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Abstract

The automatic collection of power grid situation information and the real-time multimedia interaction between the front and

back end of the accident handling have generated massive power grid data. Wireless communication provides a convenient

channel for grid terminal access and data transmission, but the bandwidth of wireless communication is limited, and its

broadcasting nature makes information easy to be monitored by illegal eavesdroppers in the transmission process. In order

to realize reliable, secure and real-time transmission of power grid data, an intelligent security transmission strategy based on

sense-transfer linkage is proposed. The optimization problem is constructed with maximum system security capacity as the

goal, interruption probability and interception probability as constraints, and a low complexity algorithm is designed to obtain

the sub-optimal solution of the problem. Finally, simulation results verify the effectiveness of the proposed scheme in ensuring

communication security, stability and real-time performance.
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Summary

The automatic collection of power grid situation information and the real-time mul-
timedia interaction between the front and back end of the accident handling have
generated massive power grid data. Wireless communication provides a convenient
channel for grid terminal access and data transmission, but the bandwidth of wire-
less communication is limited, and its broadcasting nature makes information easy
to be monitored by illegal eavesdroppers in the transmission process. In order to re-
alize reliable, secure and real-time transmission of power grid data, an intelligent
security transmission strategy based on sense-transfer linkage is proposed. The op-
timization problem is constructed with maximum system security capacity as the
goal, interruption probability and interception probability as constraints, and a low
complexity algorithm is designed to obtain the sub-optimal solution of the problem.
Finally, simulation results verify the effectiveness of the proposed scheme in ensuring
communication security, stability and real-time performance.
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1 INTRODUCTION

The automatic collection of power grid situation information and the real-time multimedia interaction between the front and
back ends of the accident disposal have produced massive power grid data [1]. With the development of power communication,
wireless communication provides a convenient channel for the access of power grid terminals and the transmission of data, but
the bandwidth of wireless communication is limited, and its broadcast nature makes the information easily monitored by illegal
eavesdroppers in the transmission process. In order to achieve reliable, secure and real-time transmission of power grid data, it
is necessary to propose an intelligent secure transmission strategy.
In recent years, many scholars have studied the impact of antenna correlation on physical layer security technology in wireless

communications. In Reference [2], the author modeled the channel gain between the multiple antennas at the base station as
a spatially arbitrary correlated Rayleigh random variable, and studied the relationship between the security performance of
the system and the correlation coefficient when the base station transmits signals using Maximum Ratio Transmission (MRT)
technology. The pros and cons of the correlation pair system are related to the SNR of the main channel. In the process of wireless
transmission, the security problem that information is illegally eavesdropped by malicious users often occurs [3-4]. Considering
the presence of eavesdropping users [5-6], based on theMIMO system in which the main channel and the eavesdropping channel
are correlated at the same time, the author proposes that when the signal-to-noise ratio of the main channel is at a medium or high
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Figure 1 System Model.

level, the antenna correlation damages the security performance of the system, and then the channel security will be improved
by reducing the signal-to-noise ratio of the main channel. However, the influence of the correlation between the main channel
and the wiretap channel on the system is not considered in the above literatures, and this correlation model is called wiretap
channel correlation in this paper. In actual transmission, this related scenario occurs when the eavesdropper is near the legitimate
receiving user or in the radio path of the receiver signal [7]. In recent years, more and more people begin to pay attention to
the correlation between the main channel and the wiretap channel in the research of physical layer security [8-10]. The wiretap
channel correlation was studied earlier in reference [8]. Through the analysis of the multi-input single-output wiretap channel
using the transmit antenna selection (TAS) technology, the author obtained that when the signal to noise ratio of the main
channel is at a higher level than that of the eavesdropper channel, the correlation of the eavesdropper channel will improve the
security performance of the system. Subsequently, the authors obtained the same conclusion by studying the Rayleigh [9] and
Nagakami-m channels [10] using transmit antenna selection/maximum ratio combining techniques in combination. In references
[11-13], the authors also studied the optimal power allocation problem of the artificial noise technique at the transmitter when
the wiretap channel is correlated. Compared with the traditional diversity scheme, MRT can not only provide diversity gain, but
also have antenna array gain, so as to obtain a larger received signal-to-noise ratio and reduce the impact of multipath fading
and co-channel interference, but there is no report on the security performance of MRT technology in wiretap channel related
scenarios.
This paper mainly considers the security performance of the system when the transmitter uses MRT technology in the wiretap

channel correlation scenario, and analyzes the impact of wiretap channel correlation on the system security performance from
the perspective of security outage probability and average security capacity. Finally, an optimal power allocation method is
proposed to maximize the secrecy rate while satisfying the security outage constraint, which allocates the total power to the
legitimate transmitter, the active eavesdropper and the passive eavesdropper optimally, so as to maximize the secrecy rate.

