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Abstract

Protein-protein and protein-peptide interactions (PPIs and PPepI) belong to a similar category of interactions yet seemingly

subtle differences exist among them. To characterize differences between protein-protein (PPI) and protein-peptide interactions

(PPepI), we have focussed on two important class of residues- hotspot and anchor residues. Using implicit solvation-based

free-energy calculations, a very large-scale alanine scanning has been performed on benchmarking dataset, consisting of over

5500 interface residues. The differences in the two categories are more pronounced, if the hotspot data is divided into three

distinct types, namely - weak hotspots (having binding free energy loss upon Ala mutation, ΔΔG, 2-10 kcal/mol), moderate

hotspots (ΔΔG, 10-20 kcal/mol) and strong hotspots (ΔΔG [?] 20 kcal/mol). The analysis suggests that for PPI, weak

hotspots are predominantly populated by polar and hydrophobic residues. The distribution shifts towards charged and polar

residues for moderate hotspot and charged residues (principally Arg) are overwhelmingly present in the strong hotspot. In

contrast, in the PPepI dataset, the distribution shifts from predominantly hydrophobic and polar (in the weak type) to almost

similar preference for polar, hydrophobic and charged residues (in moderate type) and finally the charged residue (Arg) and

Trp are mostly occupied in the strong type. In anchor residue class of both categories, the preferred residues are Arg, Tyr

and Leu, possesing bulky side chaing and which also strike a delicate balance between side chain flexibility and rigidity. The

present knowledge should aid in effective design of biologics, when augmentation or disruption of PPI are substituted with the

peptide-based mimics.
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Abstract

Protein-protein and protein-peptide interactions (PPIs and PPepI) belong to a similar category of interactions
yet seemingly subtle differences exist among them. To characterize differences between protein-protein (PPI)
and protein-peptide interactions (PPepI), we have focussed on two important class of residues- hotspot and
anchor residues. Using implicit solvation-based free-energy calculations, a very large-scale alanine scanning
has been performed on benchmarking dataset, consisting of over 5500 interface residues. The differences in
the two categories are more pronounced, if the hotspot data is divided into three distinct types, namely -
weak hotspots (having binding free energy loss upon Ala mutation, ΔΔG, 2-10 kcal/mol), moderate hotspots
(ΔΔG, 10-20 kcal/mol) and strong hotspots (ΔΔG [?] 20 kcal/mol). The analysis suggests that for PPI, weak
hotspots are predominantly populated by polar and hydrophobic residues. The distribution shifts towards
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charged and polar residues for moderate hotspot and charged residues (principally Arg) are overwhelmingly
present in the strong hotspot. In contrast, in the PPepI dataset, the distribution shifts from predominantly
hydrophobic and polar (in the weak type) to almost similar preference for polar, hydrophobic and charged
residues (in moderate type) and finally the charged residue (Arg) and Trp are mostly occupied in the strong
type. In anchor residue class of both categories, the preferred residues are Arg, Tyr and Leu, possesing
bulky side chaing and which also strike a delicate balance between side chain flexibility and rigidity. The
present knowledge should aid in effective design of biologics, when augmentation or disruption of PPI are
substituted with the peptide-based mimics.

Keywords: - hotspot, anchor residue, protein-protein interaction, protein-peptide interaction, alanine scan-
ning, free energy calculations

Introduction

Protein-protein interactions (PPI) and protein-peptide interactions (hereafter referred to as -PPepI) play a
crucial role in many cell-signaling and metabolic processes. In recent years, they have become attractive
targets for drug and biologics discovery [1-8]. To interfere or modulate PPI, protein-protein complex may be
disrupted or interactions may be augmented by peptides or mimetics. Peptides have the advantage of larger
shelf life, less prone to proteolysis, feasibility of their oral delivery and flexibility in optimization, screening
and synthesis, similar to small molecule based drug. Thus, to augment or disrupt PPI by peptide-based
therapeutic, it is worthwhile to understand the differences between PPI and PPepI.

