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Abstract
Due to the superradiance phenomenon, energy could be extracted from a rotating black hole (RBH) by an
incident wave with certain initial conditions. The aim is to observe this process by numerical simulation.
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Introduction
The first theoretical background of an energy-momentum ex-
traction phenomenon to an RBH is proposed by Penrose [1],
showing that a scattering process in the ergosphere can gen-
erate high-energy particles, escaping from the ergoregion at
large distances from the RBH [2]. Later, Teukolsky and Press
[3] studied a similar process, called superradiance, for its
gravitational and electromagnetic analog. The motivation
for studying this type of phenomena is to try to understand
the formation of astrophysical jets (high energy and highly
collimated matter flows) emerging from supermassive RBH.
While until recently the general belief was that these were due
to a magnetohydrodynamical phenomenon, a consequence of
magnetic currents in the accretion disk (Blandford and Znajek,
1976), analyses of particle geodesics in a Kerr background
gave hints that purely gravitational effects (in particular by
the pair generation of the Penrose process) may be playing

a more important role than previously thought. In numerical
studies such as [4] it is observed through the Monte Carlo
method that a large number of particles emerging from an
RBH by the Penrose process would have a high degree of
collimation. This type of result agrees with measurements in
which a large percentage of the jet particles are found to have
ultra-relativistic velocities [5], which is more in line with the
model of a purely geometrical effect. In addition, the obser-
vation of charge-neutral particles forces a reconsideration of
the magnetic effects of the magnetohydrodynamic model. In
particular, in this work we studied the behavior of a scalar
field (Klein Gordon). An important antecedent of the study of
this type of fields in RBH can be seen in [6]; here, the super-
radiance phenomenon is observed. However, [7] repeated the
study with another numerical method (purely spectral) and,
unlike in [6], with an initial compact support data (equal to
zero inside the ergoregion), and the incident wave, instead of
extracting energy, is completely reflected at the edge of the
ergoregion. The objective of this paper is to provide an analy-
sis that helps to understand the difference between these two
publications. The sections are arranged as follows. In Section
1 we present the problem and in Section 2 the different coordi-
nates used in the code. In Section 3 we analyze how the flow
we will study will be, Section 4 explains the initial data used
and in Section 5 the wave equation it obeys. Section 6 has a
description of how to read the images included, Section 7 the
results obtained, in Section 8 the convergence is analyzed and
finally in Section 9 the conclusions.

1. Problem
We want to analyze numerically the phenomenon of super-
radiance. Superradiance occurs when, under certain initial
conditions, a wave heading towards an RBH returns later
with more energy than it had at the beginning. This gain in
wave energy is at the cost of extracting rotational energy from
the RBH when it interacts with the ergoregion. To do the



Numerical Simulation of Superradiance in Rotating Black Holes — 2/8

Figure 1. The left presents the field to be studied. The right shows the patches.

numerical study, we will then need to represent a region of
space-time. First, we map the space-time with Cauchy sur-
faces, parameterized with a time t, and from each surface,
we consider a section that encompasses the entire ergoregion
and a portion of the surrounding spacetime. This region is
shown in Figure 1. It represents two spatial Cauchy surfaces
Σo and Σt , i.e. space at time. t = 0 and at a later time t, and
on each of these surfaces we take two spheres: one of radius
cin, which is inside the outer event horizon (therefore also in-
side the ergoregion) and outside the inner event horizon; and
another of radius cout , outside the ergoregion. The succession
of spheres on each surface between Σo and Σt will give us the
two cylinders shown in the figure. Our total region of inter-
est is the one that spans from the inner cylinder to the outer
cylinder. It will be within this range that we will set the initial
data. The data, which is initially far from cin, will fall towards
the RBH, will reach the ergoregion, and then, what did not
fall within the RBH will leave the ergoregion heading now
in the opposite direction towards cout . Our way of analyzing
if the superradiance phenomenon is occurring is by means
of the flow. Suppose that the initial data is non-zero in the
interval [ci,c f ] (with cin < ci < c f < cout), what we will do
then is to take a radius cFlu jo between the initial data and the
inner radius (cin < cFlu jo < ci) and calculate the flux passing
through that sphere. If we wait long enough, all the data will
pass through that region, reach the RBH, and pass back again
on its return. Three situations can occur: that the total flux
will be zero (as for example in Minkowski, whereas there is
no black hole, all the wave returns in the same way); that the
flux is greater than zero because part of the data was lost in
the RBH (as will be the case in general for Kerr); or that it is
negative. The latter would be the superradiant case since it
would mean that it passed through cFlu jo with more energy
on its return.

