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Abstract

Probing the structures of amyloid-beta (Aβ) peptides in the early steps of aggregation is extremely difficult experimentally

and computationally. Yet, this knowledge is extremely important as small oligomers are the most toxic species. Experiments

and simulations on Aβ42 monomer point to random coil conformations with either transient helical or β-strand content. Our

current conformational description of small Aβ42 oligomers is funneled toward amorphous aggregates with some β-sheet content

and rare excited states with well-ordered assemblies of β-sheets. In this study, we emphasize another view based on metastable

α-helix bundle oligomers spanning the C-terminus residues which are predicted by the machine-learning AlphaFold2 method

and supported indirectly by low-resolution experimental data on many amyloid polypeptides. This finding has consequences in

designing drugs to reduce aggregation and toxicity.
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Abstract: Probing the structures of amyloid-beta (Aβ) peptides in the early steps of aggregation is extremely
difficult experimentally and computationally. Yet, this knowledge is extremely important as small oligomers
are the most toxic species. Experiments and simulations on Aβ42 monomer point to random coil conforma-
tions with either transient helical or β-strand content. Our current conformational description of small Aβ42
oligomers is funneled toward amorphous aggregates with some β-sheet content and rare excited states with
well-ordered assemblies of β-sheets. In this study, we emphasize another view based on metastable α-helix
bundle oligomers spanning the C-terminus residues which are predicted by the machine-learning AlphaFold2
method and supported indirectly by low-resolution experimental data on many amyloid polypeptides. This
finding has consequences in designing drugs to reduce aggregation and toxicity.
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1.Introduction

Amyloid-beta (Aβ) peptides of 40 and 42 amino acids are proteolytically cleaved form amyloid precursor
protein by β- and γ-secretases. Soluble Aβ dimers isolated from Alzheimer’s cortex directly induce tau
hyperphosphorylation and neuritic degeneration, and small Aβ oligomers are believed to the most toxic
species.1,2 The aggregation kinetics of Aβ follows a sigmoidal curve with three phases: a lag phase free of
any Thioflavin T fluorescence signal, a growth phase or fibril elongation followed by a saturation phase.3,4
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Aβ42, less abundant but more toxic than in its Aβ40 counterpart, is very sensitive to protein concentration
upon aggregation in the bulk solution, and also pH, temperature, the presence of membrane and the addition
of seeds. Characterizing the early Aβ oligomers is challenging experimentally and computationally.5-7

This is an experimental challenge due to the transient and heterogeneous ensemble of oligomer structures,
the fact that most experimental observables provide time- and space-averaged properties,6 and the μs time
resolution cannot be achieved yet.8 This is a challenge for computer simulations due to the accuracy of
the protein and water force fields,9,10 and the time scale of primary nucleation in pure buffer which is on
the order of several hours for Aβ42 at μM concentrations.4 By using atomistic molecular dynamics (MD)
simulations, the current time lengths vary from 2.5 to 30 μs for 20 Aβ42 peptides with an implicit solvent
model,11 and Aβ40 monomer in explicit water,12 respectively. Simulations of Aβ40/42 species with free lipids
and calcium ions in aqueous solution are also currently limited to the μs time scale.13-15 Going beyond this
time scale or sampling rare events has been made possible by the use of coarse-grained or mesoscopic models
and enhanced sampling techniques such as path or umbrella sampling and metadynamics, among others.
Our current structural view of Aβ40/42 monomers and small oligomers is random coil, with increasing β-
sheet content as the oligomer size increases.16 In this study, we emphasize other metastable oligomers based
on α-helix bundles that are predicted by the AlphaFold2 machine learning and are indirectly supported by
low-resolution experimental data on many amyloid polypeptides.

2. Results and discussion

2.1 Monomer

The current experimental view we have for Aβ40 and Aβ42 monomers is that they lack stable secondary and
tertiary structures and have flat free energy surfaces.17 The monomers consist of a heterogeneous ensemble of
random coil states with little α-helix and β-strand character. Both extended and compact conformations were
obtained by SOP-IDP coarse-grained Langevin dynamics simulations at 300 K,18 all-atom metadynamics
simulations at 350 K using CHARMM22-TIP3P force field,19 and atomistic MD simulations at 300 K using
the AMBER99SB-disp12 and CHARMM36m-TIP3P modified20 force fields.

