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Abstract

Nowadays, the protection mechanisms are introduced into microservice systems to ensure the stable operation of services.

However, existing approaches ignore the impact of protection mechanisms on the root cause localization of abnormal services.

Specifically, the circuit breaking and rate limiting mechanisms can refuse service requests and thus change the way of anomaly

propagation. Moreover, different service request frequencies and response time make service dependencies change dynamically,

resulting in different probabilities of anomaly propagation among services. In this paper, we propose a novel framework named

MicroGBPM to locate the root cause of abnormal services, which considers the impact of the protection mechanisms. We model

anomaly propagation among services as a dynamically constructed service attributed graph with metrics and traces when a

failure occurs. To eliminate the impact of the protection mechanisms, we design a two-stage dynamic calibration strategy to

adjust the probability of anomaly propagation among services. Then we propose a random walking approach to calculate the

root cause results by using the PageRank algorithm. The experimental results show that MicroGBPM improves the accuracy

of root cause localization compared to other approaches in microservice systems with protection mechanisms.
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Abstract

Nowadays, the protection mechanisms are introduced into microservice systems to ensure

the stable operation of services. However, existing approaches ignore the impact of protec-

tion mechanisms on the root cause localization of abnormal services. Specifically, the circuit

breaking and rate limiting mechanisms can refuse service requests and thus change the

way of anomaly propagation. Moreover, different service request frequencies and response

time make service dependencies change dynamically, resulting in different probabilities of

anomaly propagation among services. In this paper, we propose a novel framework named

MicroGBPM to locate the root cause of abnormal services, which considers the impact of

the protection mechanisms. We model anomaly propagation among services as a dynami-

cally constructed service attributed graph with metrics and traces when a failure occurs.

To eliminate the impact of the protection mechanisms, we design a two-stage dynamic cal-

ibration strategy to adjust the probability of anomaly propagation among services. Then

we propose a random walking approach to calculate the root cause results by using the

PageRank algorithm. The experimental results show that MicroGBPM improves the accu-

racy of root cause localization compared to other approaches in microservice systems with

protection mechanisms.
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1 INTRODUCTION

A growing number of applications are embracing the microservice architecture 1,2. The microservice architecture uses a modular approach to spilt
large software applications into hundreds or thousands of smaller, more independent, and more manageable microservices 3,4. Meanwhile, there
are complex dependencies between microservices. Multiple microservices work together to respond to user requests. Once a single service goes
down, it is likely to trigger a cascading failure that can cause the entire system to crash. When multiple services are abnormal at the same time, site
reliability engineers need to accurately locate the root cause of abnormal services to avoid huge economic losses 5,6. Therefore, it is meaningful
and challenging to accurately locate the root cause of abnormal services in large microservice environment.

Microservice architectures usually introduce protection mechanisms to enhance the stability of services, such as the circuit breaking and rate
limiting mechanisms. When the number of abnormal requests from the upstream service to the downstream service reaches a certain threshold,
the upstream service will perform the circuit breaker to avoid causing service cascading failure. When the number of service requests exceeds the
threshold, the service turns on the rate limiting mechanism. Excess service requests are rejected to avoid service crashes caused by high concurrent
requests. Although these protection mechanisms reduce the probability of service failure, they also affect the way of anomaly propagation. The
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impact of different levels of protection mechanisms also varies. In addition, service dependencies are related to service access frequency and
response time. Service access frequency is different. Service response time also varies between different types of services. These differences make
service dependencies change dynamically, resulting in different probabilities of anomaly propagation among services. The protection mechanisms
and the dynamicity of service dependencies further increase the complexity of root cause localization. There is still a problem that it is difficult to
locate the root cause of abnormal services accurately in microservice systems with protection mechanisms.

In recent years, many approaches on the root cause localization of abnormal services have been proposed, including trace analysis and service
dependency graph. On the one hand, the trace analysis approaches use servicemetrics and traces to locate the root causes by calculating the degree
of service anomalies, e.g., MEPFL 7, Diagnose 8, T-Rank 9. However, these approaches suffer from some practical issues. Specifically, Diagnose and
T-Rank ignore the dependencies between services and do not take into account the propagation of anomalies. MEPFL locates the root causes by
training a supervised learning model, but it is impractical to guarantee accuracy in different microservice environments. On the other hand, the
service dependency graph approaches use causal relationships 10–12 or service calls 13–15 to construct service dependency graphs. These approaches
usemetrics, logs and traces to calculate service anomaly scores and locate the root cause of abnormal services by traversing the service dependency
graph. However, none of the above approaches take into account the impact of protection mechanisms. When the protection mechanisms are
open, the collected traces may be inaccurate. It is difficult to accurately locate the root causes by trace analysis approaches. In addition, the
service correlation will be reduced, making it difficult to accurately locate the root causes when using the service dependency graph approaches.
In summary, the above approaches are difficult to accurately locate the root cause of abnormal services in microservice systems with protection
mechanisms.

In this paper, we propose a novel framework named MicroGBPM to locate the root causes of abnormal services. The main idea of MicroGBPM
is to utilize metrics and traces and eliminate the effect of the protection mechanisms to locate the root causes. Firstly, we model the process of
anomaly propagation as a dynamically constructed service attributed graph. We use metrics and traces to calculate service anomaly scores and the
probability of anomaly propagation among services when an anomaly is detected. Secondly, we design a two-stage dynamic calibration strategy
to eliminate the effect of the protection mechanisms on anomaly propagation. When the circuit breaking mechanism is open, we use the in-
neighbor service metrics to adjust the current service metrics. We calculate the probability of rejected requests to quantify the impact of the rate
limiting mechanism on service correlation. Finally, we propose a random walking approach based on the PageRank algorithm and design a series
of flexible transitions to make the results of root cause localization more accurate. We evaluate the accuracy of MicroGBPM based on two open-
source microservices systems Train-Ticket† and Bookinfo‡. We inject different types of faults separately and analyze the accuracy under one or
two root causes. The experimental results show that MicroGBPM can improve the accuracy of root cause localization compared to other state-of-
the-art approaches in microservice systems with protection mechanisms. The results also confirm the effectiveness of the protection mechanism
calibration strategy, which can significantly improve the accuracy of root cause localization results.