2. Coordinates
Since the numerical evolutions need a flat representation, each
sphere is covered with six patches (see Figure 1), and a coor-
dinate change is then performed, for each patch, from (t, x, y,
z) to (t, a, b, c). The coordinate changes can be found in [8].
a and b are the coordinates that parameterize each patch for
a fixed radius. That is, they represent the angular variables.
While c =

√
x2 + y2 + z2 is the Cartesian radius, and this is

the coordinate in which the spheres discussed in Section 2 are
represented. Since in this transformation, we work then with
Cartesian radii, to be able to introduce the sphere cin inside
the event horizon r+, it will be fundamental to see the form
that have the horizons of the RBH, thought as ellipsoids in
Cartesian coordinates (see Figure 2). But in addition, another
complication arises: it is necessary that the propagation ve-
locities in cin are both directed towards the singularity (i.e.,
that the null velocities that form the cones are incoming),
however in the event horizon the cone points outwards again
because one of the propagation velocities changes sign again.
Therefore cin has to be contained between r+ and r.

Figure 2. In-text Picture

The problem is that this is not always possible. If the
angular velocity is very large, the ellipsoids flatten in such
a way that it becomes impossible to place a sphere between
them (as in the representation on the left in Figure 2). It
was then necessary to find an angular momentum such that
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a Cartesian sphere can be contained between the ellipsoids.
Taking into account that the superradiance phenomenon is best
observed for large annular velocities, the maximum possible
value was sought, which was a = J

m = 0.96. To make sure
that this sphere cin is contained between the horizons, the sign
of the wave propagation velocity at that radius is numerically
controlled, making sure that both propagation directions have
the same sign. Regarding the representation of the Kerr metric,
the code uses Kerr-Schild coordinates:

That is, it is of the form:

gab = ηab +2Hlalb

With H = mr
r2+a2 cos2 Θ

null with respect to ηab and gab

This metric is then rewritten in terms of a lapse function
and a vector shift [2]. For this we foliate with spatial Cauchy
surfaces, Σt , parameterized by a global function of time t. If
na is a unit vector normal to Σt (i.e. temporal), then we can
obtain the metric of the spatial surface:

hab = nanb +gab

And we see that habna = 0, that is hab is the spatial metric
induced on the surface Σt . Now (with ta such that ta∇at = 1)
we decompose ta in the direction of na and Σt respectively
(i.e. ta = ana +β a):

α =−tana

βa = habtb

The components of the metric and the relationship between
the two coordinates can be found in Appendix A.

3. Flow
Let us now look at a way of calculating the flux that will

help us to determine superradiance. The current ja is given
by:

jµ =−T µ
vkv

With T µ
v the one corresponding to that of a scalar field:

Tµ v = ∂µ Φ∂vΦ− 1
2

gµ v(∂Φ)2

and k = ∂/∂ t. Then

jµ = ∂
µ

Φ∂tΦ− 1
2

kµ(∂Φ)2

Moreover, since the metric does not depend explicitly on time,
k is Killing, and then this current is conserved ∇a ja = 0. If

we integrate in the region of interest presented in Figure 1, we
can then apply Stokes on the volume studied and obtain:

0 =
∫

S
∇a ja√−gd4x =

∫
∂S

jadSa

0=
∫

borderout

jadŜa−
∫

borderin

jadŜa+
∫

Σt

jadSa−
∫

Σo

jadSa

The last two terms represent the total energy between the
spheres (the lids of the hollow cylinder). The term integrated
over Σ0 corresponds to the initial energy, while the one inte-
grated over Σt is the energy at time t (final energy). Let us
analyze one of the first two terms, which correspond to the
flow integrating in time over a sphere. We must integrate, first
over the surface of a sphere, and then that sphere over time.