To characterize differences between PPI and PPepI, in the present work we have focused on two important
class of residues, namely, hotspot and anchor residues. At the interface of molecular complex, certain residues
play a crucial role in governing such interactions. These residues contributing most to the binding of molec-
ular complexes are termed as hotspot residues. As a rule of thumb, a hotspot residue is defined, if its energy
contribution to the binding of complex is more than 2 kcal/mol [9-10]. The binding affinity and specificity
of the PPI and PPepI are in essence governed by such energetically important hotspot residues. Mutations
at hotspots have been shown to cause dissociation of complexes or disruption in the signaling processes [11].
Additionally, anchoring residue also play specific role in the initial stage of molecular recognition. They
avoid kinetically costly structural rearrangements in the binding pathway allowing for a relatively smooth
recognition process [12]. Anchor residues are hotspot residues that bury the highest amounts of solvent
accessible surface area ( [?] 100 Å2) upon binding [12-13].

To quantitatively probe the energetic contributions of residue to the overall binding of molecular complexes,
earlier experimental alanine scanning mutagenesis were attempted [9]. This involves experimentally mutating
each residue at the interface to alanine and then measuring the effect of the mutation on binding to the
partner protein or peptide. Extending the previous definition of hotspot more specifically with the Ala-
scanning method, a residue is considered a hotspot residue, if its mutation to alanine gives rise to loss
in binding affinity [?] 2 kcal/mol. Early on, limited data were generated using experiment mutagenesis for
many diverse complexes [14-22], and few databases on experimentally determined hotspot residues in protein-
protein complexes such as AB-bind [14], ASEdb [15], ATLAS [16], BID [17], DACUM [18], dbAMEPNI [19],
dbMPIKT [20], PROXiMATE [21] and SKEMPI 2.0 [22] have also been developed. The identification
of hotspot residues by experimental techniques is a costly and time consuming job, which has led to the
development of a series of computational algorithms to predict hotspots at the protein-protein interfaces
[1, 23-39]. Serrano’s group have developed FoldX based on an empirical potential for rapid evaluation of
effect of mutations in proteins and nucleic acids [23,24]. Flex ddG method in Rosetta uses a combination
of sophisticated Monte Carlo sampling, minimization, and specialized force fields [25-27]. BeAtMuSiC is a
tool, which employ statistical potentials adapted to a coarse-grained representation of protein structures [28]
and mCSM (mutation Cutoff Scanning Matrix) is based on graph-based structural signatures, which encodes
distance patterns between atoms to represent protein residue environments [29]. Various other methods and
their applications have also been discussed in the literature [30-36, 44-45].

In the present work, we have used Bioluminate Residue scanning approach implemented in Schrodinger [37-
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38]. The method uses implicit solvation based MM-GBSA (Molecular Mechanics with Generalized Born and
Surface Area) with the OPLS2005 force field, VSGB2.0 solvent model and rotamer search algorithms from
Prime [37-38]. To understand the differences in the nature of hotspots in protein-protein and protein-peptide
complexes using benchmarking data sets, a comprehensive Ala scanning, comprising of over 5500 mutation
analyses were performed.

Materials and Methods

2.1 Benchmarking dataset

Benchmarking dataset of protein-protein and protein-peptide complexes were taken from Vrevenet al. [39]
and Hauser et al. [40], respectively. These datasets were earlier used for benchmarking studies of docking
programs. Protein-protein benchmarking dataset is composed of non-redundant high-quality structures
(resolution < 3.25 A). Protein-peptide complexes were composed of peptides with 3 to 12 residues (resolution
< 2.0 A, R-free < 0.3). The dataset consists of 134 protein-protein and 50 protein-peptide complexes. The
PDB IDs are provided in Table 1.

