] 20 1.5708080 0.6666710 0.0833345 0.00662 0.00450

Table 8: A comparison of invariant values and the error norms of single solitary wave with param-
eters µ = 1,∆t = 0.05 for c = 0.5 on [0, 70].

method t I1 I2 I3 L2 x 103 L∞ x 103

LTS.Coll. 0 1.5707963 0.6666667 0.0833333 0.00000 0.00000
5 1.5707963 0.6666667 0.0833333 0.00230 0.00182
10 1.5707963 0.6666667 0.0833333 0.00458 0.00354
15 1.5707963 0.6666667 0.0833333 0.00679 0.00486
20 1.5707963 0.6666667 0.0833333 0.00894 0.00610

MQ. [22] 20 1.5707355 0.6666084 0.0833187 0.09475 0.03564
G. [22] 20 1.5707661 0.6666460 0.0833281 0.03186 0.02476
IMQ. [22] 20 1.5710582 0.6669421 0.0834022 0.25540 0.19890
Q. [22] 20 1.5705602 0.6664956 0.0832905 0.17124 0.13536
PG. [26] 20 1.57078 0.66666 0.08333 0.01172 0.00852
QBCM1. [27] 20 1.5707963 0.6666667 0.0833333 0.00920 0.00640
QBCM2. [27] 20 1.5707963 0.6666667 0.0833333 0.00920 0.00640
QBCM3. [27] 20 1.5707963 0.6666667 0.0833333 0.00860 0.00568

Table 9: A comparison of invariant values and the error norms of single solitary wave with param-
eters µ = 1,∆t = 0.2 for c = 0.25 on [0, 80].

method t I1 I2 I3 L2 x 104 L∞ x 104

LTS.Coll. 0 0.7853982 0.6666667 0.0052083 0.000000 0.000000
5 0.7853982 0.6666667 0.0052083 0.003021 0.002348
10 0.7853982 0.6666667 0.0052083 0.006036 0.004879
15 0.7853982 0.6666667 0.0052083 0.009040 0.007506
20 0.7853982 0.6666667 0.0052083 0.012027 0.010137

FD. [14] 20 0.7853977 0.1664736 0.0052083 2.701647 2.576377
Coll. [21] 20 0.7852864 0.1665818 0.0052061 2.021476 1.569539
T-Coll. [29] 20 0.7850300 0.1666259 0.0052058 1.471099 0.897036
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Table 10: A comparison of invariant values and the error norms of single solitary wave with param-
eters µ = 1,∆t = 0.1 for c = 0.25 on [0, 80].

method t I1 I2 I3 L2 x 106 L∞ x 106

LTS.Coll. 0.0 0.7853982 0.1666667 0.0052083 0.00000 0.00000
0.2 0.7853982 0.1666667 0.0052083 0.00436 0.00418
0.4 0.7853982 0.1666667 0.0052083 0.00873 0.00838
0.6 0.7853982 0.1666667 0.0052083 0.01309 0.01260
0.8 0.7853982 0.1666667 0.0052083 0.01745 0.01682
1.0 0.7853982 0.1666667 0.0052083 0.02182 0.02106

FD. [15]1. 1.0 0.785341 0.166453 0.0052071 29.6099 23.5070
FD. [15]2. 1.0 0.787173 0.167079 0.0052460 727.1920 411.7200
FD. [15]3. 1.0 0.785398 0.166473 0.0052083 17.7110 10.8337
HM(Pres.) [28] 1.0 0.7853981 0.1666666 0.0052083 0.2706 0.2164

Table 11: A comparison of invariant values and the error norms of single solitary wave with param-
eters µ = 1,∆t = 0.05 for c = 0.25 on [0, 80].

method t I1 I2 I3 L2 x 104 L∞ x 104

LTS.Coll. 0 0.7853982 0.1666667 0.0052083 0.00000 0.00000
5 0.7853982 0.1666667 0.0052083 0.00071 0.00080
10 0.7853982 0.1666667 0.0052083 0.00141 0.00163
15 0.7853982 0.1666667 0.0052083 0.00206 0.00245
20 0.7853982 0.1666667 0.0052083 0.00266 0.00319

