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Abstract

The interval G=(-1 ,1) turns into a Lie group under the group operation x * y : = ( x + y ) ( 1 + x y ) - 1 , x , y [?] G .

This enables definition of the invariant measure d G ( x ) : = ( 1 - x 2 ) - 1 d x and the Fourier transformation F G on the

interval G and, as a consequence, we can consider Fourier convolution operators W G , a 0 : = F G - 1 a F G on G. This

class of convolutions includes celebrated Prandtl, Tricomi and Lavrentjev-Bitsadze equations and, also, differential equations

of arbitrary order with the natural weighted derivative G u ( x ) = ( 1 - x 2 ) u ’ ( x ) , x [?] G. Equations are solved in the

scale of Bessel potential H p s ( G , d G ( x ) ) , 1? p?[?], and Hölder-Zygmound Z ν ( G ) , 0 [?] spaces, adapted to the group

G. Boundedness of convolution operators (the problem of multipliers) is discussed. The symbol a( ), [?]R, of a convolution

equation W G , a 0 u = f defines solvability: the equation is uniquely solvable if and only if the symbol a is elliptic. The

solution is written explicitly with the help of the inverse symbol. We touch shortly the multidimensional analogue-the Lie group

G n .
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Introduction

The present investigation is inspired by papers of V.E. Petrov [Pe06a,Pe06b,SP20],
where the author applied the finite interval Fourier transformation

(FGv)(ξ) :=

∫ 1

−1

(
1 + y

1− y

)iξ
v(y)dy

1− y2
, ξ ∈ R (1)

to the investigation of convolution equations of the following type

c0u(x) +

∫ 1

−1

k

(
x− y

1− xy

)
v(y)dy

1− y2
= h(x), x ∈ G := (−1, 1). (2)

(2) becomes convolution if the interval G = (−1, 1) is endowed with the group

operation x ◦ y :=
x+ y

1 + xy
, making G a Lie group (see details in § 1 below).

To the class of convolution equations (2) belong the celebrated Prandtl equation

Pu(x) =
c0u(x)

1− x2
+
c1
π

∫ 1

−1

u′(y)dy

y − x
= f(x), x ∈ G (3)

(actually a special case of the Prandtl equation for a parabolic wing chord), singular
Tricomi equation

T v(x) = c0v(x) +
c1
π

∫ 1

−1

v(y)dy

y − x
+
c2
π

∫ 1

−1

v(y)dy

1− xy
= g(x), x ∈ (−1, 1)(4)

and Lavrentjev-Bitsadze equation

LBφ(x) = c0φ(x) +
c1
π

∫ 1

0

[
1

y − x
+

1− 2y

x+ y − 2xy

]
φ(y)dy = h(x), (5)

x ∈ G+ := (0, 1).

Equations (2)-(4) and equation (5) after the variable transformation mapping
G+ := (0, 1) → G (see (70) below), are particular cases of the following integro-
differential equation

Au(x) :=

m∑
k=0

[
ckD

k
Gu(x) + dkD

mk

G

∫ 1

−1

Kk

(
x− y

1− xy

)
(Dnk

G u)(y)
dy

1− y2

]
= w(x), x ∈ G = (−1, 1), (6)

where c1, . . . , cm and d1, . . . , dm are complex valued constants,m0, . . . ,mm, n0, . . . , nm

are non-negative integers, K1, . . . ,Km ∈ L1(G, dG(x)). A = W 0
G.a represents a

convolution operator on the Lie group G (see § 3 below) and

DG := (1− x2)
d

dx
. (7)
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is the natural differential operator on this group, which means that it is a convolution
operator and generates the Lie algebra on the Lie group G.

Equations (2)–(6) have ample of applications in Mechanics and Mathematical
physics and were investigated by many authors (see surveys in [Pe06a,SP20], [Du79,
§ 20], [Ka75] and the recent papers [AA21,AP16]).

Equations (3) and (4) were solved by V. E. Petrov in [Pe06a] (also see [Pe06b,
SP20]) by using the P-transformation, which he defined as the equivalent transfor-
mation P = t∗Fx∗ to the classical Fourier transformation F on the real axes under
the transformations t∗φ(x) := φ(t(x)), x∗ψ(t) := ψ(x(t)) which are inverse to
each-other. Here

t(x) =
1

2
ln

1 + x

1− x
, x(t) = tanh t, x ∈ G, t ∈ R. (8)

We have noted that the transformation P on a segment G = (−1, 1) considered
in [Pe06a] can be interpreted as the Fourier transformation on the group G. Then the
equations (2)–(5) are interpreted as convolutions and the Fourier transformation (1)
applied to these equations transforms them to a simple operators of multiplication by
the ”symbol” (the Fourier image of the kernel) of the Fourier image of an unknown
function. That motivated description of multipliers and finding criteria of invertibility
of convolution operators. Also that motivated introduction of the appropriate Bessel
potential spaces, based on the differential operator DG to consider these equations in
better space settings.

These aspects were missed in [Pe06a,Pe06b] and in the subsequent papers. Equa-
tions (2)–(4) and some boundary value problem for the equation (5) on the part of
the unit sphere, were solved in [Pe06a,Pe06b] in the general Banach spaceless set-
ting, while in [SP20] equation (3) was investigated in the Bessel potential space
setting H̃s(G), −1 ⩽ s ⩽ 1, which was defined as the image of the correspond-
ing Bessel potential space on the axes H̃s(G) := t∗Hs(R) under the isomorphism
t∗φ(x) := φ(t(x)) (cf. (8)).

In our approach we use a natural Fourier transformation on the Lie Group FG (cf.
§ 1 below), the natural differential operator DG (see (1) and (7), and the Bessel poten-
tial operators Λs = F−1

G (1 + |ξ|2)s/2FG, and define Bessel potential Hs
p(G, dG(x))

and Sobolev Wm
p (G, dG(x)) spaces for arbitrary s ∈ R, 1 ⩽ p ⩽ ∞, m = 0, 1, . . .

in a standard way. A convolution operator W 0
G,a := F−1

G aFG on G is defined and
theorems on multipliers in the Bessel potential spaces are proved. Criteria for the
Fredholm property and unique solvability of equations (2)-(6) in the Bessel potential
spaces are found and explicit formulae for their solution are indicated (see § § 4-7).
Hölder-Zygmound spaces Zν(G), 0 < µ < ∞ are defined and used to establish a
priori smoothness of solutions to equations (2)–(6).

What we expose here for the group G can also be done for the multidimensi-
nal case Gn := G × · · · × G: Fourier transformations FGn

±1, Bessel potential
Hs

p(G
n, dG(x)), Sobolev Wm

p (Gn, dG(x)) and Hölder-Zygmound Zµ(Gn) spaces,
theorems on multipliers and solvability results for multidimensional convolution equa-
tionsW 0

Gn,aU := FGn
−1aFGnU = F ,U ∈ Hs

p(G
n, dGn(x)),F ∈ Hs−r

p (Gn, dG(x))
and the multi-variable symbol belongs to the multiplier class a ∈ Mp(G

n) (see §
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3). Therefore some assertions will be formulated for multi-variable case (see, e.g.,
Proposition 5).

The paper is organized as follows. In § 1 we expose results on the Lie GroupG =
(−1, 1)-invariant Haar measure, characters, Fourier transformation and its inverse,
define Lebesgue space Lp(G, dG(x)). In § 2 we define Bessel potential Hs

p(G, dG(x)),
Sobolev Wm

p (G, dG(x)) and Hölder-Zygmound Zµ(G) spaces (1 ⩽ p ⩽ ∞, s ∈ R,
m = 1, 2, . . ., µ > 0, γ ∈ R). In § 3 convolution operators on the Lie group G are
defined and a couple of theorems on their boundedness are proved. In § 4 -§ 7 we
expose results on equations (2)-(5).

1 Lie groups G and Gn

On the interval G := (−1, 1) we define the following additional group operation

x ◦ y :=
x+ y

1 + xy
, x, y ∈ G, (9)

which makes G a Lie group. The inverse element to x is −x and the group operation
is the isomorphism of the Lie group x ◦ y : G×G→ G. Indeed,

∂y
x+ y

1 + xy
=

1 + xy − x(x+ y)

(1 + xy)2
=

1− x2

(1 + xy)2
> 0;

therefore, the function
x+ y

1 + xy
is increasing with respect of both variables x, y ∈ G

and

inf
x,y∈G

x+ y

1 + xy
=

−1− 1

1 + 1
= −1

sup
x,y∈G

x+ y

1 + xy
=

1 + 1

1 + 1
= 1.