2 SYSTEMMODEL & PROBLEM FORMULATION

2.1 System model
The system model is shown in Fig. 1. In this paper, we consider the downlink of the flat Rayleigh fading channel, where the
base station (Alice) is configured with T antennas and transmits information using MRT, and the legitimate receiver (Bob) has
only one antenna. An eavesdropper (Eve) with a single antenna can only receive information passively and both Bob and Eve
are far away from Alice. It is assumed that Alice can obtain all the channel state information (CSI) with Bob. ℎB , ℎE represent
the channel parameter matrices between Alice, Bob and Eve’s link, respectively. The channel coefficients of each channel are
independently distributed.
It is assumed that there is a certain correlation between the main channel and the wiretap channel, and the correlation coef-

ficient is �, which satisfies 0 ≤ � ≤ 1. According to the Rayleigh fading channel model, in the multipath channel environment
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with rich scattering, when the number of scatterers tends to infinity, the correlation function of the channel characteristic param-
eters is the first kind of zero-order Bessel function, which is � = J0

(

2pfmt
)

. Here, J0 () denotes the zero-order Bessel function
of the first kind. fm is the Doppler frequency shift, which is generally considered to be inversely proportional to the coherence
time of the channel. The coherence time satisfies Tc = 1

/

fm. In the channel model of this paper, the channel temporal correla-
tion is equivalent to the spatial correlation. For example, when Eve is near Bob, the correlation coefficient can be expressed as
� = J0 (2pΔd) ,Δd = D∕l. Here, l represents the wavelength of the carrier wave used for signal transmission, andD represents
the distance between the eavesdropper and the legitimate receiver. Therefore, the channel parameters of the wiretap channel ℎE
can be calculated as follows.

ℎE = �ℎB +
√

1 − �2ℎe (1)

Here, ℎB and ℎE are independent and identically distributed Rayleigh channels. � = 0 indicates that the channels between the
main channel and the wiretap channel are independent. � = 1 represents a full correlation between that main channel and the
wiretap channel. Maximum transmit weight vector w =

(

w1, w2, ..., wT
)T can be calculated by w = ℎHB

/

‖

‖

ℎB‖‖F . Therefore,
the received signals of Bob and Eve can be computes follows.

yB =
√

PℎBwx + nB (2)

yE =
√

PℎEwx + nE (3)

Here, nB and nE represent the complex Gaussian white noise of the main channel and the wiretap channel respectively, and
their variances are �2b , �

2
e . P represents the transmit power of the signal. According to [14], The cumulative distribution function

of the B and the probability density function of E can be expressed as follows.

FB (x) = 1 − exp
(

− x
B

) T−1
∑

m=0

1
m!

(

x
B

)m

(4)

fE (x) =
1
̄TE

T−1
∑

i=0

(

T − 1
i

)

(

�2
)T−i+1

[

√

E
(

1 − �2
)

]i

(T − i − 1)!
xT−i−1 exp

(

− x
E

)

(5)

Here, B and E denote the instantaneous received SNR of Bob and Eve, respectively, satisfying B = ̄B ‖‖ℎBw‖‖
2
F and

E = ̄E ‖‖ℎEw‖‖
2
F . ̄B and ̄E represent the average signal-to-noise ratio of themain channel and the wiretap channel, respectively.

2.2 Problem Formulation
In order to ensure the quality of communication, the security outage probability should be less than the threshold. Therefore, to
maximize the secrecy rate under reliability and security requirements, we formulate the optimization problem as follows, i.e.,
to maximize the system capacity subject to the outage probability constraint.

max
P
Cs (6)

P∞out
(

Rs
)

< � (7)

0 ≤ Rs ≤ Rb (8)

0 ≤ P ≤ Pmax (9)

Here,Cs denotes the system privacy capacity.Rs is the transmission rate threshold. P∞out
(

Rs
)

represents the outage probability.
� denotes the outage probability threshold. Pmax represents the maximum transmit power.
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3 OPTIMAL POWER ALLOCATION STRATEGY

3.1 Example for another second level head
The security outage probability is an important indicator for analyzing the security performance of wireless systems. The security
outage probability is defined as the probability of the secrecy capacity Cs under secure transmission rate threshold Rs. Here, Rs
is related to the estimation of Eve’s channel state information by Alice. The outage probability can be expressed as follows.