F =
∫

border
jadŜa =

∫ t f

ti

∫
sphere

ja (dc)a

|dc|
dV

The volume element for that case will be:

dV = det(−M)dadbdt

With M the metric induced tensor for a constant r. The minus
comes from the fact that the induced on a surface c = cte has
signature (−,+,+). If we contract (dc) with the current of
(1), we obtain:

jµ
(dt)µ

|dc|
= ∂ tΦ(gc j

∂ jΦ−gtc
∂ tΦ)

1√
gcc

That is, we are integrating the Poynting vector. For example
we see that for Minkowski (gtc = 0 andgcc = 1) we are left
with ∂tΦ∂cΦ. For the energy terms, we have:

E =
∫

Σ

jadSa =
∫

top
ja (dt)a

|dt|
dV

jµ
(dt)µ

|dt|
=

1
2
(gtt

∂tΦ∂tΦ−gi j
∂iΦ∂ jΦ)

1√
−gtt

4. Initial Data
We see for example in [9] that to observe superradiance, the
scalar field must be of the form:

Φ = Φ0 cos(ωt −mφ)

Where m is the quantum number corresponding to the angular
momentum (the m of the Ylm) and is the frequency which
must be in the superradiant interval. Since the average power
lost on the horizon is given by:

P =
1
2

Φ
2
0Aω(ω −mΩH)

With ΩH = a
r2+a2 , this power will be negative when 0 ≤ ω ≤

mΩH . This is then the superradiant interval. In our case we
will use as initial data a field of the form:

Φ = f (r)sin2
θ

cos(w(r− rm)−mφ)

r
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Where here also r is the Cartesian radius, that is, c in (t,a,b,c),
and rm =

ri+r f
2 is the center of the data, whose support is given

by the function f :

f (r) =
1
N
(r− ri)

n(r− r f )
n

for r ∈ [ri,r f ] and f (r) = 0 for radii outside that interval.
N = (rm−ri)

n(rm−r f )
n is a normalization so that f (rm) = 1.

Being polynomial, this function gives it a pulse shape and
becomes zero at its extremes, so that the initial data is smooth.
For this wave to propagate towards the event horizon we must
fix its time derivative. We will do this by deriving as if we
had plane geometry, since all we are looking for is an initial
condition for the velocity that directs most of the wave towards
the RBH . With a sufficiently large ri we can see that the wave
is indeed directed towards the RBH. The condition for this to
occur in plane geometry is:

Φ̇= ∂Φ

∂ r =n( f (r)
(r−ri)

+
f (r)

(r−r f )
sin2 θ

cos(ω(r−rm)−mφ)
r −ω f (r)sin2 θ

sin(ω(r−rm)−mφ)
r

In the following section we will see the evolution of the initial
data considering the Kerr geometry.

We must change the free parameters (n,ri,r f ,ω,m) to
maximize the proportion of the wave returning from the RBH.
For this we started from the initial data used in [7], and from
there we tested by making small variations to the parame-
ters and controlling the flux integral. It is observed that the
proportion of the wave that falls in the RBH is smaller for
waves of large non-zero domain, but it was also noted that the
distance between the end of the ergosphere and the beginning
of the pulse must be large, therefore it was taken ri = 41 and
r f = 79. The optimum power found is n = 2 and the spherical
harmonic l = 2, with m = 2, −2 being the corresponding val-
ues for a wave co-rotating with the RBH and counter-rotating
respectively. Finally ω will tell us, for a fixed φ , how many
cycles enter the pulse. Since the extracted power is given by
(2), it will be maximum when ω = ΩH (which can be seen
by deriving (2) with respect to ω and equaling zero). The
parameters n,ri,r f and ω were the ones that most needed to
be tested, because they are not only related to each other (for
example when changing the interval [ri,r f ], changes rm and
therefore the number of cycles that will give us ω), but also
because they intervene in the accuracy with which the data
is represented. This occurs on the one hand because of the
length of the domain, due to the number of points used to
represent the wave, as well as the power of the polynomial,
because if this is small, the junction between f (r) ̸= 0 and
f (r) ̸= 0 is less smooth, but if it is very large, it is noted that
the convergence worsens (since the accuracy of the derivative
operators depends on the power). These dependencies with
accuracy led to the fact that in many cases certain results that
seemed good with a certain number of points became worse
than others as the number of points increased, and it was then
necessary to run simulations with many points to determine
which one was adequate.

5. Wave Equation

The code was previously constructed to evolve Maxwell’s
equations in Kerr geometry, therefore it is necessary to rewrite
the wave equation of a scalar field in terms of the variables
available in the code. It can be seen (Appendix A) that the
wave equation:

□Φ = ∇a∇
a
Φ =

1√
−g

∂v(
√
−ggvγ

∂γ) = 0

It is verified if we evolve:

∂tΦ = β
i
∂iΦ− α√

h
∂i(

√
hBi)

With Bi evolving as:

∂tBi =− 1
α

β
i(∂tΦ)−αgi j

∂ jΦ

Therefore giving ∂tΦ as in Section 4 and obtaining Bi from
Φ, we have the evolution of the wave equation.