This accomplishes the proof that the binary operation x ◦ y makes G a Lie group.
The invariant measure is

dG(x) :=
dx

1− x2
.

Indeed, we have

dG(x ◦ y) =
dx

x+ y

1 + xy

1−
(
x+ y

1 + xy

)2 =
1− y2

(1− x2)(1− y2)
dx =

dx

1− x2
= dG(x). (10)

Characters of the Lie group G coincides with the set of isomorpisms to the unit
circle and are given by the mappings

x −→ C(x, ξ) :=

(
1 + x

1− x

)iξ

∀x ∈ G.
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Indeed, to prove this we have to check that C(x ◦ y, ξ) = C(x, ξ)C(y, ξ), ∀x, y ∈
G. Indeed,

C(x ◦ y, ξ) =
(
1 + (x ◦ y)
1 = (x ◦ y)

)iξ

=

1 +
x+ y

1 + xy

1− x+ y

1 + xy


iξ

=

(
1 + xy + x+ y

1 + xy − x− y

)iξ

=

(
1 + x

1− x

)iξ (
1 + y

1− y

)iξ

= C(x, ξ)C(y, ξ) ∀x, y ∈ G. (11)

Thus, the Fourier transformation on the space of functions on the group G is defined
as follows (cf. (1)):

(FGv)(ξ) :=

∫ 1

−1

C(y, ξ)v(y)dG(y) =

∫ 1

−1

(
1 + y

1− y

)iξ
v(y)dy

1− y2
. (12)

The pull back operators, corresponding to the diffeomorphisms (8) of the Lie
groups R and G represent isometric isomorphisms

(t∗φ)(x) := φ(t(x)) = φ

(
1

2
ln

1 + x

1− x

)
: Lp(R) → Lp(G, dG(x)),

(x∗φ0)(t) := φ0(x(t)) = φ0(tanh t) : Lp(G, dG(x)) → Lp(R),
(13)

x∗(t) = t−1
∗ (t), t∗(x) = x−1

∗ (x), x ∈ G, t ∈ R

of the Lebesgue spaces Lp(R) and Lp(G, dG(x)), 1 ⩽ p ⩽ ∞, where the latter
weighted Lebesgue space is equipped with the norm

∥φ
∣∣Lp(G, dG(x))∥ :=

[∫ 1

−1

|φ(y)|pdG(y)
]1/p

=

[∫ 1

−1

|φ(y)|p dy

1− y2

]1/p
for 1 ⩽ p <∞

∥φ
∣∣L∞(G, dG(x))∥ := ∥φ

∣∣L∞(G)∥ = ess supx∈G |φ(x)| for p = ∞.

(14)

The dual space to Lp(G, dG(x)), with respect to the scalar product

(φ,ψ)G :=

∫ 1

−1

φ(y)ψ(y)
dy

1− y2
, 1 < p <∞,

is the space Lp′(G, dG(x)), p′ :=
p

p− 1
.

Using the transformation of the variables (8) and taking into account the connec-
tion between differentials

dt =
1

2
d

[
ln

1 + x

1− x

]
=

(1− x) + (1 + x)

2
1 + x

1− x
(1− x)2

dx =
dx

1− x2
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we easily prove the following equality between the norms (isometrical isomorphism
of the spaces)

∥φ0

∣∣Lp(G, dG(x))∥ :=

[∫ 1

−1

|φ0(x)|p dG(x)
]1/p

(15)

=

[∫ 1

−1

∣∣∣∣φ(1

2
ln

1 + x

1− x

)∣∣∣∣p dx

1− x2

]1/p
=

[∫ ∞

−∞
|φ(t)|p dt

]1/p
= ∥φ

∣∣Lp(R)∥,

where we used the substitution t =
1

2
ln

1 + x

1− x
, dt =

dx

1− x2
and

φ ∈ Lp(R), φ0(x) := t∗φ(x) = φ

(
1

2
ln

1 + x

1− x

)
, φ0 ∈ Lp(G, dG(x)).

The Fourier transform FGφ0(ξ) of a function φ0(x) on the Lie group G and the
Fourier transform FRφ(ξ) of a function φ(t) on the Lie group R are related by the
formulae

(FGφ0)(ξ) = D2FR(x∗φ0)(ξ) = FR(x∗φ0)(2ξ), ξ ∈ R,

(F−1
G ψ)(x) = (t∗F

−1
R D1/2ψ)(x) =

1

π

∫ ∞

−∞

(
1 + x

1− x

)−iξ

ψ(ξ/2)dξ, x ∈ G,

φ0 ∈ C∞
0 (G), ψ ∈ C∞

0 (R),

(16)

where Dλψ(ξ) := ψ(λξ) is the dilation operator and x∗ is defined in (13). C∞
0 (R)

and C∞
0 (G) denote the space of C∞−functions with compact supports on the sets

G = (−1, 1) and R.
The isomorphism of spaces (13) and (15) via transformation (8) was noted in

[Pe06a] (also see [SP20]) and applied to the definition of the transformation (12),
which was called there P-transformation.

The following Parseval’s equality is valid:

(FGφ,FGψ)R =

∫ ∞

−∞
FGφ(ξ)FGψ(ξ)dξ =

∫ ∞

−∞
FGφ(ξ)

∫ 1

−1

(
1 + y

1− y

)−iξ
ψ(y)dy

1− y2
dξ

= π

∫ 1

−1

ψ(y)
1

π

∫ ∞

−∞

(
1 + y

1− y

)−iξ

FGφ(ξ)dξ
dy

1− y2

= π

∫ 1

−1

ψ(y)F−1
G FGφ(y)dG(y) = π

∫ 1

−1

φ(y)ψ(y)dG(y)

= π(φ,ψ)G. (17)

From (17) follows that the mappings

1√
π

FG : L2(G, dG(x)) → L2(R),
√
πF−1

G : L2(R) → L2(G, dG(x))

(18)

are isometric isomorphisms of the spaces.
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Note, that the direct product Gn := G × . . . × G of n copies of intervals G :=
(−1, 1) endowed with the group operation

x ◦ y := (x1 ◦ y1, . . . , xn ◦ yn) ,
x = (x1, . . . , xn)

⊤, y = (y1, . . . , yn)
⊤ ∈ Gn,

makes Gn a Lie group. The inverse element to x is −x and the invariant measure is

dG(x) := dG(y1) · · · dG(yn) =
dx1

1− x21
· · · dxn

1− x2n
, x = (x1, . . . , xn) ∈ Gn.

The Fourier transformation on the space of functions on the group Gn is:

(FGv)(ξ) :=

∫
Gn

(
1 + y

1− y

)iξ

v(y)dG(y) :=

∫
Gn

n∏
k=1

(
1 + yk
1− yk

)iξk

v(y)dG(y),

ξ ∈ Rn.

Further we will formulate and prove assertions for the group G, although all of
them from §§ 2-3, except the second part of Theorem 2, are valid for the group Gn.

2 Function spaces on G

Let S(R) denote the Schwartz space of fast decayingC∞(R)−functions, which elim-
inate at ±∞ together with the derivatives [(1+ t2)]m(dkφ)(t)/dtk for arbitrary inte-
gers m, k = 0, 1, . . .. S(G) denotes the image of S(R) under the transformation (cf.
(13))

t∗ : S(R) → S(G) (19)

and consists of C∞(G)−functions φ(x) which eliminate at ±1 together with deriva-
tives [ln(1 − x2)]m(Dkφ)(x) for arbitrary integers m, k = 0, 1, . . .. The notations
S′(R) and S′(G) are used for the dual Schwartz space of distributions. It is well
known that the spaces S(R) and S′(R) are invariant under the Fourier transforma-
tions F±1

R and, therefore, due to (16), (19), the Fourier transformations F±1
G map the

spaces as follows:

FG : S(G) → S(R),
: S′(G) → S′(R).