2.2 Protein preparation

PPI and PPepI dataset entries were imported in Schrodinger Maestro [38] and prepared as discussed here.
Each of the entries in both the benchmarking dataset were prepared using a Protein Preparation Wizard util-
ity available in Maestro [38]. For each PDB, protein hydrogens were stereochemically added and appropriate
ionization states (at pH 7.0) for the acidic and basic amino acid residues were maintained. Missing side-chain
atoms were added using a rotamer library of Xiang and Honig [41] and missing backbone atoms were fixed
using a loop modeling procedure implemented in Prime [38]. Subsequently, the structure optimization, which
utilizes maximization of hydrogen bonding, was carried out to i) identify the most probable positions for
freely rotating –OH and –SH hydrogens, ii) to assign the correct protonation states of charged residues, iii)
tautomers of His, and iv) Chi ‘flip’ of Asn, Gln and His residues. Finally, to relieve any steric clashes within
atoms, the structures were energy minimized using OPLS2005 force field until the heavy-atom displacement
converged to root mean square deviation (RMSD) of 0.30 A. Many entries were manually examined and
processed, where it was not possible to prepare using the default option.

2.3 Hotspot identification using residue scanning

The Ala scan was performed on the prepared library of protein-protein and protein-peptide complexes using
the Residue Scanning module in Bioluminate [38]. Ala mutation was carried out, one residue at a time, for
all the interface residues. The method calculates relative binding affinity values (Gbind or simply G; also
referred as Affinity in the reference [38]) and stability ([?][?]Gstability) between the mutant and the wild type
protein using implicit solvation based MM-GBSA and using the thermodynamic cycle approach. The details
of thermodynamic cycle, which allows one to calculate the net Gbind and [?][?]Gstability, taking the advantage
of state function nature of the free energy is described in literature [37,42]. For interface residues, default
4A distance between residues in either of the protein chains was used [38].

The Δ[?]Gbind is the change in binding affinity between binding partners upon point mutation. One of the
difference (Δ) is between the bound and unbound state of binding partners using MM-GBSA and the another
difference (Δ) is between wild type and the mutant. The positive value indicates loss in binding affinity
upon mutation to Ala and negative value indicates gain in affinity. The calculations were carried out using
the Schrödinger Prime MM-GBSA, which uses an implicit (continuum) solvation model [43]. ΔGstability or
ΔStability (solvated) is the change in the stability of the protein upon mutation, also calculated using the
Prime energy function. The stability was defined as the difference in free energy between the folded state
of molecule and the corresponding unfolded state were estimated from Gly-X-Gly tripeptide, where X is the
residue under consideration [38]. A negative value refers that the mutant is more stable. Residue involving
covalent linkage (having Δ[?]Gbind> 80 kcal/mol) were discarded. Finally, all the hotspot residues with
Δ[?]Gbind in 2-80 kcal/mol range were considered for analysis. All the results were analysed using Maestro
visualizer, Bioluminate utilities and Microsoft Excel.
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2.4 Data clustering & Multiple linear regression analysis

Data clustering was carried out using k-means clustering in Weka platform using Elbow method. Multiple
Linear Regression (MLR) analysis was carried out using lm library in R to decipher correlation between
outcome variable, ΔΔG and all its components that contribute to total free energy calculations as predictor
variable assuming that they follow approximately linear relationship.

2.5 Anchor residues

Anchor residues and their ΔSASA (solvent accessible surface area) were calculated for the both PPI and
PepPI benchmark datasets from ANCHOR webserver [13]. ΔSASA is the change in the solvent accessible
surface area for the side-chain upon binding. The program also estimates the contribution of side-chain to
the binding free energy. ΔSASA and binding free energy were calculated for all interface residues. Anchor
residues were identified that burry the solvent accessible surface area, ΔSASA [?] 100 Å2 upon binding.

Results and Discussion

Protein-protein and protein-peptide benchmark dataset having 134 and 50 dimer complexes, respectively,
were used for calculations and analysis. To identify the hotspots, all interface residues of both partner chains
in the complex were mutated to alanine and relative binding affinity ([?][?]G) values were calculated upon
mutation of all these 184 complexes. Ala scan was carried out using Bioluminate residue scanning module [37-
38]. The positive value of [?][?]G indicates loss in binding affinity upon mutation and suggest quantitatively
the importance of the particular residue. A negative value refers to the gain in binding affinity indicating
that the mutant binds better.