In summary, our contributions are threefold:
• As far as we know, we are the first to solve the root cause localization problem in the microservice systems with protection mechanisms, in

which our objective is to eliminate the effects of protection mechanisms and improve the accuracy of root cause localization.
• We propose a new framework to locate the root cause of abnormal services effectively by using metrics, traces and service attributed graph

in microservice systems with protection mechanisms.
• We evaluate MicroGBPM through different types of failures and different levels of protection mechanisms. The experimental results show

that MicroGBPM improves the accuracy of root cause localization compared to other approaches in microservice systems with protection
mechanisms.

The rest of this paper is organized as follows. We present the background knowledge related to MicroGBPM in Section 2. We clarify the
motivation and define the problem in Section 3. In Section 4, we introduce the system model and the approach of root cause localization in detail.
We describe the experiment and analyze the results in Section 5. We summarize the related work in Section 6. We conclude the work of this paper
in Section 7.

†https://github.com/FudanSELab/train-ticket
‡https://istio.io/latest/docs/examples/bookinfo/
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2 BACKGROUND

2.1 Microservice observability

In IT and cloud computing, observability is the ability to measure a system’s current state based on the data it generates, such as logs, metrics,
and traces. Every node (physical or virtual machine), microservice, and container generates records of each activity. The goal of observability is
to understand what is happening in all of these environments and among the technologies so that system failures can be detected and resolved
to keep the system efficient and reliable. In this paper, we use service metrics and traces for root cause localization. We collect the metrics to
determine the current abnormal state of the service. Meanwhile, a back-end request may have to go through multiple services before the final
response reaches the client. We can better analyze system anomalies and solve the root cause locating problems if we can track each request and
analyze information such as response time, status codes, etc.

In this paper, we use Prometheus§ to collect service metrics, including CPU usage, memory usage, network receive/send throughput. We use
the response time collected from traces as one of the metrics as well. We use these metrics to determine the current level of service anomalies.
Meanwhile, all invocations realizing the same user request form a trace. A trace consists of multiple spans. Each span includes information such as
instance, operation, traceId, parentId, HTTP status code and so on.We collect traces using OpenTelemetry¶, which is a set of APIs, SDKs, tools, and
integrations designed to create and manage telemetry data. From the trace data, we can get the response time, access frequency, and service call
graph. We can locate root causes at service instance level based on the tracing information. Figure 1 shows a series of spans and their relationships
within a trace in the Bookinfo system.

FIGURE 1 An example of microservice trace in the Bookinfo system

2.2 Microservice protection mechanisms

In real production environments, systems often face high concurrent situation. Burst requests can lead to resources such as network bandwidth,
CPU, and memory not being able to meet the needs of business requests. In addition, failures can propagate further causing greater impact due to
the complex dependencies between services. Therefore, site reliability engineers introduce the protection mechanisms in order to ensure services
stable operation. We introduce two common protection mechanisms in this section, including circuit breaking and rate limiting mechanisms.

Circuit Breaking Mechanism: When the number of abnormal requests from the upstream service to the downstream service reaches a certain
threshold, the upstream service will open the circuit breaker to avoid causing service cascading failure. The circuit breaker includes the following
three states, as shown in the Figure 2.

§https://prometheus.io/
¶https://opentelemetry.io/
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FIGURE 2 Circuit breaker status and transformation conditions

• Closed: The circuit breaker is in the closed state. When the number of abnormal requests accumulates and reaches the threshold, the circuit
breaker is activated.

• Open: The circuit breaker is in the open state. At this point, the service requests from upstream to downstream will return errors directly.
AfterKT seconds, the circuit breaker enters the half-open state.

• Half-open: When the circuit breaker is in the half-open state, the upstream service allows some service requests to be forwarded to the
downstream service. If all of them are successful, the downstream service is considered to be restored. At this point, the circuit breaker will
be closed. Otherwise, the downstream service is considered to have not recovered and the circuit breaker will return to the open state.

Rate Limiting Mechanism: The rate limiting mechanism is designed to protect service from excessive transient traffic that can cause service
crashes and unavailability. The common rate limiting algorithms include the counter algorithm, the leaky bucket algorithm, the token bucket
algorithm, and the sliding window algorithm. We use the leaky bucket algorithm as an example to analyze the impacts of the rate limiting mecha-
nism on root cause localization in MicroGBPM. The leaky bucket algorithm can be roughly described as water injection and leakage process. The
water flows out of the bucket at a certain rate. When the water exceeds the capacity of the bucket, the excess water will be discarded. Similarly, its
main purpose in the microservice systems is to control the service access rate and smooth out the burst traffic. Note that we use the leaky bucket
algorithm as an example in MicroGBPM. Similarly, we can eliminate the effects of other rate limiting algorithms when they are introduced into the
microservice systems.

2.3 PageRank algorithm

The PageRank algorithm is proposed to calculate the importance of Internet pages. The basic idea of the PageRank algorithm is to define a random
walkingmodel based on a directed graph. It describes the behavior of a walker visiting each node randomly along the directed graph. The probability
of visiting each node in the limit case converges to a smooth distribution, indicating the importance of the node. The PageRank algorithm 16 is
described as follows:

X = d ∗P ∗X + (1− d) ∗ U, (1)
whereX presents the score vector,P denotes transition matrix, U denotes the additional teleportation vector, and d denotes the damping param-
eter. Similarly, we can simulate service anomaly propagation among services by using the PageRank algorithm. The importance of the nodes
represents the probability that the services are the root causes.

3 MOTIVATION AND PROBLEM DESCRIPTION

In this section, we describe the challenges of the root cause localization of abnormal services and analyze the impact of protection mechanisms by
case in detail. Then, we formulate the root cause localization of abnormal services.

3.1 Motivation

There are complex dependencies between services. The anomaly of a single service may cause a cascading failure. It is not reasonable to select the
node with the largest degree of abnormality as the root cause of abnormal services. As shown in Figure 3, the anomaly ofms4 andms5 causes the
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FIGURE 3 An example of a microservice system that contains the protection mechanisms, different service access frequency, and different service
response time

simultaneous anomaly of multiple services. However, the anomaly score ofms2 may be greater than the anomaly score ofms4 orms5. Therefore,
the service with the larger anomaly score is not necessarily the root cause, and we need to further consider the service dependencies.

The service dependency graphs are dynamically changing. The request frequency and response time among services are different. These factors
lead to the differences in service correlation and anomaly propagation probability. As shown in Figure 3,Req1 is requested 3 times with a response
time of 25ms. Req2 is requested 2 times with a response time of 24ms. Req3 is requested 1 time with a response time of 3ms. Different service
dependency levels can lead to different root cause location results when using the service dependency graph approaches. Therefore, we need to
dynamically construct service dependency graphs to locate the root causes more accurately.