F−1
G : S(R) → S(G),

: S′(R) → S′(G).
(20)

Let W 0
a denote the Fourier convolution operator on the real axes

W 0
aφ := F−1

R aFRφ, φ ∈ S(R)

and a(ξ) is called its symbol (cf. [Du79]).
The notation Hm

p (R) = Wm
p (R) with 1 ⩽ p ⩽ ∞, m ∈ N0 refers to the Sobolev

space of which represents the closure of the Schwartz space S(R) under the norm

∥f |Wm
p (R)∥ :=

(
m∑

k=0

∥∂kt f |Lp(R)∥p
)1/p
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for 1 ⩽ p <∞, with the usual ess sup-norm modification for p = ∞:

∥f |Wm
∞(R)∥ :=

m∑
k=0

ess sup
t∈R

|∂kt f(t)| .

The notation Hs
p(R) with s ∈ R, 1 ⩽ p ⩽ ∞ refers to the Bessel potential space

on the Lie group R, which represents the closure of the Schwartz space S(R) under
the norm

∥f |Hs
p(R)∥ := ∥F−1

R ⟨ξ⟩sFRf |Lp(R)∥ = ∥W 0
⟨·⟩sf |Lp(R)∥ < +∞,

⟨ξ⟩s := (1 + |ξ|2)s/2

for 1 ⩽ p ⩽ ∞. We will apply the standard convention and write Hs(G) for the
Hilbert space Hs

2(G), dropping the subscript index p = 2. Due to the classical Parse-
val’s equality for the axes R the formula

∥f |Hs(R)∥0 :=

(∫
R

∣∣∣(1 + ξ2)s/2FRf(ξ)
∣∣∣2 dξ)1/2

(21)

provides an equivalent norm in the Hilbert space Hs(R).
If ⟨ξ⟩−ra(ξ) has bounded variation on R, than W 0

a : Hs
p(R) → Hs−r

p (R)
extends to a bounded operator for arbitrary s, r ∈ R, 1 < p <∞ (see, e.g., [Du79]).

It is well known that the derivative ∂tφ(t) = φ′(t) = (W 0
−iξφ)(t) on the real

axes R is a convolution operator and its symbol is −iξ:

(FR∂tφ)(ξ) = −iξ(FRφ)(ξ), ξ ∈ R. (22)

Let 0 < α < 1, 1 ⩽ p ⩽ ∞. Then the space Zα
p (R) consists of functions

Zα
p (R) =

{
φ ∈ Lp(R) : ∥φ∥Zα = sup

x,t∈R

| φ(x)− φ(t) |
| x− t |α

<∞
}

and is endowed with the norm

∥φ∥Zα
p
= ∥φ∥Lp

+ ∥φ∥Zα . (23)

To extend the definition of the space Zα
p (R) to the case α ⩾ 1 the Poisson integral

is involved (cf. [St70, § III.2]

Pyφ(x) =

∫
R
Py(x− t)φ(t)dt =W 0

ay
f(x), Py(x) =

1

π

y

x2 + y2
,

ay(ξ) = exp(− | ξ | y), y > 0, x, ξ ∈ R.

Pyφ(x) approximates φ(x) (cf. [St70, § III.2])

lim
y⟩0

∥Pyφ− φ∥p = 0, φ ∈ Lp(R), 1 < p <∞.
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Lemma 1 For 0 < α < 1, 1 ⩽ p ⩽ ∞ the expressions

∥φ∥(0)Zα
p
= ∥φ∥p + supy>0 y

1−α∥DyPyφ∥∞, Dx :=
d

dy

∥φ∥Zα
p
= ∥φ∥p + supy>0 y

1−α∥DxPyφ∥∞, k = 1, 2, ...n.

define equivalent norms in the space Zα
p (R).

The proof of the formulated Lemma for the case p = ∞ is exposed in [St70, § V.4],
while for 1 < p <∞ in [DS93]. □

The foregoing lemma leads to the following definition of the space Zα
p (R) for

0 < α ⩽ ∞, 1 ⩽ p ⩽ ∞:

Zα
p (R) =

{
φ ∈ Lp(R) : ∥φ∥Zα

p
= ∥φ∥p

+ sup
y>0

yk−α∥Dk
yW

0
ay
φ∥∞ <∞, k = [α] + 1

}
, (24)

where [α] denotes the integer part of α.
Moreover, the definition (24) can be applied for the definition of the Hölder-

Zygmound space Zα
p (G) on the Lie group:

Zα
p (G) =

{
ψ ∈ Lp(G, dG(x)) : ∥ψ∥Zα

p
= ∥φ∥p

+ sup
y>0

yk−α∥Dk
yW

0
G,ay

φ∥∞ <∞, k = [α] + 1
}

as the image of the space Zα
p (R) under the transformation t∗ (cf. (13)): Zα

p (G) :=

t∗Zα
p (R) :=

{
φ0 = t∗φ : φ ∈ Zα

p (R)
}

.
Further properties of the space Zα

p (R) (valid also for Zα
p (G)) one can found in

[DS93,St70].
In the next Lemma 2 we have collected some formulae on FG-transformations.

Most of them can also be found in [Pe06a].

Lemma 2 The following holds:

∂tφ(t) = ∂t(x∗φ0)(t) = x∗DGφ0(t), φ0 = t∗φ ∈ C∞
0 (G), t ∈ R, (25a)

∂t =W 0
−iξ, DG = (1− x2)∂x =W 0

G,−2iξ, (25b)

(FGf)(ξ) = − 1

2iξ

∫ 1

−1

(
1 + y

1− y

)iξ

f ′(y)dy, f ∈ C∞
0 (G), ξ ∈ R, (25c)

(FGDGφ0)(ξ) = −2iξ(FGφ0)(ξ), ξ ∈ R, (25d)(
FG

1

y

)
(ξ) = πi coth(πξ), ξ ∈ R, (25e)

(
FG

√
1− y2

)
(ξ) =

π

cosh(πξ)
, ξ ∈ R, (25f)
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FG

√
1− y2

y

)
(ξ) = πi tanh(πξ), ξ ∈ R, (25g)

(FGy)(ξ) =
πi

sinh(πξ)
, ξ ∈ R, (25h)

(FG(1− y2))(ξ) =
2πξ

sinhπξ
, ξ ∈ R. (25i)

Note, that the integrals in (25e) and in (25g) are understood in the Cauchy mean
value sense.

Proof: We have:

t∗∂tx∗φ0(x) = (t∗∂tφ0(tanh t))(x) = (t∗(∂xφ)0(tanh t)∂t tanh t)(x)

= ∂xφ0(x)t∗

(
1

cosh2 t

)
(x) = ∂xφ0(x)(t∗(1− tanh2 t))(x)

= ∂xφ0(x)(1− x2) = (1− x2)∂xφ0(x) = DGφ0(x), x ∈ G.

Formulae (25a) and (25b) are consequences of the proved formula.
Formulae (25c) follows from (25d). Indeed,

− 1

2iξ

∫ 1

−1

(
1 + y

1− y

)iξ

f ′(y)dy = − 1

2iξ

∫ 1

−1

(
1 + y

1− y

)iξ

(DGf)(y)
dy

1− y2

= − 1

2iξ
(FGDGf)(ξ) = (FGf)(ξ).

Formulae (25e)-(25i) can be proved directly (most of them, as noted above, are
proved in [Pe06a]). Alternatively, using the first formula in (16)

(FGφ0)(ξ) = FR(x∗φ0)(2ξ), x∗φ0(t) := φ0(tanh t), t, ξ ∈ R,

the proofs are reduced to checking the Fourier transforms of the corresponding func-
tions x∗φ0(t). □

Note that according to (25a) and (25b) the counterpart of the derivative ∂t on the
Lie group R is the derivative DG := (1−x2)∂x on the Lie group G and both of them
are convolution operators.

The notation Wm
p (G, dG(x)) with 1 ⩽ p ⩽ ∞, m ∈ N0 refers to the Sobolev

space of functions which represents the closure of the Schwartz space S(G) under the
norm

∥f |Wm
p (G, dG(x))∥ :=

(
m∑

k=0

∥Dk
Gf |Lp(G, dG(x))∥p

)1/p

for 1 ⩽ p <∞, with the usual ess sup-norm modification for p = ∞:

∥f |Wm
∞(G)∥ :=

m∑
k=0

ess sup
x∈G

|Dk
Gf(x)| .
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The functions from Wm
p (G, dG(x)) ⊂ Lp(G, dG(x)) have distributional derivatives

Dk
Gφ of order k = 1, . . . ,m, which belong to the Lebesgue space Lp(G, dG(x)).

