Enzyme Selection, Optimization, and Production toward Biodegradation of Waste Poly(ethylene terephthalate) at Scale

DONGMING XIE¹, Ya-Hue Soong¹, Umer Abid¹, Allen C. Chang¹, Christian Ayafor¹, Akanksha Patel¹, Jin Xu¹, Carl W. Lawton¹, Hsi-Wu Wong¹, and Margaret Sobkowicz J¹

¹University of Massachusetts Lowell

December 5, 2022

Abstract

Poly(ethylene terephthalate) (PET) is one of the world's most widely used polyester plastics. Due to its chemical stability, PET is extremely difficult to hydrolyze in a natural environment. Recent discoveries in new polyester hydrolases and breakthroughs in enzyme engineering strategies have inspired enormous research on biorecycling of PET. This study summarizes our research efforts toward large-scale, efficient, and economical biodegradation of waste PET, including PET hydrolase selection and optimization, high-yield enzyme production, and high-capacity enzymatic degradation of waste PET. First, genes encoding PETase and MHETase from *Ideonella sakaiensis* and the ICCG variant of leaf-branch compost cutinase (LCC) were codon-optimized and expressed in *Escherichia coli* BL21(DE3) for high-yield production. To further lower the enzyme production cost, a *pelB* leader sequence was fused to *LCC* so that the enzyme can be secreted into the medium to facilitate recovery. To help bind the enzyme on the hydrophobic surface of PET, a substrate-binding module in a polyhydroxyalkanoate depolymerase from *Alcaligenes faecalis* (PBM) was fused to the C-terminus of *LCC*. The resulting four different LCC variants (LCC, PelB-LCC, LCC-PBM, and PelB-LCC-PBM), together with PETase and MHETase, were compared for PET degradation efficiency. A fedbatch fermentation process was developed to produce the target enzymes up to 1.2 g/L. Finally, the best enzyme, PelB-LCC, was selected and used for the efficient degradation of 200 g/L recycled PET in a well-controlled, stirred-tank reactor. The results will help develop an economical and scalable biorecycling process toward a circular PET economy.

Hosted file

Manuscript File.docx available at https://authorea.com/users/369408/articles/610056-enzymeselection-optimization-and-production-toward-biodegradation-of-waste-poly-ethyleneterephthalate-at-scale