When the circuit breaking mechanism is activated, the service requests will be rejected between services. When the rate limiting mechanism
is open, excess service requests will be rejected between services. The correlation between services is reduced, making it difficult to locate the
root causes. We take Figure 3 as an example. When ms3 starts the circuit breaking mechanism, the service dependency between ms3 and ms5

decreases. However, due to the presence of ms4, ms3 still behaves abnormally. Considering ms4 and ms5 as the root causes, the probability of
ms5 being the root cause obtained decreases when the service dependency betweenms3 andms5 decreases. At this point, it is difficult to getms5

as the root cause, making the root cause location result inaccurate. In addition, the correlation between ms2 and ms4 is reduced due to the rate
limiting mechanism, thus affecting the accuracy of root cause localization. Therefore, we need to eliminate the impact of protection mechanisms
on root cause localization.

3.2 Problem description

In this paper, we work on locating the root cause of abnormal services more accurately in microservice systems with protection mechanisms. We
can collect them types of metrics of service i andN traces, defined asMi = {Mi1,Mi2, · · · ,Mim} and T = {T1, T2, · · · , TN}. If there exists an
anomaly, we use the current service as the starting point to determine whether the upstream and downstream services are abnormal. We model
the anomaly propagation among services as a service attributed graph G(V,E), where V denotes the set of services and E denotes the set of
edges. Each eij is set to 1 if there exists service call between service i and service j. For each service graph node vi, it is described by a vector that
denotes the anomaly score, i.e., vi = (δi1, δi2), where δi1 denotes the metric anomaly score of service i and δi2 denotes the trace anomaly score
of service i. If eij = 1, we calculate the weightWij by service metric correlation. In addition, we eliminate the effect of the protection mechanisms
on the service attributed graph weights. Therefore, our goal is to rank the abnormal services by traversing the attributed graphG(V,E) and select
the abnormal service with the highest score.
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4 SYSTEM DESIGN AND APPROACH

In this section, we describe the components of MicroGBPM in detail, as shown in the Figure 4. MicroGBPM contains 5 modules, namely anomaly
detection module, data preparation module, attributed graph construction module, protection mechanism calibration module, and abnormal ser-
vices ranking module. Once the anomaly detection module (Section 4.1) detects the anomaly, the data preparation module (Section 4.2) processes
the collected data. After that, MicroGBPM uses metrics and traces to calculate service anomaly scores and service correlation, and dynamically
construct service attributed graphs (Section 4.3). The protection mechanism calibration module (Section 4.4) uses traces to determine whether
the circuit breaking and rate limit mechanisms are open and calibrates the weight of edges in the service attributed graph. Finally, MicroGBPM
calculates the root cause ranking results by using the PageRank algorithm in the abnormal services ranking module (Section 4.5). Table 1 lists the
primary notations in this section.

FIGURE 4 Overview of MicroGBPM components and root cause localization workflow

4.1 Anomaly detection

Before locating the root causes of the abnormal services, we have to determine whether there is an anomaly in the current system. The response
time is the intuitive representation of service status. Considering the existence of periodic fluctuations, it is difficult for traditional statistical
methods such as the 3-sigma principle to accurately determine whether the response time is abnormal. In addition, considering the inconsistent
response time of different service requests, it is difficult to find a uniform standard to determine whether the service response time is abnormal.
For example, the response time of Req1 and Req3 in Figure 3 are inconsistent.

In this paper, we use a k-means model to cluster traces of the same service. Each trace passes through multiple service instances. We encode
each trace for easy clustering. If the trace goes through the current service, it is defined as 1. Otherwise, it is defined as 0. For example, we encode
the Req1 in Figure 3 as [1, 1, 0, 1, 0]. We calculate the Euclidean distance between encoded vectors. We automatically infer the optimal number
of clusters by the gap statistic method 17. After that we determine whether the response time of each trace is abnormal by using the KDE (Kernel
Density Estimation) algorithm 18,19, which is very suitable for anomaly detection. When persistent anomalies of service response time are detected,
the data preparation module is triggered.

4.2 Data preparation

The anomaly detection module determines whether an anomaly has occurred but cannot locate the root causes. Once the root cause localization
phase is triggered, the data preparation module will extract the information from the traces. The data preparation module divides the traces into
normal traces and abnormal traces by the response time. It also records the service instances of each trace and counts the number of each kind of
trace. The data preparation module provides the processed information to the attributed graph construction module.

4.3 Attributed graph construction

In this section, we dynamically construct service attributed graphs to represent the propagation of anomalies during a detection cycle.We calculate
the metric and trace anomaly scores of each abnormal service.When there exist requests between services, we calculate the weight of the directed
edges by using the correlation of the metrics. The implementation is described as follows.
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TABLE 1 Notations

Notation Definitions

N,n the number of traces, the number of services
m, c the type number of metrics, the collected number of each type metric
Mik the k-th metric set of service i

ESik the k-th metric anomaly severity set of service i

δi1,δi2 the metric anomaly score and trace anomaly score of service i

eif , eip, ni
f the critical statistics of SBFL technique

corrijk the k-th correlation score from service i to j

Wijk the k-th calibration weight from service i to j

k1, k2 the circuit breaker opening and closing thresholds
KT the duration opening time of the circuit breaker

Tsizeii the number of requests between service i and j

Hsizeij the number of rejected requests due to rate limiting mechanism between service i and j

θij the rejected probability due to rate limiting mechanism between service i and j

RMij the metrics correlation correction factor of service i to j

ρ1,ρ2 the fallback coefficient, the self coefficient
W,P the correlation matrix, the transition matrix
IS, S the suspicious score vector, the anomaly score vector
I , O the set of in-neighbor and out-neighbor services
U the additional teleportation vector
X the result of root cause ranking vector

Metric Anomaly Score: We use the mean µik and standard deviation σik of the service metrics to calculate service anomaly severity 20–24. The
µik is the expected normal value and the σik indicates that the metric deviates from the mean. We define the k-th metric set of service i as
Mik = {M1

ik, ...,M
c
ik} and the k-th metric anomaly severity set of service i as ESik = {ES1

ik, ..., ESc
ik}. The service anomaly severity ESt

ik of
metricMt

ik is defined as:
ESt

ik =
|Mt

ik − µik|
σik

. (2)
To eliminate the impact of themetrics fluctuation, we calculate themean and standard deviation of the normal metrics in the previous period and

the same time of the previous day respectively. The µik and σik are dynamically updated to ensure the accuracy of the calculation. We calculate
the average anomaly scores of k-thmetric over a detection period and choose the largest one as the anomaly score of service i. Themetric anomaly
score is defined as:

δi1 = max

∑c
t=1 ESt

ik

c
, k = 1, 2, ...,m. (3)

Trace Anomaly Score: The Spectrum-based fault localization (SBFL) technique 25,26 has been widely used in software testing, which is mainly
based on the coverage information of current program elements to assess the degree of program anomaly. Inspired by this, we calculate the anomaly
score by using the SBFL technique, which is also mentioned in previous approaches 9,11,27,28.