The notation Hs
p(G)) = Hs

p(G, dG(x)) with s ∈ R, 1 ⩽ p ⩽ ∞ refers to the
Bessel potential space on the Lie group R, where the norm is defined as follows

∥f |Hs
p(G, dG(x))∥ := ∥F−1

G ⟨ξ⟩sFGf |Lp(G, dG(x))∥

= ∥W 0
⟨·⟩sf |Lp(G, dG(x))∥ < +∞, ⟨ξ⟩s := (1 + |ξ|2)s/2 (26)

for 1 ⩽ p ⩽ ∞. We will apply the standard convention and write Hs(G, dG(x)) for
the Hilbert space Hs

2(G, dG(x)), by dropping the subscript index p = 2. Due to the
isomorphisms (18) the following

∥f |Hs(G, dG(x))∥0 :=

(∫ 1

−1

∣∣∣(1 + ξ2)s/2FG f(ξ)
∣∣∣2 dξ)1/2

defines an equivalent norm on Hs(R).
Let L (B1,B2) denote the space of all linear bounded operators mapping the

Banach spaces B1 −→ B2.
Based on formulae (22) and (25d) the following is proved (cf. [Du79,Tr95] for

the case Hm
p (R) = Wm

p (R)).
Proposition 1 For arbitrary 1 < p < ∞ and an integer m ∈ N0 the the Bessel po-
tential space Hm

p (G, dG(x)) and the Sobolev space Wm
p (G, dG(x)) have equivalent

norms and are topologically isomorphic.

Due to the isomorphisms

t∗ : Hs
p(R) −→ Hs

p(G, dG(x)), 1 ⩽ p ⩽ ∞, s ∈ R,

t∗ : Zµ
p (R) −→ Zµ

p (G), 0 < µ <∞, 1 ⩽ p ⩽ ∞,
(27)

we can justify the following propositions, valid for the Bessel potential and Hölder-
Zygmound spaces on the Euclidean space R.

Proposition 2 (see [Tr95, § 2.4.2]) Let s0, s1, r0, r1 ∈ R, 1 ⩽ p0, p1, q0, q1 <∞,
0 < t < 1 and
1

p
=

1− θ

p0
+

θ

p1
,

1

q
=

1− θ

q0
+

θ

q1
, s = (1− θ)s0 + θs1 , r = (1− θ)r0 + θr1 .

If A ∈ Lj := L (Hsj
pj (G, dG(x)),H

rj
qj (G, dG(x))), j = 0, 1, then A is bounded

between the interpolated spaces A ∈ L := L (Hs
p(G, dG(x)),Hr

q(G, dG(x))) and
the norm is estimated as follows

∥A
∣∣L ∥ ⩽ ∥A

∣∣L0∥1−θ∥A
∣∣L1∥θ.

Proposition 3 (see [Tr95, § 2.7.2]) Let 0 < µ0, µ1, ν0, ν1 <∞, 0 < γ, θ < 1 and

µ = (1− θ)µ0 + θµ1 , ν = (1− θ)ν0 + θν1 .

If A ∈ Lj := L (Zµj
p (G),Zνj

p (G), j = 0, 1, then A is bounded between the
interpolated spaces A ∈ L := L (Zµ

p (G),Zν
p(G) and the norm is estimated as

follows
∥A
∣∣L ∥ ⩽ ∥A

∣∣L0∥1−θ∥A
∣∣L1∥θ.
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Proposition 4 (see [Tr95,DS93]) Let s, r ∈ R, 1 ⩽ p ⩽ ∞, 0 < µ < ∞ and
⟨ξ⟩r := (1 + |ξ|2)1/2. The Bessel potential operator

Λr :=W 0
G,⟨·⟩r : Hs

p(G, dG(x)) → Hs−r
p (G),

: Zµ
p (G) → Zµ−r

p (G).

is an isometric isomorphism for the firs pair of spaces and is an isomorphism for the
second pair of spaces.

3 Convolutions and multipliers on G

Now we consider a convolution on the Lie group G = (−1, 1)

(K0φ)(x) = (k0 ∗G φ0)(x) :=

∫ 1

−1

k0(x ◦ (−y))φ0(y)dG(y)

=

∫ 1

−1

k0

(
x− y

1− xy

)
φ0(y)

dy

1− y2
.

Convolution (28) is equivalent with the corresponding convolution on the Lie group
R (the Fourier convolution)

(Kφ)(t) = (k ∗R φ)(t) =
∫ ∞

−∞
k(t− τ)φ(τ) dτ (28)

and the equivalence is established with the help of isomorphisms t∗ and x∗ (cf. (13).
Indeed,

t∗K(x∗φ0)(x) =

∫ ∞

−∞
k

(
1

2
ln

1 + x

1− x
− t

)
(x∗φ0)(t)dt

=

∫ 1

−1

k

(
1

2
ln

1 + x

1− x
− 1

2
ln

1 + y

1− y

)
φ0(y)dG(y)

=

∫ 1

−1

k

1

2
ln

1 +
x− y

1− xy

1− x− y

1− xy

φ0(y)dG(y)

=

∫ 1

−1

k0

(
x− y

1− xy

)
φ0(y)dG(y) = (K0φ0)(x), x ∈ G,(29)
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where we have inserted t =
1

2
ln

1 + y

1− y
. Vice versa, we start from the convolution

(28):

x∗K0(t∗φ)(t) =

∫ 1

−1

k0

(
tanh t− y

1− y tanh t

)
(t∗φ)(y)dG(y)

=

∫ ∞

−∞
k0

(
tanh t− tanh τ

1− tanh τ tanh t

)
φ(τ)dτ

=

∫ ∞

−∞
k0 (tanh(t− τ))φ(τ)dτ = (Kφ)(t), t ∈ R, (30)

where t∗, x∗ = t−1
∗ are defined in (13) and we have inserted y = tanh τ . Hence,

the kernels of convolution operators k0(x) in (28) and k(t) in (28) are connected as
follows:

k0(x) := (t∗k)(x), k(t) = (x∗k0)(t), x ∈ G, t ∈ R. (31)

The connection (29) and (30) between the convolution operators (28) and (28)
was noted in [Pe06a] and in [SP20] and used to investigate Prandtl equation, Tricomi
equation (see [Pe06a,Pe06b]) and Prandtl equation in the Bessel potential spaces
H̃s(G, dG(x)), 0 ⩽ s ⩽ 1 (see [SP20]). These equations are addressed in §§ 4-5
below.

Theorem 1 Let 1 ⩽ p ⩽ ∞, s ∈ R, µ > 0. The convolution operator K0 on the Lie
Group G (cf. (28)) is bounded in the Lebesgue and space

K0 : Lp(G, dG(x)) → Lp(G, dG(x))

: Zµ
p (G) → Zµ

p (G).
(32)

provided its kernel k0(x) satisfies the condition k0 ∈ L1(G, dG(x)), i.e.,

∥k0
∣∣L1(G, dG(x)∥ =

∫ 1

−1

|k0(y)|dG(y) <∞.

and

∥K0φ0

∣∣Lp(G, dG(x))∥ ⩽ ∥k0
∣∣L1(G, dG(x))∥∥φ0

∣∣Lp(G, dG(x))∥. (33)

Proof: For the proof in case of Hölder-Zygmound space Zµ
p (G) we quote [DS93,

Theorem 4.12].
Fourier convolution operator K on the Lie Group R (cf. (28)) is bounded in the

space Lp(R) for a kernel k ∈ L1(R). Then K0 = W 0
G,K , K := (Fk0)(ξ), ξ ∈ R

it is bounded in Lp(G, dG(x)) (cf. (31), (16)). Due to Proposition 7 proved below.
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The direct proof for the space Lp(G, dG(x)) goes as follows:

∥K0φ0

∣∣Lp(G, dG(x))∥ =

[∫ 1

−1

∣∣∣∣∫ 1

−1

k0

(
x− y

1− xy

)
φ0(y)

1− y2
dy

∣∣∣∣p dx

1− x2

]1/p

⩽

[∫ 1

−1

{∫ 1

−1

[∣∣∣∣k0( x− y

1− xy

)∣∣∣∣1/p |φ0(y)|
(1− y2)1/p

]
[∣∣∣∣k0( x− y

1− xy

)∣∣∣∣1/p′
1

(1− y2)1/p′

]
dy

}p
dx

1− x2

]1/p

⩽

[∫ 1

−1

∫ 1

−1

∣∣∣∣k0( x− y

1− xy

)∣∣∣∣ |φ0(y)|pdydx
(1− x2)(1− y2)

{∫ 1

−1

∣∣∣∣k0( x− y

1− xy

)∣∣∣∣ dy

1− y2

}p/p′ ]1/p

=

[∫ 1

−1

|φ0(y)|pdy
1− y2

∫ 1

−1

∣∣∣∣k0( x− y

1− xy

)∣∣∣∣ dx

1− x2

{∫ 1

−1

∣∣∣∣k0( x− y

1− xy

)∣∣∣∣ dy

1− y2

}p/p′ ]1/p
.

