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Abstract

3D segmentation has been a hot spot in numerical geometry processing. But the accuracy of the segmentation methods can

be easily affected by the types of models because their sensitivity to different models is uneven. To address this problem,

we propose a semi-automatic 3D mesh segmentation algorithm based on harmonic field. Firstly, our algorithm utilizes the

strokes of users as constraints on the harmonic field of the mesh surface. Secondly, a smooth harmonic field based on Laplacian

operator and Poisson equation is introduced. Through the generated harmonic field, the correct weights are selected to further

fit the geometric characteristics of the grid. Afterwards, we find a set of most suitable isolines on the harmonic field as the

segmentation path. Finally, a mesh density enhancement method is designed, which optimizes sub-graphs after segmentation.

Experimental results demonstrate that the effectiveness of our proposed algorithm. Moreover, the semi-automatic 3D mesh

segmentation algorithm can better understand the intention of users.
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figures/fig1-The-pipeline-of-the-proposed-method/fig1-The-pipeline-of-the-proposed-method-eps-converted-to.pdf
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figures/fig2-The-line-segments-identified-by-the-user/fig2-The-line-segments-identified-by-the-user-eps-converted-to.pdf
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figures/fig3-Harmonic-field-color-change-diagram/fig3-Harmonic-field-color-change-diagram-eps-converted-to.pdf
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figures/fig4-The-isolines-generated-on-the-mesh/fig4-The-isolines-generated-on-the-mesh-eps-converted-to.pdf
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figures/fig5-The-segmention-effect-of-the-selected-isoline/fig5-The-segmention-effect-of-the-selected-isoline-eps-converted-to.pdf
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figures/fig6-Schematic-diagram-of-isoline-crossing-boundary/fig6-Schematic-diagram-of-isoline-crossing-boundary-eps-converted-to.pdf
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figures/fig7-Comparison-diagram-before-and-after-optimization-aBefore-optimization-bAfter-optimizat/fig7-Comparison-diagram-before-and-after-optimization-aBefore-optimization-bAfter-optimizat-eps-converted-to.pdf
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figures/fig8-The-Segmentation-results-of-bear-model-based-on-the-8th-segmentation-line/fig8-The-Segmentation-results-of-bear-model-based-on-the-8th-segmentation-line-eps-converted-to.pdf
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figures/fig9-The-segmentation-results-of-our-method-on-the-basis-of-isoline-selection-experiment/fig9-The-segmentation-results-of-our-method-on-the-basis-of-isoline-selection-experiment-eps-converted-to.pdf
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figures/fig10--The-results-of-multi-component-segmentation/fig10--The-results-of-multi-component-segmentation-eps-converted-to.pdf
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figures/fig11-The-results-of-binary-segmentation/fig11-The-results-of-binary-segmentation-eps-converted-to.pdf
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figures/fig12-Comparison-of-boundary-optimization,-the-right-figure-shows-the-optimized-result/fig12-Comparison-of-boundary-optimization,-the-right-figure-shows-the-optimized-result-eps-converted-to.pdf
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figures/fig13-Comparison-of-segmentation-results-with-two-other-methods/fig13-Comparison-of-segmentation-results-with-two-other-methods-eps-converted-to.pdf
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figures/fig14-Comparison-of-segmentation-results-with-two-other-methods-on-human-model/fig14-Comparison-of-segmentation-results-with-two-other-methods-on-human-model-eps-converted-to.pdf
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figures/fig15-The-quantitative-comparison-evaluation-of-the-proposed-method,-the-last-column-represent-our-segm/fig15-The-quantitative-comparison-evaluation-of-the-proposed-method,-the-last-column-represent-our-segm-eps-converted-to.pdf
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Abstract

3D segmentation has been a hot spot in numerical geometry processing. But
the accuracy of the segmentation methods can be easily affected by the types
of models because their sensitivity to different models is uneven. To address
this problem, we propose a semi-automatic 3D mesh segmentation algorithm
based on harmonic field. Firstly, our algorithm utilizes the strokes of users
as constraints on the harmonic field of the mesh surface. Secondly, a smooth
harmonic field based on Laplacian operator and Poisson equation is intro-
duced. Through the generated harmonic field, the correct weights are selected
to further fit the geometric characteristics of the grid. Afterwards, we find a
set of most suitable isolines on the harmonic field as the segmentation path.
Finally, a mesh density enhancement method is designed, which optimizes
sub-graphs after segmentation. Experimental results demonstrate that the
effectiveness of our proposed algorithm. Moreover, the semi-automatic 3D
mesh segmentation algorithm can better understand the intention of users.
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1. Introduction

In geometric processing and shape understanding, 3D object segment-
ing is a fundamental problem. It performs an important role in assisting
parametrization, texture mapping Sander et al. [1], shape matching, 3D shape
modelling [2], 3D model generation Li et al. [3], animation [4], mesh param-
eterization [5, 6], 3D models feature matching [7], deformation [8, 9], 3D
object retrieval [10, 11, 12], compression [13], etc. Mesh segmentation aims
to decompose a mesh, representing a 3D object, into parts.