6. About the Images

Before going to the results, let’s see how to interpret the
images. As we said, each sphere of constant Cartesian radius
is represented by six patches, therefore the representation of
a spherical harmonic l = 2 when we put the disassembled
sphere in a plane, will look like in Figure 3.

Figure 3. Constant Radius Cut

Then, if we now add the radial dimension, the result will
be as shown in Figure 4.

However, in this last representation we cannot appreciate
the value of the data at each point because we need an extra
dimension, so the most practical way will be to make cross
sections. For example, a possible cut would be to take from
each sphere only its equator. Figure 5 shows how the cut was
made and 6, its representation in the code.
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Figure 4. Complete Representation

Figure 5. Cross Section

7. Results
The first thing to study is Minkowski because it is the simplest
case and allows us to have a proof of the flow calculation,
observing if the total flow for a fixed radius is zero. Given the
singularity of coordinates at the origin, what was done was to
simulate ”a mirror” at a given radius. This means putting a
boundary condition corresponding to the outgoing solution of
the wave equation.

Φ̇mirror =−Φ̇incident

(∂rΦ)mirror = (∂rΦ)incident

And with that condition we control that the energy remains
constant and that the total integrated flux is zero. In Figure
6 you can see the evolution of the wave and how it returns.
On the right are the smallest radii (ending in cin ) and on
the left are the large radii (ending in cout). We see that the
wave goes towards r = 0, reflects at a radius r = 1.250 and
returns preserving the shape. Then in Figure 8 we can see
that the energy remains constant, with a small perturbation on
the order of one part in ten thousand at the time of reflection.

Figure 6. Cross Section

In Figure 9 we see that the integrated flux at r = 3 reaches a
maximum when the whole wave passes, and then returns to
zero when it returns. In addition, Figure 10 shows in detail
the moment when the wave finishes returning, there you can
see that it returns to zero with an error of less than one part in
ten thousand.

Figure 7. Evolution

In addition to testing the energy and flux, there is a third
test that we can perform, which consists of relating both quan-
tities. What was done is to calculate the energy in the region
that occupies the initial data at time t = 0 and the flux in the
lower limit of that same region. Then, as time passes, the
wave will be leaving, and therefore decreasing the energy in
that region, while the integrated flux will be increasing by
the same amount. Therefore, adding both quantities we will
have a test that combines them. This is shown in Figure 11.
The reason why it falls at first is that here we are comparing
two numerically distinct integrals: the energy is a spatial in-
tegral and therefore depends on the spatial steps, while the
flux involves the combination of two spatial coordinates with
a temporal one. So, for each time, we are taking an approx-
imation of the flux integral, however we can see that when
all the energy has left the region, the total value of the flux is
equal to that of the energy in one part in ten thousand.

Let us now look at the Kerr case. The evolution, for the
data presented in Section 4, is shown in Figure 12. We see that
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Figure 8. Energy

Figure 9. Flux

the wave returns from the ergoregion maintaining the shape.
The flow curve is presented in Figure 13 and the energy in
Figure 14. Here the control of energy and flux was performed
as in the Minkowski conservation. That is, we take an interval
that covers only the initial data and we control how these
variables evolve, first separately, and then their combination.

We see that the energy returns to its initial value, and that
the total integrated flux is zero, i.e., we obtain the same result
as for Minkowski: the whole wave returns. Figure 15 shows
the relationship between the two quantities. The disturbance
in the graph at the beginning is, as before, the consequence of
the flux integral also being a time approximation

8. Convergence

In order to analyze the convergence of the code, the accuracy
coefficient given by

Q(t) :=
u(1)(t,x;∆t,∆x)−u(2)(t,x;∆t ′, ∆x

2 )

u(2)(t,x;∆t ′, ∆x
2 )−u(3)(t,x;∆t ′′, ∆x

4 )
= 2q

Figure 10

Figure 11. Conservation

Where ∆x represents the spatial step (i.e. the total length di-
vided by the number of grids) and the different ∆t are taken in
such a way that the quotient ∆t

∆x = 0.1. The value of q will give
us the order of the method used since we are comparing how
the error changes as we double the number of points. In our
case the grids used were (in the coordinates (a,b,c) presented
in Section 1): 11x11x231, 21x21x461 and 41x41x921. And
with those points the result was the one presented in Figure
16.