In the integrals we change the variables, using the invariance of the Haar measure
with respect to the group operation (cf. (10)):

if t =
x− y

1− xy
, then dG(t) = dG(x) = −dG(y).

and obtain

∥K0φ0

∣∣Lp(G, dG(x))∥

⩽

[∫ 1

−1

|φ0(y)|pdy
1− y2

∫ 1

−1

|k0(t)|dt
1− t2

{
−
∫ −1

1

|k0(t)|dt
1− t2

}p/p′]1/p

= ∥k0
∣∣L1(G, dG(x)∥∥φ0

∣∣Lp(G, dG(x)∥

and (33) is proved. □

Note, that

FR[k ∗R φ](ξ) = K (ξ)Φ(ξ), K (ξ) = FRk(ξ), Φ(ξ) = FRφ(ξ), (34)
FG[k0 ∗G φ0](ξ) = K0(ξ)Φ0(ξ), K0(ξ) = FGk0(ξ),

Φ0(ξ) = FGφ0(ξ), ξ ∈ R (35)
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and K0(ξ), K (ξ) are called the symbols of the corresponding convolution operators
K0 in (28), K in (28). These symbols differ by constant dilation of the argument
K0(ξ) = K (2ξ). Indeed, from (16) and (34) follows:

K (2ξ) = (FRk)(2ξ) = FR(x∗k0)(2ξ) =

∫ ∞

−∞
e2tξik0(tanh t)dt

=

∫ 1

−1

(
1 + y

1− y

)iξ

k0(y)dG(y) = K0(ξ), ξ ∈ R. (36)

It is well known and follows from (34) that the Fourier convolution operator K in
(28) is written in the form (see, e.g., [Du79])

(Kφ)(t) = (k ∗R φ)(t) = F−1
R K FRφ(t) =:W 0

K φ(t), t ∈ R. (37)

Similarly, due to (35), the convolution operator K0 in (28) is written in the form

(K0φ0)(x) = (k0 ∗G φ0)(x) = F−1
G K0FGφ0(x) =:W 0

G,K0
φ0(x), (38)
x ∈ G

Let Mp(R) = M(Lp(R)), 1 ⩽ p ⩽ ∞, denote the algebra of Fourier Lp(R)-
multipliers, consisting of functions for which the Fourier convolution operator W 0

a ,
a ∈ Mp(R) is bounded in the Lebesgue space W 0

a : Lp(R) → Lp(R) (cf. [Hr60,
Du79]).

Let W(R) := {a(ξ) : a(ξ) = c + Fk(ξ) = c + FGk0 : k ∈ L1, k0 ∈
L1(G, dG(x))} denote the Wiener class of functions. Norm in W(R) is introduced
as follows:

∥a∥ := |c0|+ ∥k
∣∣L1(R)∥ = |c0|+ ∥k0

∣∣L1(G, dG(x))∥.

Theorem 2 Let 1 ⩽ p ⩽ ∞. The convolution operator W 0
G,a on the Lie Group G

(cf. (28) and (38)) is bounded in the Lebesgue space

W 0
G,a : Lp(G, dG(x)) → Lp(G, dG(x)) (39)

if and only if the symbol a(ξ) is a Fourier Lp(R)-multiplier, a ∈ Mp(R).
In particular, W 0

G,a is bounded in (39) for all symbols a(ξ) with a bounded vari-
ation a ∈ V1(R) and from the Wiener class W(R).

Proof: The proof of the first part follows from the isomorphism properties (15) and
the equivalence of convolution operators

W 0
G,a0

= t∗W
0
ax∗, a0(ξ) = a(2ξ), (40)

which, in its turn, follows from (30), (37) and (38).
The inclusion V1(R) ⊂ Mp(R) was proved by S. B. Stechkin in [St50] (also see

[Du79, Theorem 2.11] for a proof). The inclusion W(R) ⊂ Mp(R) for the Wiener
class of functions follows from Theorem 1 and the first part of the present theorem.
□

Let us expose here the celebrated Mikhlin-Hörmander-Lizorkin theorem on mul-
tipliers, which we formulate for the multi-variable case.
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Proposition 5 (Mikhlin-Hörmander-Lizorkin) . Let 1 < p < ∞, s, r ∈ R. If a
function a(ξ) satisfies the estimates

|ξ|α|∂αξ a(ξ)| ⩽Mα⟨ξ⟩r <∞, ξ ∈ Rn (41)

for all α ∈ Nn
0 , then a ∈ Mr

p(Rn) and

∥W 0
Gn,au

∣∣Hs−r
p (Rn)∥ ⩽ Cp(a)∥u

∣∣Hs
p(Rn)∥ (42)

for some constant Cp(a) <∞.

Proof: Due to the multi-variable analogues of Proposition 7 and Theorem 4, the mul-
tiplier class Mp(Rn) is the same for the spaces Lp(G

n, dGn(x)) and Hs
p(G

n, dGn(x))

and Mr
p(Rn) = (1 + |ξ|2)r/2Mp(Rn). Therefore, the proof is reduced to the case

of miltipliers on the Lebesgue space. Then the formulated assertion follows from the
classical Mikhlin-Hörmander-Lizorkin theorem (cf. [Hr83, v. I, Theorem 7.9.5]). □

Proposition 6 . Let 1 < p <∞, µ > r > 0. If a function a(ξ) satisfies the condition
of the foregoing Proposition 5, then the convolution operator W 0

G,a is bounded in the
Hölder-Zygmound space Zµ

p (G) → Zµ−r
p (G).

Proof: For the proof we quote [DS93, Theorem 4.8]. □

Theorem 3 Let 1 ⩽ p ⩽ ∞, µ > 0. If the function a ∈ V1(R) has the bounded
variation a ∈ V1(R), the convolution operator W 0

G,a is bounded in the Hölder-
Zygmound space

W 0
G,a : Zµ

p (G) → Zµ
p (G).

Proof: The convolution operator W 0
G,− sign is bounded in Zµ

p (G) due to Proposition
6, since sign ξ and its derivative ξ∂ξ sign ξ = ξδ(ξ) = 0 are bounded functions.

Further the boundedness of convolution operator W 0
G,a, a ∈ V1(R) (Stechkin’s

theorem) is proved as in the original paper [St50] (the proof of Stechkin, modified by
Matsaev, is exposed also in [Du79, Theorem 2.11]). □

Remark 1 Let M(Zµ
p (G)) denote the space of multipliers in the Hölder-Zygmound

space Zµ
p (G), namely, a ∈M(Zµ

p (G)) if and only if W 0
G,a is bounded in Zµ

p (G).
Summarizing the exposed results we note that M(Zµ

p (G)) contains the Wiener
class W (R), functions of bounded variation V1R) and functions which satisfy the
Mikhlin-Hörmander conditions a(ξ) and ξ∂ξa(ξ) are uniformly bounded on R.