The service is likely to be the root cause when the traces it goes through are more abnormal and fewer normal. Taking Figure 3 as an example,
when most traces of Req1 are normal and most traces of Req2 are abnormal, we consider that ms3 has a higher trace anomaly score than the
other services. Each trace goes through multiple services. We count the eif , eip, and ni

f of service i, where eif is the numbers of abnormal traces
containing service i, eip is the numbers of normal traces containing service i, and ni

f is the numbers of abnormal traces not containing service i.
We calculate the trace anomaly score by using the Ochiai formula 29, which is popular in spectrum analysis. We use δi2 to represent trace anomaly
score. The range of δi2 is [0, 1]. The trace anomaly score is defined as:
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δi2 =
eif√

(eif + ni
f ) · (e

i
f + eip)

. (4)
Service Correlation: Considering the impact of service dependencies, a larger service anomaly score does not necessarily indicate that the

service is the root cause. Therefore, we need to further calculate service correlation to better analyze the process of anomaly propagation. We
believe that when the metrics of two services are more correlated, it means that these two services are more likely affected by the same anomaly.
In other words, the stronger the correlation, the higher the probability of anomaly propagation. Therefore, we use Pearson correlation 13,15,30 to
calculate the metric correlation of the two abnormal services, i.e., the weight valueWij when eij = 1. We use corrijk to represent the correlation
of the k-th metric between service i and service j. corrijk is defined as:

corrijk =

∣∣∣∣∣∣∣
∑c

t=1(M
t
ik −Mik)(M

t
jk −Mjk)√∑c

t=1(M
t
ik −Mik)2

∑c
t=1(M

t
jk −Mjk)2

∣∣∣∣∣∣∣ . (5)
The range of corrijk is [0, 1]. The larger the corrijk , the stronger the correlation between services. We choose the maximum value of the

anomaly metric correlation as the initialized weight of the attributed graph edge.Wij is defined as:
Wij = max corrijk, k = 1, ...,m. (6)

4.4 Protection mechanism calibration

When the services turn on the circuit breaking or rate limiting mechanism, the way of anomaly propagate among services changes. Intuitively,
the correlation between service metrics is reduced and the root cause location results are inaccurate. Therefore, we design a two-stage dynamic
protection mechanism calibration strategy to eliminate the impact of the circuit breaking and rate limiting mechanisms.

When the circuit breaker is open, the correlation between services will reduce. When using correlation to locate the root causes, the circuit
breaker returns the irrelevant result. To eliminate the effect of circuit breaker, we design the calibration of the circuit breaking mechanism, which
includes three steps: status determination, metrics change, and correlation change. We determine the status of the circuit breaker by traces. We
use in-neighbor service metrics to change the original metrics and thus replace the correlation when the circuit breaker is open. The circuit breaking
mechanism calibration is described as follows.

Step1: Status determination. As shown in Figure 2, we use traces to determine the states of the circuit breaker. If consecutive k1 requests are
denied between service i and service j (the HTTP status code returned is 5XX), the circuit breaker will be open. The duration opening time of
the circuit breaker isKT seconds. AfterKT seconds, the circuit breaker goes into the half-open state. If the consecutive k2 requests are normal,
service i turns off the circuit breaker. Otherwise service i continues to turn on the circuit breaker. At this time, the duration opening time of the
circuit breaker is 2 ∗KT seconds.

Step2: Metrics change: We get the time [p, q] when the circuit breaker is open by step 1. We use the in-neighbor service set Ij to change the
original metrics of service j. For eachMt

jk is collected during [p, q], ifMt
jk records the response time,Mt

jk
′
=

∑
Mt

rk
|Ij |

, r ∈ Ij . IfMt
jk records the

throughput,Mt
jk

′
=

∑
Mt

rk, r ∈ Ij . Considering that the circuit breaker does not affect CPU usage and memory usage directly, we do not adjust
these metrics.

Step3: Correlation change: Let the correctedMt
jk

′ to calculate the calibrated correlation scoreW ′
ij between services.

The second stage is the rate limiting mechanism calibration. Intuitively, the more the number of requests, the greater the service correlation.
But the rate limiting mechanism limits the number of requests and thus reduces the service correlation. Therefore, we need to eliminate the impact
of rate limiting mechanism. We count the number of service requests rejected due to the rate limiting mechanism through the HTTP status of
traces, calculate the impact factor of the rate limiting mechanism, and then correct the service correlation. The rate limiting mechanism calibration
is described as follows.

Step4: Probability statistics. Based on the HTTP status of traces (set the status code returned by the rate limiting mechanism to 429), we can
calculate the proportion θij due to the rate limiting mechanism in a detection cycle. The larger the θij , the greater the impact of the rate limiting
mechanism on service correlation. θij is defined as:

θij =
Hsizeij

Tsizeij
, (7)

whereHsizeij denotes the number of rejected requests and Tsizeij denotes the total number of requests between service i and j.
Step5: Impact factor calculation. The greater the percentage of services rejected due to the rate limiting mechanism, the lower the correlation

between services. Inspired by reliable strategy 31, we define the impact factor of the rate limiting mechanism on service correlation as:
RMij = e

θij
1+θij . (8)
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Step6: Correlation change. The anomaly metrics correlation is updated as:
W ′′

ij = RMij ·W ′
ij . (9)

According the presented steps, we use the corrected correlation score W ′′
ij to replace Wij when the protection mechanisms are open. Please

note that there are other microservice protection mechanisms. We only analyze two common protection mechanisms, including circuit breaking
and rate limiting mechanisms. Other types of protection mechanisms can also be designed with specific calibration strategies to further improve
the accuracy of root cause localization.