Small helical contents in monomer were evidenced by many theoretical studies. Metadynamics at 350 K
applied to Aβ40 monomer predicted high energy states with α-helix at residues 21-26 and 30-37.19 Aβ42
conformations with α-helix content spanning residues 10-20 were predicted by the Folding@home approach
using thousands of MD simulations with the AMBER99sb-TIP3P force field,21 and by multiple-reservoir
replica exchange simulations with the AMBER99sb/TIP4P-Ew force field.22Partially folded α-helical struc-
tures spanning the CHC (central hydrophobic core, residues 17-21) and residues 30-38 of Aβ42 were reported
by MD simulations and Hamiltonian replica exchange with solute scaling.23 A short helix covering residues
17-23 was also reported for Aβ40 monomer using a predictive coarse-grained force field.24

Transient helical conformations were also evidenced experimentally. They were reported by a SERS (surface
enhanced Raman spectroscopy) study on Aβ40 monomer between pH 5.5 and 10.5.25 A nuclear magnetic
resonance (NMR) structure of Aβ40 monomer reported on the formation of a 3-10 helix spanning residues
13-23 at pH 7.3 at 50mM NaCl.26 Aβ42 monomer was found essentially disordered but displays α-helix
spanning residues 15-24 and 29-35 in the presence of micelles.7

Small β-strand contents were evidenced by circular dichroism (CD) experiments17 and many simulations
using atomistic or coarse-grained models, suggesting notably the existence of multiple transient β-hairpin
conformations covering the CHC and the C-terminus (30-42),7,27,28 and revealing the very low probabilities
of the aggregation-prone N* states with U-shaped or S-shaped fibrillar conformations.18

2.2 Ρανδομ ὃιλ Ολιγομερς ωιτη β-σηεετ ςοντεντ

While small α-helix and β-strand contents are present in the spectrum of conformations of Aβ42, our current
conformational view for small Aβ42 oligomers is funneled toward β-sheet conformations for several reasons.

The first reason comes from the high propensity of β-sheets revealed by oligomer simulations at a very high

2
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concentration of small fragments of Aβ (Aβ16-22, Aβ37-42, Aβ25-35, Aβ10-24 and Aβ35-40), tau (PHF6 motif,
repeats R1-R4), transthyretin (105-115) and β2-microglobulin (83-89) peptides which also form fibrils.29-36

It is notable, however, that two simulations on Aβ16-22 oligomers proposed helical intermediates.37-39

Second, the preference for β-sheet formation comes from the fact that many computational methods do not
explore the full conformational ensemble. On-lattice Monte Carlo simulations do not allow the formation of
α-helix oligomers40-42 and atomistic metadynamics simulations do not include collective variables associated
with side chain packings of α-rich oligomers. It is important to note that the introduction of the steric zipper
interface between the side chains as a collective variable was found critical in metadynamics simulations to
understand the primary nucleation of 18 Aβ37-42 peptides.35

Additionally, off-lattice simplified models aimed at understanding primary and second nucleation mechanisms
either tune the probability of the β-strand monomer,43 or consider three states for Aβ dimers with coil-coil,
coil-β, and β-β character to explain the transition from amorphous to fibrils.44 These models suggest that
fibril formation at a concentration of mM can occur through the assembly of early ordered oligomers, the
assembly of nonfibrillar aggregates rich in β-sheet content, or the formation of amorphous aggregates which
reorganize to β-sheet aggregates and to fibrils.

Beta-rich Aβ42 oligomers ranging from elongated to compact shapes were described by ss-NMR spectroscopy,
ion mobility separation coupled to mass spectrometry, and simulations, featuring multiple interfaces, mixed
parallel/antiparallel strands, perpendicular β-sheets and β-barrels.6,7,11,28,45-49 For instance, atomistic simu-
lations in explicit solvent revealed β-barrel motifs in Aβ42 trimer and tetramer.48,50,51 An hexamer peptide
barrel was found experimentally to be the building block of Aβ protofibrils.52

Finally, using the multimer version of AlphaFold2,53we found that Aβ42 dimers up to hexamers have a
non-negligible probability to display intramolecular β-hairpin conformations spanning the CHC and the
C-terminus (residues 30-42), and in some cases to form β-barrels.54

2.3 Random coil Oligomers with alpha-helical content

The AlphaFold2 machine-learning approach is based on protein data bank (PDB) templates, sequence align-
ments, co-evolution rules and multiple algorithms to design a protein-specific potential of mean force. Al-
phaFold2 success stories include the prediction of single domain protein structures,55 and most transmem-
brane protein structures.56 AlphaFold2 limitations to predict very accurately the structures of protein –
protein (peptide) complexes57,58 and generate conformational heterogeneity59 were reported.