Lemma 3 Let

a(ξ) = c0 − ic1 tanh(hξ) +
c2

cosh(hξ)
, ξ ∈ R, (43)

where c0, c1, c2 ∈ C, h ∈ R, are constants.
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If a(ξ) is elliptic, i.e., infξ∈R |a(|ξ)| > 0, the inverse a−1(ξ) has a similar repre-
sentation:

a−1(ξ) = d0 − d1 tanh(hξ) + a−1(ξ),

a−1 ∈ C∞(R), a−1(ξ) = O
(
cosh−1(hξ)

)
= O

(
e−|hξ|

)
, (44)

d0 =
(c0 + ic1)

−1 + (c0 − ic1)
−1

2
, d1 =

(c0 + ic1)
−1 − (c0 − ic1)

−1

2
.

In particular, if h ̸= 0 (44) implies a−1 ∈ S(R).

Proof: It is easy to check, that

[c0 − ic1 tanh(hξ)] [d0 − d1 tanh(hξ)] = c0d0 + ic1d1 tanh
2(hξ)

−[c0d1 + ic1d0] tanh(hξ) = c0d0 + ic1d1 tanh
2(hξ)

= c0d0 + ic1d1 − ic1d1[1− tanh2(hξ)] = 1− ic1d1

cosh2(hξ)
, ξ ∈ R.

therefore,

1 ≡ a(ξ)a−1(ξ) = 1− ic1d1

cosh2(hξ)
+ [c0 − ic1 tanh(hξ)]a−1(ξ) +

c2a
−1(ξ)

cosh(hξ)

Then,

a−1(ξ) = [c0 − ic1 tanh(hξ)]
−1

[
ic1d1

cosh2(hξ)
− c2a

−1(ξ)

cosh(hξ)

]
= O

(
cosh−1(hξ)

)
= O

(
e−|hξ|

)
, |ξ| → ∞, (45)

since, due to the ellipticity of a(ξ),

inf
|ξ|>R

|c0 − ic1 tanh(hξ)| ≠ 0 (46)

for R > 0 sufficiently large.
From (45) and (46) follows the claimed asymptotic in (43). □

Remark 2 Cauchy singular integral operator

SGu(x) :=
1

πi

∫ 1

−1

u(y)dy

y − x
Let. =W 0

σ(SG)u(x)− F (u), x ∈ G (47)

is represented as a difference of a convolution operator on the Lie group modulo and
one dimensional operator (functional)

SGu =W 0
σ(SG)u(x)− F (u), F (u) = ⟨F, u⟩ := 1

πi

∫ 1

−1

yu(y)dG(y).

Both operators in this difference are unbounded in the space Lp(G, dG(x)), 1 < p <
∞.
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Indeed,

SGu(x) =
1

πi

∫ 1

−1

1− y2

y − x
u(y)dG(y)

=
1

πi

∫ 1

−1

1− xy

y − x
u(y)dG(y)− 1

πi

∫ 1

−1

yu(y)dG(y)

=

(
1

πiy
∗G u

)
(x)− F (u) =W 0

σ(SG)u(x)− F (u),

σ(SG)(ξ) = FG

(
1

πiy

)
(ξ) = coth πξ, ξ ∈ R.

and in the last line we used formula (25e).
That F is unbounded is easily checked.
As for the convolution operator, the symbol σ(SG)(ξ) is unbounded and can not

belong to any multiplier class σ(SG) ̸∈ Mp(R), ∀ p ∈ [1,∞]. □

Obviously, Mp(R) is a Banach algebra, endowed with the norm ∥a
∣∣Mp(R)∥ :=

∥W 0
G,a

∣∣Lp(G, dG(x))∥, because

W 0
G,aW

0
G,b =W 0

G,ab ∀a, b ∈ Mp(R). (48)

Proposition 7 (see [Hr60,Du79]) Let 1 < p < ∞ and s ∈ R. The multiplier class
of the space Hs

p(G, dG(x)) is independent of the parameter s ∈ R

M(Hs
p(G, dG(x))) = M(Lp(G, dG(x))) = Mp(Lp(R)) = Mp(R) .

The norm of a convolution operator W 0
G,a, a ∈ Mp(R) in the Bessel potential

space Hs
p(G, dG(x)) on the Lie group is independent of s:

∥W 0
G,a|L (Hs

p(G, dG(x)))∥ = ∥W 0
G,a|L (Lp(G, dG(x)))∥ ∀s ∈ R.

Let Mr
p(R), 1 < p <∞, r ∈ R, denote the class of functions

Mr
p(R) := {⟨ξ⟩ra(ξ) : a ∈ Mp(R)} , ⟨ξ⟩r = (1 + |ξ|2)r/2 (49)

and use Mp(R) for M0
p(R).

Theorem 4 Let 1 < p <∞, s, r ∈ R. The convolution operator

W 0
G,a : Hs

p(G, dG(x)) → Hs−r
p (G, dG(x)) (50)

is bounded if and only if a ∈ Mr
p(R).

The convolution operator W 0
G,a in (50) is Fredholm if only the symbol is elliptic

inf
ξ∈R

∣∣⟨ξ⟩−ra(ξ)
∣∣ > 0. (51)

If the symbol a−r(ξ) := ⟨ξ⟩−ra(ξ) has a bounded variation a−r ∈ V1(R) or belongs
to the Wiener class, a−r ∈ W(R), the ellipticity of the symbol (51) is sufficient for
W 0

G,a to be invertible in the setting (50) and the inverse operator is W 0
G,a−1 .
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Proof: Due to the property (48) and Proposition 7, the operatorW 0
G,a in (50) is equiv-

alently lifted to the operator

Λs−rW 0
G,aΛ

−s =W 0
G,⟨ξ⟩−ra : Lp(G, dG(x)) → Lp(G, dG(x)). (52)

The equivalent lifting (52) shows that the operator W 0
G,a in (50) and the operator

W 0
G,⟨ξ⟩−ra in (52) are simultaneously bounded or not, are simultaneously Fredholm

or not, are simultaneously invertible or not. Therefore, we only need to prove the
assertion for r = 0.

Let us note that W 0
G,a is translation invariant

τ0yW
0
G,au(x) =W 0

G,aτ
0
yu(x), τ0yu(x) := u

(
x+ y

1 + xy

)
, x, y ∈ G. (53)

This property can be checked directly, but it also follows from the equivalence of
operators W 0

G,a and W 0
a (cf. (40)) since W 0

a is translation invariant

τhW
0
aφ(t) =W 0

a τhφ(t), τhφ(t) := φ(t+ h), t, h ∈ R.

If we assume that W 0
G,a ∈ L (Lp(G, dG(x))) is Fredholm, it is invertible. This

follows since W 0
G,a is translation invariant (53) and is proved as for the Fourier con-

volution operator W 0
a in [Du79,Du84] (I. Simonenko proved this property first in

[Si65] for a singular integral operator).
If W 0

G,a ∈ L (Lp(G, dG(x))) is invertible, the dual (adjoint) operator W 0
G,a ∈

L (Lp′(G, dG(x))), p′ = p/(p − 1), is also invertible. Then is invertible W 0
G,a =

JW 0
G,aJ , where Ju(x) = u(x) is the complex conjugation. Then, by interpola-

tion, the inverse is bounded in the space L (L2(G, dG(x))) and, therefore, W 0
G,a ∈

L (L2(G, dG(x))) is invertible. Since the Fourier transforms F 0
G =

1√
π

FG and

(F 0
G)

−1 :=
√
πF−1

G map the corresponding spaces isometrically (maintaining the
norms; see (18)), the operator

(F 0
GW

0
G,a(F

0
G)

−1U)(ξ) = a(ξ)U(ξ), U ∈ L2(R)

is also invertible in the space Lp(R). But the latter represents a multiplication operator
by the symbol a(ξ) in the space L2(R). The invertibility of the multiplication operator
by a function aI implies the ellipticity of the function a(ξ).