LGal. [11] 20 0.7853970 0.1667636 0.0052083 0.80145 0.46009
L.Gal. [12] 20 0.7853967 0.1666663 0.0052083 0.80098 0.46061
FD. [14] 20 0.7853977 0.1664735 0.0052083 2.69281 2.56997
Multgrd. [16] 20 0.7853965 0.1666638 0.0052081 0.05208 0.05456
SD. [17] 20 0.7853967 0.1666664 0.0052083 0.51873 0.32113
SD. [18] 20 0.7853967 0.1666663 0.0052083 0.51774 0.32114
PG. [19] 20 0.7853967 0.1666663 0.0052083 0.80146 0.46121
Coll. [21] 20 0.7849545 0.1664765 0.0051995 2.90516 2.49892
D.Quad. [23] 20 0.7853979 0.1666671 0.0052084 0.01653 0.01194
DL.Coll. [24]1. 20 0.7853966 0.1666662 0.0052083 1.75277 1.76465
DL.Coll. [24]2. 20 0.7853966 0.1666662 0.0052083 1.75270 1.76459
SS.Coll. [25] 20 0.7853982 0.1666666 0.0052083 1.75081 1.76288
HM(Pres.) [28] 20 0.7853989 0.1666675 0.0052084 0.01275 0.01047
T-Coll. [29] 20 0.7850300 0.1666259 0.0052058 1.46806 0.89667

Table 12: Convergence order for Example 1 when ∆t = 0.05 at t = 20.

hj L2x10
3 L∞x103 Order(L2) Order(L∞)

0.8 3.06141247 2.28725768 − −
0.4 0.19632160 0.13763922 3.9632 4.0550
0.2 0.01285990 0.00899224 3.9371 3.9364
0.1 0.00057606 0.16269906 3.9716 3.9647
0.05 0.00005149 0.00003627 3.9934 3.9896
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Table 13: Convergence order for Example 1 when h = 0.1 at t = 20.

∆tj L2x10
3 L∞x103 Order(L2) Order(L∞)

0.8 0.01754897 0.01252201 − −
0.4 0.00876262 0.00630404 1.0020 0.9902
0.2 0.00439789 0.00315468 0.9947 0.9988
0.1 0.00220678 0.00157957 0.9950 0.9980
0.05 0.00110645 0.00079042 0.9961 0.9988

Table 14: A comparison of invariant values and the error norms of single solitary wave with param-
eters µ = 1,∆t = 0.01 for c = 0.25 on [0, 80].

method t I1 I2 I3 L2 x 103 L∞ x 103

LTS.Coll. 0 0.7853982 0.1666667 0.0052083 0.0000000 0.0000000
5 0.7853982 0.1666667 0.0052083 0.0000635 0.0000705
10 0.7853982 0.1666667 0.0052083 0.0001247 0.0001430
15 0.7853982 0.1666667 0.0052083 0.0001814 0.0002127
20 0.7853982 0.1666667 0.0052083 0.0002322 0.0002748

SD. [17] 20 0.7853967 0.1666664 0.0052083 0.0518107 0.0320756
SD. [18] 20 0.7853967 0.1666663 0.0052083 0.0517742 0.0321145
DL.Coll. [24] 20 0.7853967 0.1666662 0.0052083 0.1752326 0.1764220
HM(Pres.) [28] 20 0.7853976 0.1666651 0.0052082 0.0036871 0.0042041

Table 15: A comparison of invariant values and the error norms of single solitary wave with param-
eters µ = 1,∆t = 0.05 for c = 0.25 on [0, 70].

method t I1 I2 I3 L2 x 103 L∞ x 103

LTS.Coll. 0 0.7853982 0.1666667 0.0052083 0.00000 0.00000
5 0.7853982 0.1666667 0.0052083 0.00005 0.00005
10 0.7853982 0.1666667 0.0052083 0.00009 0.00010
15 0.7853982 0.1666667 0.0052083 0.00013 0.00016
20 0.7853982 0.1666667 0.0052083 0.00017 0.00020

LGal. [11] 20 0.7853970 0.1667636 0.0052083 0.08014 0.04600
MQ. [22] 20 0.7854414 0.1666622 0.0052081 0.06152 0.03324
G. [22] 20 0.00550 0.00369 0.0052080 0.03186 0.02476
IMQ. [22] 20 0.7855228 0.1667260 0.0052120 0.06676 0.05134
Q. [22] 20 0.7852686 0.1666209 0.0052055 0.05347 0.03716
PG. [26] 20 0.78539 0.16667 0.00521 0.00345 0.00203
HM(Pres.) [28] 20 0.7853975 0.1666667 0.0052083 0.00133 0.00120
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Figure 1: Movement of a single solitary wave at t=20 for different amplitude values c.
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Table 16: A comparison of invariant values of interaction of two solitary waves with parameters
h = 0.1,∆t = 0.2 on [0, 80].