Algorithm 1 Dynamic protection mechanism calibration strategy
Input: metrics setM, traces set T , k1,k2,KT , initialized correlation matrixW;
Output: Calibrated correlation matrixW;
1: for Each eij ∈ E do
2: Obtain all T containing vi and vj ;
3: Calculate the duration time [p, q] by step 1 of the circuit breaking mechanism calibration;
4: Calculate the percentage θij of rejected requests by Eq.7;
5: for each type of metricMjk do
6: for each metricMt

jk during [p, q] do
7: if Mt

jk records response time then
8: Mt

jk ←−
Mt

rk
|Ij |

, r ∈ Ij

9: end if
10: if Mt

jk records throughput then
11: Mt

jk ←−
∑

Mt
rk, r ∈ Ij

12: end if
13: end for
14: end for
15: Calculate service correlation using the corrected metrics by Eq.6;
16: Calculate rate limiting impact factor by Eq.8;
17: UpdateWij by Eq.9;
18: end for
19: Return calibrated correlation matrixW.

Algorithm 1 describes the process of the dynamic protection mechanism calibration strategy. The time complexity of the strategy is related to
the number n of services, the number N of traces, the type number m of metrics, and the collected number c of each metric during a detection
cycle. Obtaining all T containing vi and vj in Step 2 can be done inO(Nn2) time. Calculating the timewhen the circuit breaker is open in Step 3 and
the probability that the requests are rejected due to the rate limiting mechanism in Step 4 can be performed inO(Nn2) time. The time complexity
of adjusting origin metrics in Step 5-14 is O(cmn2). Calculating the metric correlation in Step 15 can be done in O(cn2) time. Calculating the
rate limiting impact factor in Step 16 and Updating Wij in Step 17 can be performed in O(n2) time. Overall, the time complexity of the dynamic
protection mechanism calibration strategy is O(cmn2 +Nn2).

4.5 Abnormal services ranking

In this section, we use the PageRank algorithm to locate root cause of abnormal services, which has proven good performance in anomaly propa-
gation and root cause localization 11,13,32,33. The PageRank algorithm is a well-known approach for web analysis that aims to rank the importance
of web pages. Similarly, we can iterate over the anomaly attributed graph G(V,E) to calculate the probability of the root causes. When eij ∈ E,
we define the probability of anomaly propagation asWij . We useWij to denote the correctedW ′′

ij for easy description.Inspired by MonitorRank 34, it is easy for a walker to enter a "trap" when the walker keeps moving forward. When the current service has little
correlation to its out-neighbor services, the walker will perform no other actions. In order to make the correlation more inspiring, we design the
backward propagation path. When eij ∈ E and eji /∈ E, we consider that the anomaly has ρ1Wij probability of being passed from service j to
service i. A larger value of ρ1 indicates more flexible path selection for the walker. The probability of backward propagation is defined as:
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Wji = ρ1Wij , eij ∈ E and eji /∈ E, (10)
where ρ1 denotes the backoff coefficient (default ρ1 = 0.4 in this paper).

We consider the walker stays longer at the current service when the correlation scores are low between its in-neighbor and out-neighbor
services. We use the anomaly scores δi1 and δi2 to calculate the average anomaly score Si of service i. Considering that the value range of δi1 is
not [0, 1], we normalize the δi1, namely δ′i1. We consider both anomaly scores equally important. Thus, Si is defined as:

Si =
δ′i1 + δi2

2
. (11)

The probability of Wii is equal to the service anomaly score Si subtracted by the maximum correlation of the in-neighbor services Ii and the
out-neighbor services Oi.Wii is define as:

Wii = max(0, ρ2Si −max(Wji,Wir)), j ∈ Ii and r ∈ Oi, (12)
where ρ2 denotes the self coefficient (default ρ2 = 0.7 in this paper).

We define the transition probability matrix P based onW as:
Pij =

Wij∑
j Wij

. (13)
Moreover, the current service is influenced by other services if it contains incoming and outcoming abnormal invocations 15,20. In order to

calculate the additional teleportation vector U more accurately in the PageRank algorithm, we calculate the suspicious score by the absolute value
of the difference between the numbers of traces that contain incoming abnormal invocations Ofiin and outcoming abnormal invocations Ofiout.
The suspicious score is defined as:

ISi = |Ofiout −Ofiin|. (14)
After that we use ISi and anomaly scores Si to calculate the additional teleportation vector U = {u1, u2, · · · , un}. ui is defined as:

ui =
ISi · Si∑n

i=1(ISi · Si)
. (15)

Then we use the PageRank algorithm to calculate the root causes by Equation 1. We set the starting round X0 = [1/n, ..., 1/n]. When the
difference between the previous round and the current round is less than ε, we can get the ranking resultsX of the abnormal services.

Algorithm 2 The random walking approach
Input: Service attributed graph G(V,E), service anomaly score set δ′1 and δ2, service traces set T , correlation matrixW;
Output: Microservice ranking results setX;
1: for Each vi, vj ∈ V do
2: Calculate Si, Sj by Eq.11;
3: if i == j then
4: CalculateWii by Eq.12;
5: end if
6: if eij ∈ E and eji /∈ E then
7: CalculateWji by Eq.10;
8: end if
9: end for
10: for Each vi ∈ V do
11: Obtain all T containing vi;
12: Calculate the suspicious score ISi by Eq.14;
13: end for
14: Calculate the iteration matrix P by Eq.13, the additional teleportation vector U by Eq.15;
15: while |Xcur −Xpre| > ε do
16: Xpre ← Xcur ;
17: CalculateXcur by Eq.1;
18: end while
19: Return service root cause ranking resultsX .
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In Algorithm 2, we describe the process of random walking approach. The time complexity of the random walking approach is related to the
number of services n, the number of traces N , and the iteration threshold ε. Calculating the anomaly scores and updatingWij in Step 1-9 can be
done inO(n2) time. Computing the suspicious score in Step 10-13 can be performed inO(Tn) time. Calculating the iteration matrix and additional
teleportation vector in Step 14 can be done in O(n2) time. The time complexity of the PageRank algorithm in Step 15-18 is O(t(ε) · n2) time 35,
where t(ε) is the number of iterations. Overall, the time complexity of the random waking approach is O(Tn+ t(ε) · n2).

5 EVALUATION

5.1 Experiment setup

We evaluate the performance and efficiency of MicroGBPM in a distributed computing platform, which has 5 physical nodes. Each node has a 4-
core CPU, 64 GB memory and runs with Centos7.6 operating system. Gigabit switch network is used for communication between the nodes. The
containers are managed by using Kubernetes (version 1.16.3) technology. The platform has been deployed with open source tools such as APISIX,
Istio, Prometheus, OpenTracing, etc.