If a−r ∈ V1(R) ∩ W(R) ⊂ Mp(R) is elliptic, then a−1
−r ∈ V1(R) ∩ W(R) ⊂

Mp(R) and, due to the property (52) W 0
G,a−1 is the inverse operator to W 0

G,a:

W 0
G,a−1W 0

G,a =W 0
G,aW

0
G,a−1 =W 0

G,1 = I. □

Remark 3 For p = 2 the ellipticity condition (51) is necessary and sufficient for the
convolution operator

W 0
G,a : Hs(G, dG(x)) → Hs−r(G, dG(x)) (54)

with a symbol a ∈ Mp(R) to be invertible, because M2(R) = L∞(R).
But for p ̸= 2 there exist multipliers a ∈ Mp(R), which are elliptic |a(ξ)| ⩾ 1

and even continuous, but a−1 ̸∈ Mp(R) (see [Ig69, Theorem 6]).
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4 Convolution integro-differential equation

The symbol of the integro-differential equation (6) is

A (ξ) :=

m∑
k=0

[
ck(−2iξ)k + dk(−2iξ)mk+nk(FGKk)(ξ)

]
, ξ ∈ R, (55)

(FGKk)(ξ) :=

∫ 1

−1

(
1 + y

1− y

)iξ
Kk(y)dy

1− y2
, k = 1, . . . ,m.

Theorem 5 Let 1 < p < ∞, s ∈ R, mk + nk ⩽ m, k = 1, 2, . . . ,m. The operator
A in (6) in the setting

A : Hs
p(G, dG(x)) → Hs−m

p (G, dG(x)) (56)

is Fredholm if and only if its symbol is elliptic:

inf
ξ∈R

∣∣∣∣ A (ξ)

(1 + ξ2)m/2

∣∣∣∣ > 0. (57)

If the ellipticity condition (57) holds, the inverse operator is the following convolution
(pseudodifferential) operator A−1 =W 0

G,A −1 .

Proof: Due to Theorem 4 the operator A in (6) is bounded in the setting (56). Due to
formulae (35) and (25b), (25d) the following equality holds

(FGAu)(ξ) = A (ξ)(FGu)(ξ), or A = F−1
G A FG =W 0

G,A .

It is clear, that (1 + ξ2)−m/2A (ξ) belongs to the Wiener algebra W (R) and, due to
the Wiener’s theorem, the inverse symbol (1 + ξ2)m/2A −1(ξ) also belongs to the
Wiener’s algebra W (R), provided the symbol is elliptic. But then the inverse symbol
is an Lp-multiplier for all 1 < p <∞ (see Theorem 2).

Therefore, due to Theorem 4, A =W 0
G,A is invertible if and only if the ellipticity

condition (57) holds and the inverse operator is A−1 =W 0
G,A −1 . □

5 Prandtl equation

Theorem 6 Let 1 < p < ∞, s ∈ R and f0 ∈ Hs−1
p (G, dG(x)), where f0(x) :=

(1− x2)f(x). The Prandtl Equation (3) has a unique solution u ∈ Hs
p(G, dG(x)) if

and only if its symbol is elliptic:

inf
ξ∈R

∣∣∣∣∣ P(ξ)√
1 + |ξ|2

∣∣∣∣∣ > 0, P(ξ) := c0 + 2c1ξ coth(πξ). (58)

If the ellipticity condition (58) holds, the solution is

u(x) = (W 0
G,P−1f0)(x), f0(x) = (1− y2)f(x). (59)
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If the condition (58) fails, equation (3) is not even Fredholm in the following
setting f0 ∈ Hs−1

p (G, dG(x)) and u ∈ Hs
p(G, dG(x)).

In particular, if f ∈ Hr
p(G, dG(x)), r > 1/p − 1 = −1/p′, p′ = p/(p − 1),

then the solution, if it exists, belongs to Hölder-Zygmound space u ∈ Zµ
p (G) for

µ < r + 1/p′.

Proof: Let us multiply equation (3) by 1−x2 and rewrite it in the following equivalent
form:

P 0u(x) = c0u(x) + (1− x2)
c1
π

∫ 1

−1

u′(y)dy

y − x
= f0(x), (60)

where f0(x) = (1− x2)f(x), f0 ∈ Hs−1(G, dG).
By using the equality

1− x2

y − x
=

1− xy

y − x
+ x, x, y ∈ G

and the property of a solution u(−1) = u(+1) = 0 we give equation (60) the follow-
ing form:

P 0u(x) = c0u(x) +
c1
π
(1− x2)

∫ 1

−1

u′(y)dy

y − x
= c0u(x) +

c1
π

∫ 1

−1

u′(y)
1− xy

y − x
dy

+
c1x

π

∫ 1

−1

u′(y)dy = c0u(x) +
c1
π

∫ 1

−1

(1− y2)u′(y)
1− xy

y − x

dy

1− y2

= c0u(x) +
c1
π

[
DGu ∗G

1

y

]
(x) = f0(x), x ∈ G, (61)

where (v ∗G w)(x) is the convolution (see (28)) and DG is the derivative (see (7)) on
the Lie group G.

By applying the Fourier transformation FG (see (12)) to the equation (61) and
taking into account formulae (35), (25d), (25e), we find the following:

c0U(ξ) +
c1
π

FG(DGu)(ξ)FG

(
1

y

)
(ξ) = P(ξ)U(ξ) = F0(ξ),

P(ξ) := c0 + 2c1ξ coth(πξ), U(ξ) := (FGu)(ξ), ξ ∈ R. (62)

Solvability (Fredholmness) of the equation (3) under conditions of Theorem 6
means invertibility (Fredholmness) of the operator

P 0 =W 0
G,P : Hs

p(G, dG(x)) → Hs−1
p (G, dG(x)). (63)

It is clear, that (1 + ξ2)−1/2P(ξ) has bounded variation (belongs to V1(R)) and the
inverse symbol (1+ξ2)m/2A −1(ξ) also has bounded variation, provided the symbol
is elliptic. But then the inverse symbol is an Lp-multiplier for all 1 < p < ∞ (see
Theorem 2).

From Theorem 4 follows that the operator P 0 = W 0
G,P in (63) is invertible if

and only if the ellipticity condition (58) holds and is not Fredholm if the ellipticity
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condition fails. The solution to equation (60) (and to equation (3)) is represented by
formula (59).

The assertion about a priori smoothness of a solution to equation (3) follows from
the inclusion u ∈ Hr+1

p (G, dG(x)) and the Sobolev’s embedding theorem (cf. [Tr95]
for details):

Hr+1
p (G, dG(x)) ⊂ Zµ

p (G) for 0 < µ < r + 1− 1

p
= r + 1/p′. (64)

The proof is completed. □

6 Tricomi equation

Theorem 7 Let 1 < p < ∞, s ∈ R, g0 ∈ Hs
p(G, dG(x)), where g0(x) := (1 −

x2)1/2g(x). Tricomi Equation (4) has a unique solution v(x), such that v0 := (1 −
x2)1/2v ∈ Hs

p(G, dG(x)), if and only if its symbol is elliptic:

inf
ξ∈R

|T (ξ)| > 0, T (ξ) := c0 − ic1 tanh(πξ) +
c2

cosh(πξ)
, ξ ∈ R. (65)

If the ellipticity condition (65) holds, the solution is represented as follows

v(x) = d0g(x)−
d1
π

∫ 1

−1

√
1− y2

1− x2
g(y)dy

y − x

+

∫ 1

−1

√
1− y2

1− x2
kT

(
x− y

1− xy

)
g(y)dy, x ∈ G, (66)

where

d0 =
(c0 + ic1)

−1 + (c0 − ic1)
−1

2
, d1 =

(c0 + ic1)
−1 − (c0 − ic1)

−1

2

and kT ∈ S(G) is the inverse Fourier transform of the inverse symbol:

kT (x) := (F−1
G T−1)(x) =

1

π

∫ ∞

−∞

(
1 + x

1− x

)−iξ

T−1(ξ)dξ, x ∈ G,

T−1(ξ) = T −1(ξ)− d0 − d1 tanh(πξ), T−1 ∈ S(R).