metod [29]

t I1 I2 I3 I1 I2 I3

0 4.712388 3.333336 1.416670 4.712388 3.333336 1.416669
10 4.712329 3.333255 1.416588 4.710180 3.331961 1.415419
20 4.712273 3.333174 1.416501 4.710180 3.331341 1.414833
30 4.712217 3.333106 1.416136 4.710181 3.329523 1.413184
40 4.712202 3.333086 1.416229 4.710181 3.329690 1.413358
50 4.712147 3.333011 1.416347 4.710180 3.330105 1.413629
55 4.712116 3.332971 1.416309 4.710180 3.329860 1.413359
60 4.712086 3.332930 1.416269 4.710180 3.329600 1.413079
70 4.712025 3.332849 1.416187 4.710180 3.329056 1.412516
80 4.711964 3.332767 1.416106 4.710180 3.328490 1.411954

6.2 Example II: Interaction of two solitary waves

In this example, Eq.(1) is considered with the initial condition presented below for the interaction
of two solitary waves

U(x, 0) =

2∑
j=1

cjsech[k(x− xj)]

in which k =

√
1

µ
for µ = 1. For values of the parameter ∆t = 0.2, h = 0.1, the parameters

x1 = 15, x2 = 30 and c1 = 1, c2 = 0.5 on [0,80] are selected as used in the recent study [29].
Comparison of the invariants I1, I2, I3 of example 2 with those in [29] at different times with the
mentioned parameter values is shown in Table 16. It can be clearly observed that all the invariants
from the initial to the last time throughout the run time are very well preserved according to [29].
It can be seen from Fig.2 that the smaller wave lags behind the larger one. Moreover, there was no
flexible collision as the waves left small tail waves behind them after the collision. From here the
truth is that these two solitary waves cannot be considered as solitons [26].

6.3 Example III: Maxwellian initial condition

In this example, movement of solitary wave to check the performance of the proposed algorithm is
submitted with the Maxwellian initial condition

U(x, 0) = e−x2

and boundary conditions U(xL, t) = U(xR, t) = 0. For the different values 0.5, 0.1, 0.05, 0.02, 0.005, 0.0025
of µ and the parameters h = 0.05,∆t = 0.01 on the region [−20, 20] at time T = 12.5, Maxwell
initial condition generates new solitary waves.
Implementation 2.1 In this implementation, µ = 1.0 is taken for the largest µ value. The move-
ment of the wave is illustrated in Figure 3. The values of the invariants are shown in Table 17. The
invariants have retained their initial values during operation.
Implementation 2.2 In this implementation, by decreasing the value of µ, it is taken as µ = 0.5.
The movement of the wave is illustrated in Figure 3. The values of the invariants are exhibited in
Table 17. The invariants have retained their initial values during operation.
Implementation 2.3 For this application, by reducing the value of µ to 0.1, the movement of the
wave is plotted in Figure 3. The values of the invariants are shown in Table 17. The invariants have
retained their initial values with little change during the run.
Implementation 2.4 For this application, the µ value decreases as µ = 0.05 and the movement of
the wave for this value is shown in Figure 3. The values of the invariants are listed in Table 17. It
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Figure 2: The interaction of two solitary waves at different times t . values of µ.
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Table 17: The invariant values of Maxwellian initial condition for h = 0.05,∆t = 0.01 for different
values of µ

method µ = 1.0 µ = 0.5 µ = 0.1

t I1 I2 I3 I1 I2 I3 I1 I2 I3
0.0 1.77245 2.50663 0.88623 1.77245 1.87997 0.88623 1.77245 1.37865 0.88623
2.5 1.77245 2.50663 0.88623 1.77245 1.87997 0.88623 1.77245 1.37864 0.88625
5.0 1.77245 2.50663 0.88623 1.77245 1.87997 0.88623 1.77245 1.37864 0.88625
7.5 1.77245 2.50663 0.88623 1.77245 1.87997 0.88623 1.77245 1.37864 0.88625
10.0 1.77245 2.50663 0.88623 1.77245 1.87997 0.88623 1.77245 1.37864 0.88625
12.5 1.77245 2.50663 0.88623 1.77245 1.87997 0.88623 1.77245 1.37864 0.88625