Pout
(

Rs
)

= Pr
(

Cs < Rs ||B > E
)

Pr
(

B > E
)

+ Pr
(

B < E
)

(10)

Pout
(

Rs
)

=

∞

∫
0

Λ(1+E)−1

∫
0

fE
(

E
)

fB
(

B
)

dEdB =

∞

∫
0

fE (x)FB (Λ (1 + x) − 1) dx (11)

Here, Λ = 2Rs . With the help of literature [14-15], we can obtain an approximate expression for the outage probability, as
shown in Eq. (12).

Pout
(

Rs
)

= 1−

exp
(

−(Λ−1)
(̄B−Λ̄E�2)

) T−1
∑

m=0

T−1
∑

i=0

m
∑

k=0

(

T − 1
i

)(

m
k

)

(Λ−1)m−k(Λ̄E(1−�2))k(�2)T−1−i(1−�2)i
(̄B−Λ̄E�2)mm!(T−i−1)!

( (̄B−̄E�2)
̄B−2Λ̄E�2−Λ̄E

)T−i+m

×Γ (T − i − 1 + m)

(12)

Here, Γ () represents the Gamm function.
The safety capacity can be defined as shown in Eq. (13).

Cs =
{

RB − RE , B > E
0, B ≤ E

(13)

Here,RB = log
(

1 + B
)

indicates the instantaneous transmission rate of the main channel.RE = log
(

1 + E
)

represents the
instantaneous transmission rate of the wiretap channel. Cs ≥ Rs can guarantee the secure communication. Otherwise, Eve may
steal the information. Since the channel capacity is a random variable, here we consider the ergodic capacity, i.e., the average
secrecy capacity, which implies that Alice can transmit at an arbitrary rate bounded by the average secrecy capacity. According
to the conventional literature, the average safety capacity can be expressed as follows.

C̄s =

∞

∫
0

∞

∫
0

CsfB (x) fE (x) dxdy =

∞

∫
0

∞

∫
0

[

CsfE (y) dy
]

fB (x) dx (14)

Combining with the Eq. (15), we can obtain the expression as follows.

Cs =

x

∫
0

(

RB − RE
)

fE (y) dy =
1
ln 2

x

∫
0

FE (y)
1 + y

dy (15)

C̄s =
1
ln 2

∞

∫
0

FE (x)
1 + x

[

1 − FB (x)
]

dx (16)

According to the integral solution formula, we can obtain the closed-form expression of the average secure capacity, as shown
in Eq. (17).
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C̄s =
1
ln 2

T−1
∑

m=0

1
m!

⎡

⎢

⎢

⎢

⎣

(−1)m−1 exp
(

1
̄B

)

Ei
(

− 1
̄B

)

+
m
∑

k=0
k!(−1)m−k

(

1
̄B

)−k

⎤

⎥

⎥

⎥

⎦

− 1
ln 2

T−1
∑

n=0

T−1−n
∑

i=0

T−1
∑

m=0

(

(�2)T−1−n(1−�2)n
)

i!m!̄−iE ̄
−m
B

×

⎡

⎢

⎢

⎢

⎣

(−1)i+m−1 exp
(

1
̄B
+ 1

̄E

)

Ei
(

− 1
̄B
− 1

̄E

)

+
i+m
∑

q=0
q!(−1)i+m−q

(

1
̄B
+ 1

̄E

)−q

⎤

⎥

⎥

⎥

⎦

(17)

Here, Ei () represents an exponential integral function.
In order to better understand the impact of correlation factors on the system performance at high SNR, we discussed the

security outage probability of the system when ̄B , ̄E → ∞. Referring to [15], we perform a Taylor expansion of the Eq. (4)
and take the first term in the expansion to non-zero order to obtain the expression of its asymptotic distribution function, which
is shown in Eq. (18).

F∞B =
1
T !

(

x
̄B

)T

+ O

(

(

x
̄B

)T
)

(18)

Here, O () is defined as a higher order infinitesimal. According to the Eq. (10), we calculate the expression of the system
safety outage probability as shown in the Eq. (19).