If the condition (65) fails, equation (4) is not Fredholm in the space setting
v0, g0 ∈ Hs

p(G,G(x)), where v0, g0 are defined above.
In particular, if g0 ∈ Hs

p(G, dG(x)), s > 1/p, then the solution, if it exists,

belongs to weighted Hölder-Zygmound space: v(x) =
v0(x)√
1− x2

, where v0 ∈ Zµ
p (G)

for µ < s− 1/p.
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Proof: Let us multiply equation (4) by
√
1− x2, use the notation of functions v0 and

g0 introduced above, and rewrite (4) in the following equivalent form:

T 0v0(x) = c0v0(x) +
c1
π

∫ 1

−1

√
(1− x2)(1− y2)

y − x
v0(y)dG(y)

+
c2
π

∫ 1

−1

√
(1− x2)(1− y2)

1− xy
v0(y)dG(y)

= c0v0(x)−
c1
π

∫ 1

−1

1− xy

x− y

√
1−

(
x− y

1− xy

)2

v0(y)dG(y)

+
c2
π

∫ 1

−1

√
1−

(
x− y

1− xy

)2

v0(y)dG(y)

= c0v0(x)−
c1
π
(y−1

√
1− y2 ∗G v0)(x) +

c2
π
(
√

1− y2 ∗G v0)(x) = g0(x),(67)

where (v ∗G w)(x) is the convolution on the Lie group G (see (12)).
By applying the Fourier transformation FG (see (12)) to the equation (67) and

taking into account formulae (35), (25f), (25g), we find the following:

T (ξ)V0(ξ) =

[
c0 −

c1
π

(
FG

√
1− y2

y

)
(ξ) +

c2
π

FG

(√
1− y2

)
(ξ)

]
V0(ξ)

= G0(ξ), T (ξ) := c0 − ic1 tanh(πξ) +
c2

cosh(πξ)
, (68)

V0(ξ) := (FGv0)(ξ), G0(ξ) := (FGg0)(ξ), ξ ∈ R.

The solvability (Fredholmness) of equation (4) under conditions of Theorem 7
means the invertibility (Fredholmness) of the operator

T 0 =W 0
G,T : Hs

p(G, dG(x)) → Hs
p(G, dG(x)). (69)

From Theorem 4 follows that the operator T 0 = W 0
G,T in (69) is invertible if and

only if the ellipticity condition (65) holds. The solution to equation (67) is v0(x) =
T−1

0 g0(x) =W 0
G,T −1g0(x) and, therefore, the solution to equation (4) is

v(x) = (1− x2)−1/2(W 0
G,T −1(1− y2)1/2g)(x).

From Lemma 3 follows, that

T −1(ξ) = d0 − d1 tanh(πξ) + T−1(ξ), kT (ξ) = (F−1
G T−1)(ξ),

T−1 ∈ S(R) and, therefore, kT ∈ S(G)

and formula (66) is proved.
The concluding assertion about a priori smoothness of a solution to equation (4)

follows from the Sobolev’s embedding theorem (64). □
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7 Lavrentjev-Bitsadze equation

Theorem 8 Let 1 < p < ∞, s ∈ R. The Lavrentjev-Bitsadze Equation (5) has a
unique solution φ in the setting

V h,V φ ∈ Hs
p(G, dG(x)), V ψ(x) := (1− x2)ψ

(
1 + x

2

)
, x ∈ G, (70)

if and only if its symbol is elliptic:

inf
ξ∈R

|L B(ξ)| > 0, L B(ξ) := c0 − ic1 tanh
πξ

2
, ξ ∈ R. (71)

If the ellipticity condition (71) holds, the solution is

φ(x) = d0h(x)−
d1
πi

∫ 1

0

[
1

y − x
+

1− 2y

x+ y − 2xy

]
h(y)dy

y − x

+2

∫ 1

0

kLB

(
x− y

x+ y − 2xy

)
h(y)dy, x ∈ G+, (72)

where

d0 =
1

2

[
(c0 + ic1)

−1 + (c0 − ic1)
−1
]
, d1 =

1

2

[
(c0 + ic1)

−1 − (c0 − ic1)
−1
]

and kLB ∈ S(G) is the inverse Fourier transform of the modified symbol:

kLB(x) := (F−1
G L B−1)(x) =

1

π

∫ ∞

−∞

(
1− x

1 + x

)−iξ

L B−1(ξ)dξ, x ∈ G+,

L B−1(ξ) = L B−1(ξ)− d0 − d1 tanh
πξ

2
,

L B−1 ∈ C∞(R), L B−1(±∞) = 0, L B′
−1 ∈ S(R).

If the condition (71) fails, equation (5) is not Fredholm in the setting (70).
In particular, if V h ∈ Hs

p(G, dG(x)), s > 1/p and the symbol is elliptic, the
solution belongs to Hölder-Zygmound space Zµ(G) for µ < s− 1/p.

Proof: In the equation (5) we change variables, introduce new unknown functions

t =
1 + x

2
, τ =

1 + y

2
, w(x) = V φ(x), h0(x) = V h(x), x, y ∈ G,(73)

multiply both sides by 1− x2 and obtain:

LB0w(x) = c0w(x) +
c1
π

∫ 1

−1

1− x2

1− y2

[
1

y − x
− y

1− xy

]
w(y)dy

= c0w(x) +
c1
π

∫ 1

−1

(1− x2)(1− y2)

(y − x)(1− xy)

w(y)dy

1− y2
(74)

= c0w(x) +
c1
π

∫ 1

−1

[
x− y

1− xy
− 1− xy

x− y

]
w(y)dy

1− y2
= h0(x), x ∈ G,
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because

(1− x2)(1− y2)

(y − x)(1− xy)
=

x− y

1− xy
− 1− xy

x− y
. (75)

Thus, LB0 is a G-convolution operator with the kernel t− 1

t
:

LB0w(x) = c0w(x) +
c1
π

(
t− 1

t

)
∗G w(x), x ∈ G. (76)

The symbol of the operator is (cf. (25e) and (25h)):

L B(ξ) = c0 +
c1
π
(FGt)(ξ)−

c1
π

(
FG

1

t

)
(ξ)

= c0 + ici

[
1

sinh(πξ)
− coth(πξ)

]
= c0 +

ic1(1− cosh(πξ))

sinh(πξ)
= c0 − ic1 tanh

πξ

2
, ξ ∈ R. (77)

From Theorem 4 follows that the operator LB0 = W 0
G,T in (74) is invertible

if and only if the ellipticity condition (71) holds. The solution to equation (72) is
w(x) = LB−1

0 h0(x) =W 0
G,L B−1V h(x) and, therefore, solution to equation (5) is

φ(x) = V −1w(x) :=
w(1− 2x)

x(1− x)
= (W 0

G,L B−1V h)(x),

Since L B(±∞) = c0 ± ic1, from Lemma 3 we conclude

L B−1(ξ) = d0 − d1 tanh
πξ

2
+ L B−1(ξ), L B−1 ∈ S(R),

kLB(x) = (F−1
G L B−1)(x), x ∈ G, kLB ∈ S(G)

and formula (72) is proved, from which follows formula (72) by the change of the
integration variable.

The concluding assertion about a priori smoothness of a solution to equation (5)
follows from the Sobolev’s embedding theorem (64). □
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[Hr83] Hörmander L., The Analysis of Linear Partial Differential Operators I-IV, Springer-Verlag, Hei-
delberg 1983.

[Ig69] Igari S., Functions of Lp-multipliers, Tohoku Math. Journ. 21 (1969), 304-320.
[Ka75] Kalandiya A. I., Mathematical methods of two-dimensional elasticity, Mir Publ., Moscow, 1975.
[Pe06a] Petrov V. E., Integral transform on a segment, Problemy Matem. Analiza 31 (2005), 67–95; En-

glish transl. J. Math. Sci. 132, no. 4, 2006, 451-481.
[Pe06b] Petrov V. E., The generalized singular Tricomi equation as a convolution equation, Dokl. Ros.

Akad. Nauk 411 (2006), no. 2, 1–5; English transl., Dokl. Math. 74, no. 3, 2006, 901–905.
[Si65] Simonenko I., A new general method of investigating linear operator equations of singular integral

equation type. I. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 29, 1965, 567-586.
[St50] Stechkin S. B., On bilinear forms, Doklady Akademii Nauk SSSR 71, 2, 1950, 237-240.
[St70] Stein E., Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press,

p.558, 1970.
[SP20] Suslina T.A., Petrov V.E., Regularity of the solution of the Prandtl equation,

https://arxiv.org/abs/2008.06715, 17 pages, 2020.
[Tr95] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Ams-

terdam 1978 (2-nd edition, Johann Ambrosius Barth Verlag, Heidelberg–Leipzig 1995).