3.1 Frequency distribution of hotspot and anchor residues

In all, calculations were made for a total of 5774 interface residues. To our knowledge, this is one of the
comprehensive study on hotspot residues in PPI and PPepI. Out of 5774 residues, 3732 residues amounting
to 64.6% of the total dataset belong to hotspot categories having [?][?]G [?] 2 kcal/mol. This is suggestive of
the fact that nature has remarkably optimized a great majority (˜65%) of the interface residues in protein-
protein complexes during evolution. This finding is also in contrast to earlier notion that complex interface
comprises only few hot spot residues either isolated or in clusters [51]. The frequency distribution is given in
Table 2. Fig. 1 illustrates the histogram of hotspots in PPI and PPepI categories. Altogether both charged
and polar residues contribute about 60% of hotspots. In the histogram, the frequency curves drawn for both
categories are in perfect sync with a very minor difference at Gln, indicating the similar overall tendency
observed in PPI and PPepI. Arg, Tyr, Leu, Lys and Gln, are the preferred hotspot residues at the PPI
interfaces with Arg alone accounting for over 10% in the frequency distribution. Met, His, Trp, Gly and Cys
are the least preferred hotspot residues with Cys presence is mere 0.1 %. In contrast, Tyr, Leu, Arg and
Ile are the most favoured hotspot residues in PPepI category and Cys, Gly, Gln, Met and Trp are the least
preferred ones. Examining the trend, the PPI dataset is characterized by the dominance of charged and polar
residues followed by hydrophobic residues, whereas PPepI dataset, the polar and hydrophobic followed by
charged residues predominantly occupy the frequency distribution. The fact that negatively charged residues
are not the ones among preferred hotspot residues suggest that the electrostatic complementarity is not a
predominant factor in PPI and PPepI as well.

In PPI dataset, 249 anchor residues were recognized (37 weak, 118 moderate and 87 strong hotspots types;
Supplementary. Table 1). In PPepI category, 92 anchor residues were identified (12 weak, 46 moderate and
34 strong types; Supplementary. Table 2). Anchor residues mostly occur for PPI dataset in moderate and
strong types. The anchor residues comprise of 8.3% of hot spot residues and about 5.3% of total residues
investigated in PPI and PPepI category. Anchor residues demonstrate similar trend with Arg, Leu, Tyr Gln,
Phe as the most preferred anchor residue for PPI. For PPepI hydrophobic residue predominantly occupy at
the interface - Leu, Ile, Val, Phe, Tyr & Arg (Fig.1).

3.2 Three types of hotspots: weak, moderate and strong hotspots

4
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The difference in preference of hotspot residues between PPI and PPepI dataset are not very much evident
with the overall frequency distribution (Fig. 1). Therefore, we tried to cluster the dataset obtained from
residue scanning. The data clustering suggested the possible clusters may be 3 to 5. Upon manual examina-
tion and observing the trends, it was considered reasonable to divide the hotspot residues into approximately
three different types. The difference of hotspot residues was found to be most pronounced in the following
three approximately different [?][?]G ranges, we refer them as weak hotspots (loss in [?][?]G in 2-10 kcal/mol
range), moderate hotspots ([?][?]G in 10-20 kcal/mol range) and strong hotspot ([?][?]G >20 kcal/mol).