We deploy two open microservice systems and obtain metrics and traces separately to evaluate MicroGBPM. Train-Ticket system provides
typical train ticket booking related functions such as ticket inquiry, ticket reservation, payment, ticket change, user notification, etc. It uses a total
of four programming languages: Java, Python, Node.js, and Go. The Bookinfo application is divided into four separate microservices, including
ProductPage, Reviews, Ratings, and Details. This application mimics a category in an online bookstore and displays information of books, such as
ISBN, number of pages, and some reviews. We set the detection period to 5 minutes and collect metrics per 10s. We use Jmeter# to simulate 20
requests per second and collect traces by OpenTracing.

We inject three kinds of service failures to analyze MicroGBPM, including application bugs, network latency, and CPU exhaustion. We use
APISIX to inject different faults into the services. According to Occam’s razor theory 36, the probability of a complex system with two root causes
at the same time is very low. We inject at most two service failures at the same time. We inject each type of fault 20 times in different services.
Considering the effect of randomness and different parameters, we repeat each injection 5 times. The time of each injection lasts 2 minutes.

We use APISIX to introduce the protection mechanisms. We configure different k1, k2, andKT in the api-breaker plugin of APISIX. We imple-
ment the rate limitingmechanismwith the leaky bucket limiter of APISIX and set themaximum request rate and the returnedHTTP status code 429.
In the experiment, we set different values of k1, k2,KT and calculate θij to analyze the function of the protection mechanism calibration module.

5.2 Evaluation metrics and baselines

In order to quantitatively evaluate the accuracy of MicroGBPM, we use T@k and the Avg Score for evaluation.
Top-k(T@k) accuracy: The probability that the root causes are in the top k services. The larger the T@k, the more accurate result of root cause

localization. We consider k = 1, 2, 3 in one cause experiments and k = 2, 3, 5 in two causes experiments. Let ri be the root causes of the i-th
anomaly and Rankji be the j-th top result of i-th anomaly. When Rankji ∈ ri, tji = 1. Otherwise, tji = 0. T@k is defined of a set of given
anomalies A as:

T@k =
1

|A|

|A|∑
i=1

∑k
j=1 t

j
i

min(k, |ri|)
. (16)

Average Score: TheAvg Score refers to the average of all root causemicroservice ranks, which describes the overall performance of the algorithm.
When there is one root cause, the Avg Score is the average of T@1, T@2, and T@3. When there are two root causes, the Avg Score is the average
of T@2, T@3, and T@5.

To better evaluate the effectiveness of MicroGBPM, we compare it with T-Rank 9, TraceRank 11, Microscope 10, MicroRCA 13, and MicroHECL 15
approaches respectively. T-Rank utilizes a lightweight approach based on spectrum analysis to infer the root causes. We use the Ochiai spectrum
methods based on the collected traces to compare with T-Rank. To compare with TraceRank, we combine the spectrum analysis and the random
walking algorithm to locate the root causes. Microscope constructs the service causal graph by using metrics. It then uses causal relationship and
traverses the causal graph to locate the root cause. We use collected metrics and cause graph to compare with Microscope. MicroRCA is based on
the attributed graph thatmodels the propagation of anomalies between services. To comparewithMicroRCA,we usemetrics to construct attributed
graphs and locate the root causes by the personalized PageRank approach. MicroHECL uses the service call to construct the service dependency
graph and analyzes the way of anomaly propagation. To compare with MicroHECL, we locate the root causes by caculating the correlation of target
services and downstream services based on the service dependency graph.

#https://jmeter.apache.org/
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5.3 Effectiveness of anomaly detection module

To evaluate the effectiveness of the anomaly detection module, we count the number tp of true positives, the number fn of false negatives,
and the number fp of false positives. We calculate precision, recall, and f1 scores, where precision = tp

tp+fp
, recall = tp

tp+fn
, and f1 =

2× precision×recall
precision+recall

. From the Figure 5, we can see that MicroGBPM achieves high precision, recall and f1 scores in different systems. It means
that the anomaly detection module can catch most of the anomalies. In addition, two root causes at the same time are easier to detect anomaly
than one cause. The precision, recall, and f1 scores in TrainTicket system are higher than those in Bookinfo system when there exists the same
number of root causes. Because it is easier to detect anomaly due to the complex topology of TrainTicket. Considering the more complex in the
real-world systems, the anomaly detection module will perform better.

FIGURE 5 The anomaly detection results in the TrainTicket system and Bookinfo system

5.4 Effectiveness of protection mechanism calibration module

5.4.1 Overall effectiveness of the protection mechanism calibration module

The Figure 6 shows the difference of the Avg Score with and without the protection mechanism calibration module. With the introduce of the
protection mechanism calibration module in MicroGBPM, the Avg Score increases, indicating that the protection mechanism calibration module
plays an important role in root cause localization. It can effectively improve the accuracy of root cause localization. In our experiments, the Avg
Score is increased about 7.2% when exists two causes in the TrainTicket system with protection mechanism calibration module. Since the Bookinfo
system is relatively simple, the improvement of the protection mechanism calibration module is not significant. The more complex the system, the
more obvious the improvement brought by the protection mechanism calibration module.

5.4.2 Impacts of configuration related to the protection mechanisms

In Section 4, the parameters related to the protection mechanism calibration module are k1, k2, KT , and θij . To eliminate the effect of different
causes on the results, we only analyze the benchmark with two causes in the TrainTicket system. In this section, we use the control variables
approach to analyze the impacts of each parameter and calculate the Avg Score to reflect the accuracy of root cause localization.

We set the maximum request rate 20 per second when evaluate the impact of different k1, k2, and KT on the root cause localization in the
circuit breaking mechanism. We set k2 = 2 and KT = 5s when analyzing the impacts of k1. From Figure 7, we can see that the MicroGBPM
outperforms the other approaches overall due the impact of the circuit breaking mechanism. In our experiments, the Avg Score of MicroGBPM
is increased about 16% compared with T-Rank when k1 = 2. As k1 increases, the overall accuracy gets better as shown in Figure 7. Because the
effect of the circuit breaking mechanism on service correlation will reduce gradually. In addition, we observe that the smaller the k1, the larger
the gap between MicroGBPM and other approaches. It indicates that MicroGBPM can effectively improve the accuracy of root cause localization
when the circuit breaker is open. As the k1 increases, the effect brought by the circuit breaker becomes smaller and smaller, and the superiority of
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FIGURE 6 Comparison with and without the protection mechanism calibration module

MicroGBPM is not obvious. Similarly, we set k1 = 6 and KT = 5s when analyzing the impacts of k2 and set k1 = 6 and k2 = 2 when analyzing
the impacts ofKT . WhenKT and k2 increase, the duration opening time of the circuit breaker becomes longer and the closing conditions of the
circuit breaker become more difficult, leading to the gradual decrease of the Avg Score as show in Figure 8 and Figure 9. MicroGBPM outperforms
the other approaches overall. And the larger the KT and k2, the larger the gap between MicroGBPM and other approaches, also indicating that
MicroGBPM can effectively improve the accuracy in microservice systems with the circuit breaking mechanisms.