µ = 0.05 µ = 0.02 µ = 0.005

t I1 I2 I3 I1 I2 I3 I1 I2 I3
0.0 1.77245 1.31598 0.88623 1.77245 1.27838 0.88623 1.77245 1.25958 0.88623
2.5 1.77245 1.31598 0.88631 1.77245 1.27835 0.88656 1.77211 1.25865 0.88807
5.0 1.77245 1.31597 0.88631 1.77244 1.27833 0.88654 1.77144 1.25716 0.88493
7.5 1.77245 1.31597 0.88631 1.77244 1.27832 0.88651 1.77080 1.25602 0.88255
10.0 1.77245 1.31597 0.88631 1.77243 1.27830 0.88648 1.77011 1.25437 0.87828
12.5 1.77245 1.31597 0.88631 1.77242 1.27829 0.88646 1.76948 1.25325 0.87593
Ref. [28] µ = 1.0 µ = 0.5 µ = 0.1

t I1 I2 I3 I1 I2 I3 I1 I2 I3
0.0 1.77245 2.50663 0.88623 1.77245 1.87997 0.88623 1.77245 1.37865 0.88623
2.5 1.77232 2.50645 0.88607 1.77244 1.87996 0.88622 1.77245 1.37870 0.88631
5.0 1.77242 2.50642 0.88608 1.77243 1.87995 0.88621 1.77244 1.37868 0.88629
7.5 1.77235 2.50621 0.88593 1.77248 1.88009 0.88634 1.77244 1.37869 0.88630
10.0 1.77224 2.50599 0.88576 1.77247 1.88006 0.88632 1.77244 1.37869 0.88630
12.5 1.77246 2.50635 0.88603 1.77248 1.88009 0.88635 1.77244 1.37869 0.88630

µ = 0.5 µ = 0.02 µ = 0.005

t I1 I2 I3 I1 I2 I3 I1 I2 I3
0.0 1.77245 1.31598 0.88623 1.77245 1.27838 0.88623 1.77245 1.25958 0.88623
2.5 1.77245 1.31613 0.88654 1.77246 1.27877 0.88730 1.77246 1.25876 0.88779
5.0 1.77245 1.31610 0.88649 1.77245 1.27857 0.88691 1.77232 1.25451 0.87877
7.5 1.77245 1.31608 0.88645 1.77245 1.27838 0.88653 1.77215 1.25001 0.86825
10.0 1.77245 1.31606 0.88642 1.77245 1.27818 0.88614 1.77203 1.24635 0.86056
12.5 1.77245 1.31605 0.88640 1.77245 1.27798 0.88576 1.77186 1.24218 0.85136

is clear that invariants have retained their initial values with little change during the run.
Implementation 2.5 In this implementation, by decreasing the value of µ, it is taken as µ = 0.02.
The movement of the wave is illustrated in Figure 3. The values of the invariants are shown in
Table 17. The invariants have retained their initial values with little change during the run.
Implementation 2.6 For this application, By further decreasing the value of µ, it is taken as
µ = 0.005. The movement of the wave is displayed in Figure 3. The values of the invariants are
listed in Table 17. One can clearly see that the invariants have retained their initial values with
little change during the run.

7 Conclusion

In the present article, for the numerical calculations of the modified equal width wave equation,
Lie-Trotter splitting algorithm combined with quintic B-spline collocation method is recommended.
First of all, a wide literature review has been made about the studies done so far for the equation.
Then, the Maxwellian initial condition is examined with six different applications, along with in-
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Figure 3: Maxwellian initial condition for different values of µ.
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vestigating the motion of a single solitary wave, which includes twelve types of applications with
different parameters. The newly produced solutions are compared with the existing applications
in the literature and their behavior is depicted in graphs. As a result of those comparisons, it
can be clearly seen that the proposed algorithm shows the best performance according all previous
studies [11, 12], [14–19], [21–29], including those in recent years in the literature. These excellent
results are new in terms of accuracy, reliability and cost compared to the results of other applica-
tions. One can easily observe this truth from the tables presented in the study. This can be meant
that the algorithm presented for scientists working in this field be going to considered a useful and
effective tool in obtaining approximate solutions of partial differential equations used in many fields
of science.
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