P∞out
(

Rs
)

= '
(

̄B − Λ̄E�2
)−Gd (19)

Here, ' =
T−1
∑

i=0

T
∑

k=0

(

T − 1
i

)(

T
k

)

(Λ̄E(1−�2))k(Λ−1)T−kΓ(T−i+k)
T !Γ(T−i)

, Gd = T represents the safe diversity order.

Based on the above, we propose the optimal power allocation algorithm as follows.

Algorithm 1 Optimal Power Allocation Algorithm
Input: channel information, maximum transmission power
Output: Optimal power allocation
Initialization: Initialize the initial transmit power
Calculate the power interval

[

p1, p2
]

meeting the outage probability constraint according to the Eq. (8).
The power that maximizes the capacity p∗ is calculated according to the Eq. (13).
If p∗ located in the interval

[

p1, p2
]

Then the optimal power allocation is p∗.
If p∗ located in the interval

[

p1, p2
]

’s left side, then the optimal power allocation is p2.
If p∗ located in the interval

[

p1, p2
]

’s right side, then the optimal power allocation is p1.
Return the optimal power distribution.

4 SIMULATION ANALYSIS

In this section, the influence of wiretap channel correlation on the security performance of wireless communication system using
MRT is analyzed by numerical simulation and verified by Monte Carlo simulation. Since we do not delve into how to set the
secrecy rate threshold, is assumed in the following simulation.
Fig. 2 shows the average signal-to-noise ratio of the security outage probability ̄B with the main channel. Set ̄E = 0 in the

simulation. From the figure, it can be found that when ̄B locates lower levels, the safety performance of the system deteriorates
significantly. In addition, the stronger the correlation is, the more serious the safety performance of the system deteriorates. With
̄B gradually rising to the medium and high level, we can find that the stronger the correlation, the faster the security performance
of the channel. When ̄B is larger, the approximate curve of the security outage probability can be consistent with the theoretical
curve, which verifies the correctness of the optimal power allocation.
Fig. 3 shows the relationship between the security outage probability and the correlation coefficient under different channel

conditions when the number of antennas at the transmitter is T = 2. The two curves in the upper part of the figure indicate that
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Figure 2 The SNR of main channel vs the security outage probability.

Figure 3 The correlation vs the security outage probability.

the signal-to-noise ratio of the main channel is at a medium or low level. It can be seen that when the main signal-to-noise ratio is
low, the stronger the correlation is, the worse the security performance of the system is. The lower two curves represent the case
when the main channel signal-to-noise ratio is at a high level, but when the correlation is weak. There is still a slight increase in
the safety outage probability, however, when the correlation coefficient is greater than 0. 6, the safe outage probability decreases
obviously with the increase of the correlation, and the system reliability is improved.
As shown in Fig. 4, assuming that the number of transmissions T = 3 and the signal-to-noise ratio of the wiretap channel,

the relationship between the average secrecy capacity and the signal-to-noise ratio of the main channel is numerically simulated
for different correlation coefficients. It can be found that the higher the correlation is, the lower the average channel security
capacity is. The average safety capacity will be improved by improving the signal-to-noise ratio of the main channel.
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Figure 4 The SNR of main channel vs the security capacity.

Figure 5 The correlation in high SNR vs the security capacity.

Fig. 5 simulates the relationship between the correlation coefficient and the average security capacity when the base station
transmits signals using MRT and TAS respectively. Similar to the rule in Fig. 4, the stronger the correlation of the channel
is, the lower the value of the average security capacity is. By comparing the two transmission technologies, we find that with
the increase of correlation strength, the advantage of MRT over TAS technology in the ability to improve the average security
capacity gradually decreases.
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5 CONCLUSION

In the case of wiretap channel correlation, the relationship between the performance of MISO system with MRT and the chan-
nel correlation strength is studied from the perspective of physical layer security. The closed-form expressions of the secrecy
outage probability and the average secrecy capacity are derived, and the asymptotic performance analysis of the secrecy outage
probability in this scenario is given, which provides theoretical guidance for future beamforming technology research in such
scenarios. The simulation results show that, for the SOP performance, when the quality of the main channel is poor, the higher
the correlation degree is, the worse the security performance is, and when the quality of the main channel is higher than that of
the wiretap channel, the weak correlation has little effect on the security outage probability, but the strong correlation is ben-
eficial to the SOP performance of the system. From the perspective of average security capacity, the correlation damages the
security performance of the system, and the advantage of MRT over TAS becomes smaller as the channel correlation strength
increases.
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