We evaluate the impact of different levels of rate limiting mechanism on the root cause localization when k1 = 6, k2 = 2, KT = 5s. We set
different maximum request rates and count the overall percentage of traces affected by the rate limiting mechanism. We calculate the Avg Score
to analyze the results of the root cause localization. As shown in Figure 10, we divide the percentage into 5 groups such as < 5%, 5% ∼ 10%,
10% ∼ 15%, 15% ∼ 20%, and > 20%. As the percentage increases, the correlation between services substantially reduces and the accuracy
of each approaches gradually decreases. The reason is that the larger the percentage, the greater the probability that the requests are rejected,
leading to the worse of the Avg Score. In addition, the larger the percentage, the more obvious advantage of MicroGBPM compared with other
approaches, indicating that MicroGBPM can effectively improve the accuracy in microservice systems with the rate limiting mechanism.

In summary, the accuracy of MicroGBPM under the impact of the protection mechanisms is better than other approaches. The greater the
impact of the protection mechanisms, the more obvious advantage of MicroGBPM.

5.5 Effectiveness of the root cause localization

In this section, we analyze the effectiveness of root cause localization when inject different types of faults and the comparison with other state-of-
art approaches respectively. Note that this section focuses on the overall results. Each type of fault in each benchmark has the same configuration.

5.5.1 Impacts of different types of faults

The Table 2 and Table 3 show the accuracy of different types of faults in two microservices systems with one root cause and two root causes. We
can see that the accuracy of application bug is the highest among all benchmarks. In addition, the accuracy of one root cause is higher than that
of two root causes. The reason is that the anomalous behavior of the system is more serious when two faults are injected at the same time, and
it is more difficult to locate two root causes accurately. The accuracy of MicroGBPM in the Bookinfo system is higher than that in the TrainTicket
system. Considering the simple structure of the Bookinfo system, it is easier to locate the root causes of abnormal services accurately.

5.5.2 Comparisons with other state-of-art approaches

We compare the other approaches separately as shown in the Table 4 and Table 5. We can see that the accuracy of MicroGBPM outperforms the
other approaches in one cause or two causes systems. The Avg Score of MicroGBPM is increased about 10% compared with T-Rank in TrainTicket
system with one cause. This is because T-Rank only uses spectrum analysis to calculate the score of service anomalies. Microscope uses the causal
graph constructed by metrics and does not make use of traces. The Avg Score of MicroGBPM is increased about 11.8% compared with Microscope
in TrainTicket systemwith one cause. MicroHECL uses the service call relationship to locate the root causes without considering the whole anomaly
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FIGURE 7 The impacts of k1 FIGURE 8 The impacts of k2

FIGURE 9 The impacts ofKT FIGURE 10 The impacts of the rate limiting mechanism
TABLE 2 Overall effectiveness evaluation of different types of faults with one cause

Benchmarks Fault type T@1 T@2 T@3 Avg Score
TrainTicket
one cause

Application bug 0.824 0.879 0.923 0.875
Network latency 0.734 0.840 0.915 0.830
CPU exhaustion 0.800 0.853 0.874 0.842

BookInfo
one cause

Application bug 0.840 0.883 0.968 0.897
Network latency 0.750 0.854 0.917 0.840
CPU exhaustion 0.806 0.867 0.918 0.864

TABLE 3 Overall effectiveness evaluation of different types of faults with two causes
Benchmarks Fault type T@2 T@3 T@5 Avg Score
TrainTicket
two causes

Application bug 0.742 0.804 0.856 0.801
Network latency 0.745 0.809 0.840 0.798
CPU exhaustion 0.694 0.786 0.847 0.776

BookInfo
two causes

Application bug 0.796 0.827 0.878 0.833
Network latency 0.758 0.818 0.848 0.808
CPU exhaustion 0.773 0.804 0.856 0.811
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propagation process. Thus, the Avg Score of MicroGBPM is increased about 8.6% compared with MicroHECL in TrainTicket system with one cause.
TraceRank and MicroRCA are similar to our approach. But none of them takes into account the impact of the protection mechanisms on the root
cause localization. Therefore, the Avg Score ofMicroGBPM is increased about 6.6% comparedwith TraceRank and 10.1% comparedwithMicroRCA
in TrainTicket system with one cause. In summary, the accuracy of MicroGBPM is better than the other approaches.

TABLE 4 Overall effectiveness evaluation of one root cause compared with other approaches (best scores are in boldface)
Benchmarks Approach T@1 T@2 T@3 Avg Score

TrainTicket
one cause

MicroGBPM 0.786 0.857 0.904 0.849

T-Rank 0.711 0.757 0.814 0.746
TraceRank 0.732 0.804 0.864 0.783
Microscope 0.689 0.732 0.814 0.731
MicroRCA 0.696 0.761 0.829 0.748
MicroHECL 0.718 0.768 0.846 0.763

Bookinfo
one cause

MicroGBPM 0.799 0.868 0.934 0.867

T-Rank 0.701 0.830 0.865 0.799
TraceRank 0.736 0.837 0.931 0.834
Microscope 0.694 0.799 0.865 0.786
MicroRCA 0.712 0.813 0.882 0.802
MicroHECL 0.708 0.830 0.889 0.809

TABLE 5 Overall effectiveness evaluation of two root causes compared with other approaches (best scores are in boldface)
Benchmarks Approach T@2 T@3 T@5 Avg Score

TrainTicket
two causes

MicroGBPM 0.727 0.799 0.848 0.791

T-Rank 0.640 0.678 0.734 0.684
TraceRank 0.668 0.720 0.761 0.716
Microscope 0.588 0.637 0.702 0.642
MicroRCA 0.661 0.682 0.744 0.696
MicroHECL 0.657 0.692 0.751 0.700

Bookinfo
two causes

MicroGBPM 0.776 0.816 0.861 0.817

T-Rank 0.673 0.782 0.840 0.765
TraceRank 0.711 0.820 0.857 0.796
Microscope 0.650 0.782 0.847 0.760
MicroRCA 0.701 0.796 0.850 0.782
MicroHECL 0.711 0.813 0.850 0.791
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FIGURE 11 The impacts of different configuration on the Avg Score

5.6 Impacts of configuration

In this section, we analyze the impact of d, ρ1, and ρ2 on the results of root cause localization with two root causes in the TrainTicket system. We
consider the case of k1 = 6, k2 = 2,KT = 5s, and the maximum request rate 20 per second. We use the Avg Score to reflect the overall accuracy
of MicroGBPM. As shown in the Figure 11, the x axis presents the value of parameters, while the y axis presents the Avg Score.