At the date of the present study, the PDB contained about 200,000 structures.60 The most striking Al-
phaFold2 result for the structures of Aβ42 dimers up to hexamers is the prediction of α-helix topologies
for all species in addition to β-rich topologies.54 The AlphaFold2 structures are shown in Figure 1. While
the dimer displays an antiparallel helix bundle spanning the C-terminus (Figure 1A), all higher aggregates
display parallel helix bundles spanning the C-terminal residues 29-39. (Figures 1B-E). These α-rich oligomers
are supported indirectly by numerous experiments on Aβ and many other amyloid polypeptides.

CD experiments on Aβ42 and Aβ40 peptides in pure buffer give 19% and 32% of α-helix structure after 4
days of incubation.61 Addition of trifluoroethanol suggested α-helical intermediates during Aβ assembly,62

and addition of low solvent polarity stabilized partial α-helical structures and accelerated Aβ40 amyloid
fibrillation.63Pyroglutamate-modified pEAβ(3-42) aggregation also pointed to α-helical intermediates, stabi-
lized by parallel C-terminus interactions, each monomer forming a helix-turn-helix spanning residues 10-23
and 30-36.64

Slow nucleation of short polyglutamine-containing Huntingtin fragments via α-helix-rich oligomers and inhi-
bition of amyloid structure in a Huntingtin fragment by targeting α-helix-rich oligomers were also reported
experimentally.65,66 Using computational and experimental approaches, human islet amyloid polypeptide
(hIAPP) fragment 8-20 fibril formation starts from isolated helical monomers, helical dimers to hexamers,
followed by the conversion to β at the hexamer level.67 PolyQ-Aβ30-42 peptides at μM concentration sug-
gested an aggregation triggered by a rapid formation of α-helical oligomers mediated by the C-terminal

3
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residues, as assessed by CD and FTIR (Fourier Transformed Infrared) spectroscopies.68 Infrared nanospec-
trometry monitored a α-to-β transition during the self-assembly of the N-terminal Josephin domain of ataxin
3.69 The conversion of rationally designed α-helical peptides to amyloid fibrils and the oligomerization of
natural hexapeptides into amyloid fibrils through α-helical oligomers are also well established.70,71 Overall,
there are many experiments reporting a minor population of partially folded helical oligomers during amyloid
fibril formation.72,73

Additionally, a rational design of α-helical peptide inhibitors targeting Aβ40 surface reduces the generation
of toxic Aβ toxic oligomers.74 Helical peptide foldamers and peptidometics were found dual inhibitors of Aβ
and hIAPP fibrillization.75 Alpha-helix mimetics, which induce α-helicity in Aβ using NMR and CD, inhibit
the seed-catalyzed aggregation of Aβ.76 Based on ion mobility spectrometry – mass spectrometry combined
to MD simulations, it was suggested that Aβ C-terminal interactions play a key role in their inhibitory
activity.77 Finally, it was found that Aβ25-35 peptide forms early stage helical conformations by CD and
Raman spectroscopic techniques, and carvedilol inhibits Aβ25-35 fibrillation.78

Computationally, AlphaFold2 α-helical tetramer and hexamer structures are very stable using
CHARMM36m-TIP3P modified and AMBER99SB-DISP for 0.3 μs MD simulations at 310 K.54 Transient
formation of helical conformations differing from helix bundles was reported by numerous simulations of Aβ40
and Aβ42 oligomers,7,28,46,79 but a recent simulation proposed that conformations with α-helical structure
have a high propensity to initiate Aβ42 aggregation.80 Finally, it should be noted that the helix propensity of
amyloid peptides is a fundamental requirement to fulfill the lipid-chaperon model,81 and helical intermediates
during amyloid formation are catalysed by membranes.36,72

3. Conclusions

The Aβ42 monomer and oligomer structures in aqueous solution are of high importance as they initiate
fibril formation and are believed to be the most toxic species. While the community believes on random coil
– β-sheet oligomers and the role of β-hairpin82 in the early steps of aggregation, the existence of α-helical
bundle metastable intermediates of Aβ42 oligomers is rarely cited, while it is predicted by AlphaFold2 and is,
more importantly, supported indirectly by a large number of experimental studies on Aβ and many amyloid
polypeptides under various conditions. It is important to note that there is a general resistance of the field to
believing CD in detecting α-helix in aggregates, because of light-scattering interference and skewing of the CD
spectrum. But the α-helix signal in oligomers was further evidenced by FTIR and Raman spectroscopies in
addition to CD. Clearly, the coexistence of α-rich oligomers and β-rich oligomers en route to fibril formation
has to be considered when designing drugs targeting Aβ monomers and oligomers.76,81,83,84
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Figure 1. Representative structures of AlphaFold2 structures of Aβ42 aggregates. (A) dimer, (B) trimer,
(C) tetramer, (D) pentamer and (E) hexamer showing the interface made by the C-terminus in helical
conformations.54
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