Out of 3732 hotspots, a great majority of 68.7% (2565) belong to weak hotspot type. For PPI dataset,
Gln, Leu Tyr are the most preferred. This is followed by Asn, Val, Lys, Glu, Ser and Pro, which also have
substantial presence at the PPI interface. In contrast, in PPepI, Leu and Tyr are the most preferred hotspot
residues with Leu having an overwhelming contribution in the distribution. Val, Thr, Pro and Ile also possess
large frequencies in the distribution (Fig. 2). Thus, among weak hotspot type, in PPI, the high occurrence
is observed for polar residues followed by hydrophobic residues and minor fraction of charged residues are
also present. On the other hand, in PPepI data, hydrophobic residues are more preferred as compared to
polar residues. Somewhat similar trend was observed for anchor residue in PPI category was observed, even
though there are very few data observed in weak type. Frequency distribution for Gln is the highest followed
by Asn and Lys. In PPepI, the paucity of data precluded us for any reliable predictions.

The data for moderate type ([?][?]G in 10-20 kcal/mol) is shown in Fig 3. About 25.4% of data (949) belong
to moderate hotspot type. In contrast to the weak type, Arg is overwhelmingly present (˜18%) followed
by Tyr (˜12%) even though Lys and Leu also possess sizable frequencies (about 10%) in the distribution.
Thus, the distribution in PPI category is dominated by charged and polar residues and minor fraction of
hydrophobic residues are also present. In contrast, the distribution of PPepI data is dominated by substantial
presence of polar (Tyr), hydrophobic (Leu, Ile) and charged (Arg) residues. Among the anchor residues in
PPI, Leu is dominant followed by Arg, Tyr and Gln. However, in PPepI, highest frequencies were observed
for only hydrophobic residues Leu, Ile, Val and Phe.

Out of 3732 hotspots, only 5.8% (218) belong to the strong hotspot type. The strong hotspot type is
completely dominated by Arg residue being the single most dominant residue in PPI occupying frequency
of ˜42%. For PPepI category, Arg followed by Trp are the dominant residues, occupying frequencies of
˜26% and ˜20%, respectively (Fig. 4). Again for anchor residues, similar trend was observed in PPI with
Arg predominantly present. For PPepI, Arg and Trp are preferred residues. Other than Arg, the bulky
hydrophobic side chain of Trp also serves as suitable candidate for anchor residue in PPepI category.

Thus, going from the weak to the strong hotspot types, the PPI and PPepI categories tend to close the gap.
In the weak type, differences are prominent with polar residues followed by hydrophobic and minor fraction
of charged residues in PPI; hydrophobic followed by polar residues in PPepI category. Moving towards the
moderate category, the nature of interactions shift towards the polar side in PPI with dominance of charged
and polar residues. Hotspot nature in PPepI categories is represented by all three types of residues – polar,
hydrophobic and charged. Finally, in the strong type, only Arg dominate the distribution in PPI, and in
PPepI Arg as well as Trp are overwhelmingly present (Table 3).

3.3 Uniqueness of Arg, Tyr and Leu makes them favourite residues for interaction

Dividing the hotspots into a three different types has revealed the subtle characteristic patterns of hotspots.
Arg is the clear choice among the strong types of hotspots and anchor residues in either of the protein-
protein and protein-peptide interfaces. Why Arg is the highly preferred hotspot and anchor residue for
interactions? The overwhelming presence of Arg residue as hotspot at the interacting interface stems from a
multitude of facts [10]. The guanidinium group of Arg is one of the weakliest hydrated cations due to charge
delocalization. This makes the Arg side chain easier to bury [46] as compared to other hydrophobic residues
[47]. The anchor residue calculations suggest the predominant occurrence of Arg with ΔSASA (unbound
– bound) area ranging from 101-205 Å2, quantitatively indicating that it has the ability to substantially
bury its surface. Buried Arg side chain has several advantages as compared to other residues. It is charged,
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extensively hydrogen-bonded (can donate up to 5 hydrogen bonds), having high pK, high flexibility to
interact, and also possess the ability to interact by stacking with other planar side chain groups in proteins
[46, 48, 49]. Thus among 5-charges residues, Arg was selected in nature to mediate protein-protein and
protein-peptide interactions.