The expected result was q = 4 because we are using a
Runge-Kutta of order 4, however we see that we are converg-
ing to q = 3. This is probably because the number of points
used is too few to obtain the optimal result. As the increase
in the total number of points, the next step (81x81x1841) ex-
ceeds the available resources in the cluster used, however
we will try to perform this simulation in a larger cluster. As
discussed in Section 5, it is also observed that for initial poly-
nomial data of smaller powers the convergence has a lower
order (perhaps due to the junction between the data support
and the zero data), however for higher powers, where the
junction is smoother, the data is concentrated in the center
(it becomes sharper) and this also causes a decrease in the
pressure. It should also be noted that although the polynomial
form is the simplest way to represent the pulse, it is possible
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Figure 12. Evolution

Figure 13. Flux

by means of Hermite polynomial interpolation to generate a
data having a larger number of continuous derivatives.

9. Conclusions
The most important thing to note is that the result is similar to
that obtained in [7], in which the incident wave is completely
reflected. That is to say, the superradiance phenomenon was
not found either. However, one of the main differences is that
even for the cases of total reflection obtained, the interaction
between the wave and the ergoregion is still considerable (i.e.,
the wave penetrates up to the ergoregion, while in [7] they
observe that for the case of total reflection the wave does not
enter the ergoregion). Since the way the wave extracts energy
from the RBH is precisely through its ergoregion, the results
lead to think that it is still possible to find a way to adjust the
data in such a way that the phenomenon is observed. Another
consideration is that the difficulties in placing a sphere of
constant Cartesian radius between the horizons (as presented
in Section 2), led to the maximum possible angular velocity
being less than that used in [7] (a = 0.96 instead of a = 0.99).
And since the superradiance phenomenon intensifies for larger
angular momenta, the angular velocity may not have been
sufficient. The next step is to extend what has been done for
the case of electromagnetic waves to discover whether this
total reflection phenomenon is in fact a feature of the scalar
field. The code has incorporated the evolution of Maxwell’s
equations in Kerr (in fact, as shown in Section 6, they were
used to form the scalar field by putting E = 0 and taking
advantage of the evolution of B and its zero divergence) so

Figure 14. Energy

it is only necessary to put a suitable initial data to search for
superradiance.

10. Appendix A
The metric components in terms of lapse and shift are:

gab((∂ t)a,(∂ t)b) = g00 = β
2 −α

2

gab((∂ t)a,(∂xi)
b) = g0i = βi

g((∂xi)
a,(∂x j)

b) = hi j

While we can obtain components of the inverse by developing
ta:

gab = hab −nanb

gab = hab − 1
α2 ((∂ t)a −β

a)((∂ t)b −β
b)

gab =− 1
α2 (∂ t)a(∂ t)b +

2
α2 (∂ t)a

β
b +(hab − β aβ b

α2 )

g00 =− 1
α2 g0i =

β i

α2 gi j = hi j − β iβ j

α2

The correspondence between coordinates is:

H =
1
2
(−1+

1
α
)

li = (
1+2H

2H
)β i

Figure 15. Convergence
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Figure 16. Conservation

11. Appendix B
To write the wave equation in terms of the fields in the code
we start from:

□Φ = ∇a∇
a
Φ =

1
√

g
∂v(

√
−ggvγ

∂γ Φ) = 0

Developing this term and noting that
√
−g = α

√
h, we have

□Φ=g00∂tt Φ+g0i∂i∂t Φ+ 1
α
√

h
∂i(α

√
hgi0∂t Φ)+ 1

α
√

h
∂i(α

√
hgi j∂ jΦ)=0

And now we replace by the components obtained in Section
2:

∂ttΦ=α
2g0i

∂i∂tΦ+
α√

h
∂i(α

√
hgi0

∂tΦ)+
a√
h

∂i(α
√

hgi j
∂ jΦ)

∂ttΦ= β
i
∂i∂tΦ+

α√
h

∂i(
1
α

√
hβ

i
∂tΦ+α

√
hgi j

∂ jΦ) (4)

And to write it using the magnetic field consider the expression
of Bi:

∂tBi =− 1
α

β
i(∂tΦ)−αgi j

∂ jΦ (5)

If we now multiply (5) by
√

h and then derive:

∂i(
√

h∂tBi) =−∂i(
1
α

√
hβ

i
∂tΦ+α

√
hgi j

∂ jΦ)

Replacing in (4):

∂ttΦ = β
i
∂i∂tΦ− α√

h
∂i(

√
h∂tBi)

Therefore we evolve ∂tΦ as:

∂tΦ = β
i
∂iΦ− α√

h
∂i(

√
hBi)
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