The damping parameter d in Equation 1. The damping parameter d is introduced in the PageRank algorithm. The Avg Score exhibits a convex
shape as d increases. We find the reason is that the walker no longer wanders when the d = 0. It is difficult to locate the two root causes accurately
at this time. The result of root cause localization will be more accurate as d increases. However, when d > 0.7, it is difficult for the walker to avoid
termination services (the out-degree is 0) and trap services (the service only calls itself), resulting in the decrease of the Avg Score.

The fallback coefficient ρ1 in Equation 10. In this paper, the fallback coefficient ρ1 is introduced to increase the flexibility of the walker. If the
current service is less relevant to the out-neighbor services, the walker can back off. The Avg Score shows a convex shape as ρ1 increases. We
find the reason is that as ρ1 increases, the walker becomes more flexible and the results of root cause localization become more accurate. When
ρ1 = 0.4, the Avg Score is highest. However, when ρ1 > 0.6, the walker will backtrack even if the current service is strongly correlated with its
out-neighbor services. In this case, it is difficult to locate the root causes accurately, resulting in the decrease of the Avg Score.

The self coefficient ρ2 in Equation 12. When the service is not correlated with both in-neighbor and out-neighbor services, the walker should
stay at the current service longer. Thus, ρ2 is introduced in this paper. When ρ2 is small, the calculatedWii is always 0 and the Avg Score remains
constant. After that, the Avg Score shows a convex shape as ρ2 increases. We find the reason is that as ρ2 becomes larger, the probability that the
service will stay becomes higher and higher and the results becomes more accurate. When ρ2 = 0.7, the Avg Score is highest. However, the larger
service anomaly scores are not necessarily to the root causes. It will lead to the decrease of the Avg Score when ρ2 > 0.7.

6 RELATED WORK

In recent years, with the rapid development of the Internet, microservice systems have become more and more complex. To guarantee the quality
of service operation, microservice root cause localization has been widely studied, including trace analysis and service dependency graph. The
approaches of service dependency use causal analysis or service calls to locate the root causes. Although the existing approaches have studied
the problem of locating the root cause of abnormal services, it is not suitable for microservice systems with protection mechanisms. In addition,
different levels of protection mechanisms have different effects on root cause localization. The impact of protection mechanisms on root cause
localization has not been sufficiently considered.

The trace analysis approaches use metrics and traces to calculate the degree of anomalies of services and prioritize the localization of services
with a high degree of anomalies. Zhou et al. 7 proposed MEPFL, which was an approach for potential error prediction and abnormal localization of
microservice applications. It collects service metrics and then trains the prediction model at traces level and services level to predict service faults.
Hou et al. 8 proposed Diagnose, which used heterogeneous data source to jointly diagnose faults in microservice systems. Diagnose quickly locates
the abnormal service in the channel through unsupervised algorithms and voting-based location strategies. Ye et al. 9 proposed T-Rank that used
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a spectrum analysis algorithm to locate root causes of abnormal services. Yu et al. 27 proposed MicroRank. It firstly differentiates traces, then uses
the PageRank algorithm to analyze the importance of different traces, and finally uses spectrum analysis to locate root cause of abnormal services.
Li et al. 20 proposed TraceRCA approach, which considered that microservices with more abnormal traces passing through were more likely to be
the root cause. It uses incoming and outgoing abnormal traces to infer the anomaly propagation pattern and calculates the suspicious score.

The causal analysis approaches use the correlation between service metrics to determine the service dependencies and then simulate the
walking process to calculate the root causes. Lin et al. 10 proposed a new system called Microscope to identify and locate anomalous services.
Microscope uses service metrics to construct service causal graphs and infers the cause of performance problems in real time. Ma et al. 12 proposed
the MS-Rank root cause localization framework. MS-Rank uses the service metrics to construct the service dependency graphs. It then simulates
the random walking process and locates the service root cause. Meng et al. 37 presented the MicroCause framework. It uses a combination of the
path conditional time series PCTS algorithm and the randomwalking TCORWalgorithm to locate root cause of abnormal services. Aggarwal et al. 38
described a lightweight fault localization system, which built causal relationships with metrics and logs and further leveraged PageRank centrality
of the derived causal graph for generating a ranked list of abnormal microservices.

The approaches based on service call calculate the root cause by traversing the service call graph. Wu et al. 13 proposed the MircroRCA system.
It uses attributed graphs that model the propagation of anomalies between services and machines to locate faults. Wang et al. 39 proposed a
statistical-based approach for automatic fault diagnosis of microservices. It develops trace baseline algorithm through call trees and then uses tree
edit distance and principal component analysis to locate anomalous services. Kim et al. 40 proposed the MonitorRank algorithm to find the root
cause of abnormal services by service call graphs and service metrics. Liu et al. 15 proposed the MicroHECL approach. It analyzes possible anomaly
propagation chains based on dynamically constructed service graphs and ranks candidate service root cause causes based on correlation analysis.

However, considering the impact of protectionmechanisms, the above approaches cannot accurately locate the root cause of abnormal services.
Unlike previous approaches, when the service response time is abnormal, we build abnormal service attributed graphs and eliminate the impact of
protection mechanisms to locate the root causes of the abnormal services.

7 CONCLUSION

In this paper, we propose a new framework namedMicroGBPM to locate the root cause of abnormal services, considering the impact of protection
mechanisms. We initiate the process of root cause location when the service response time is abnormal. Firstly, we construct a service attributed
graph by using metrics and traces. We calculate the service anomaly scores and the correlation of services. In addition, we design a two-stage
dynamic calibration strategy to eliminate the impact of the protection mechanisms. Then we propose a random walking approach to obtain the
ranking results of the root causes. The experimental results show that MicroGBPM improves the accuracy of root cause localization compared to
other approaches in the microservice systems with protection mechanisms.
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