Similarly, examining the overall trend (Fig. 1 and Table 2), Tyr and Leu are highly preferred ones among
polar and hydrophobic residues. These amino acids possess a striking balance of flexibility, rigidity and
steric bulk. The amino acids having sufficient steric bulk and flexibility is required to generate a structurally
plastic regions enabling the binding interface to mold itself to optimize complementarity. Additionally, the
physicochemical properties of tyrosine i.e. amphipathic and bulky side chain, which is capable of forming
nonpolar, hydrogen-bonding, cation-π and π-π stacking interactions, making it one of the most effective polar
residues for mediating molecular recognition [50].

3.4 Multiple factors govern the interaction of hotspot residues

To examine the predominant forces governing the interaction for the hotspot residues, it would be worthwhile
to correlate [?][?]G values of hotspot residues with respect to changes in various types of interactions upon
mutation. Multiple linear regression analysis was carried out to examine the correlation between [?][?]G
values with energy contributions from Coulomb, lipophilic, hydrogen bonding, van der Waal’s interactions,
packing desolvation, entropy and surface complementarity. Strong correlation exists (in the range of 0.9
-1, with p-value close to 0) between the binding affinity [?][?]G and its components ([?][?]G of Coulomb,
lipophilic, hydrogen bonding, van der Waal’s interactions and desolvation). Notably, these interactions
contribute in equal proportion in the making of hotspot residues and no single factor predominantly governs
over other in the hotspot characteristics across all three weak, moderate and strong types. As peptide
has binding characteristic similar to protein-ligand interactions, some degree of correlation (˜0.1) was also
observed between [?][?]G and its component [?][?]G (surface complementarity) in PPepI.

CONCLUSION

Peptides and peptidomimetics are straightforward alternatives to protein-based biologics due to multiple
advantages of larger shelf life, feasibility of oral delivery, flexibility of optimization, screening and synthesis.
The knowledge of subtle differences between protein-protein and protein-peptide interactions should aid in
the effective design of peptide-based biologics. In the present study, we have focussed on two important
class of residues, namely, hotspot and anchor residues, to characterize differences between protein-protein
and protein-peptide interactions.

Using implicit solvation-based free energy calculations, alanine scanning has been extensively performed on
benchmarking datasets and hotspot and anchor residues were identified, which has revealed many interest-
ing findings. The presence of sizable population (about 65%) of hotspot residues at the interface of the
complex suggest that nature has remarkably optimized a great majority of the interface residues responsible
for protein-protein interactions during evolution. It turned out that the differences in the two categories
– PPI and PPepI are readily apparent, once we group the hotspot data into three distinct types, namely
- weak hotspots (having binding free energy loss upon Ala mutation, ΔΔG in 2-10 kcal/mol range), mod-
erate hotspots (ΔΔG, 10-20 kcal/mol) and strong hotspots (ΔΔG, 20 kcal/mol and higher). Correlation
studies using MLR suggest that calculated free energy of binding of hotspot directly correlate with coulomb,
lipophilic, hydrogen bonding, van der Waal interactions and desolvation penalty and no specific preference
of any of the factor(s) over other was observed across all three types of hotspots. The analysis suggests that
for PPI the preference is charged and polar followed by hydrophobic residues while for PPepI it is polar and
hydrophobic followed by charged residues. In PPI, weak hotspots are predominantly populated by polar
and hydrophobic residues. The distribution shifts towards charged and polar residues for moderate type,
and charged residue (Arg) is overwhelmingly present in the strong type. In contrast, in the protein-peptide
dataset, the distribution shifts from predominantly hydrophobic & polar (in the weak type) to more or less
similar preference for polar, hydrophobic and charged residues and finally the charged residue (Arg) and
Trp are mostly occupied in the strong type. Similar trend has been observed for anchor residues in both
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categories. The present work is an attempt to characterize and distinguish PPI and PPepI, focussing on two
important class of residues. Further work is required to facilitate the discovery of new generations of peptide
and peptidomimetic modulators. which can be utilized in the effective design of biologics.
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