Mesh segmentation methods can be divided into two categories: part-
type.(or semantic) [14] and surface-type [15, 16, 17] methods. In terms of
part-type segmentation [18], the goal is to segment the object represented by
the mesh into meaningful, mostly volumetric, parts. In surface-type segmen-
tation, the objective is to segment the surface mesh into patches under some
criteria. The former pays more attention to the geometric information of the
mesh to obtain the surfaces constituting the original object, which is suitable
for texture mapping, etc. In the latter case, the algorithms are greatly based
on the human perception theory to segment the mesh model into meaningful
parts. It is important to find the human vision that delineates the boundaries
of object’s regions along the negative minima of principal curvatures. Lee et
al. [19, 20] found the region boundaries using the shortest path between two
vertices that satisfies a specific cost function. Hou et al. [21] introduced a
novel region fusion algorithm which is able to handle 3D meshes with complex
shape and rich details. Most of existing methods need explicit information
on segmentation boundary and the above methods are automatic segmenta-
tion, however, the results of segmentation also often depend on the specific
application, so a fully automatic segmentation algorithm is not realistic, and
the mesh has to be segmented through user interaction depending on the
actual application.

Meanwhile, the accuracy of existing methods is easily affected by the types
of models, and their sensitivity to different models is uneven. Semantic seg-
mentation remains a challenge. Currently, user need referred segmentation
technology for a specific semantic component (such as the head, extremities
and tail) is still immature.

Therefore, we study the semantic information of the mesh based on the
requirements of users. Since the harmonic field is a continuous and smooth
scalar field, applying it to the mesh surface can meet the requirements of semi-
automatic mesh segmentation. By using the users’ stroke as the segmentation

2



constraint, a smooth harmonic field tone is introduced to capture the user’s
intention to generate a set of isolines. Through the selection of weight, the
generated harmonic field is more in line with the geometric characteristics of
the mesh itself, and the most suitable isoline is selected as the segmentation
path. Finally, the segmentation path is optimized.

2. Related Works

2D image segmentation is the basis of 3D model segmentation. Fuzzy
local intensity clustering is used to achieve automatic medical image seg-
mentation [22]. [23] Combining the point-wise features and global point
features [20], the semantic information is obtained. In order to promote the
accuracy of whole brain segmentation, Chen et al. [24] make full use of the
spatial constraint information between adjacent slice of magnetic resonance
imaging brain image sequence. On the basis of 2D image segmentation, the
segmentation of the 3D mesh model has become one important stage in the
area of mesh processing. In some previous work, mesh segmentation primar-
ily extend image segmentation algorithm, mesh simplification, mesh feature
extraction and other technologies, in order to separate the mesh according to
the extracted information, However, present mesh segmentation increasingly
more attention to the semantic part.

Recently, many semantic segmentation methods have been adopted in
graphic processing. In 2015, Jia et al. [25] introduced curvature extreme
points into the segmented fuzzy region to achieve watershed segmentation
by pre segmenting the mesh. Garland et al. [26] proposed a hierarchical
clustering algorithm based on mesh patches. Its idea is to merge adjacent
triangular patches into sub clusters, continuously shrinking and simplifying
the clustering seeds, and achieve the clustering of all patches. Sander et al.
[1] proposed an iterative approach for mesh segmentation based on K-means.
Lian et al. [27] achieve one adaptive mesh segmentation is implemented inter-
actively according to the user’s requirements. Subsequently, David et al. [28]
achieved the similarity measurement of face pieces based on the variational
shape approximation method. Fang et al. [29] used the heat kernel percep-
tion on the mesh to obtain global information fand automatically implement
segmentation. Yang et al. [30] achieved good results by using persistent clus-
tering and wave kernel features. At present, spectral clustering method has
attracted much attention. It maps the three-dimensional mesh information
to the spectral space and uses the feature vector to cluster to achieve mesh
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segmentation. Wang et al. [31] used the Laplace operator to obtain the con-
nected single sub mesh region, Chahhou et al. [32] used adjacency distance
measurement minimization to extract the sub-segmented region, and Yang
et al. [33] optimized the Laplacian matrix to recognize the model attitude
on the mesh. In 2018, Tong et al. [34] introduced gradient minimization into
the mesh segmentation, mapping the mesh segmentation to constant vectors.

Recently, Moon et al. [35] present a new method for interactive segmen-
tation of a triangle mesh by using the concavity-sensitive harmonic field and
anisotropic geodesic. The proposed method only requires a single vertex in
the desired feature region, while the vertex is not easily selected by user
click. Meanwhile, the segmentation boundary is constructed by computing
anisotropic geodesics passing through the interpolation points. However, this
will result in a non-smooth segmentation boundary. In this paper, we carry
out local division of the sub-mesh on the original mesh involved in order to
ensure the quality of the smooth boundary.

3. Methodology

This section presents the semi-automatic 3D mesh segmentation algo-
rithm based on Cross-Boundary strokes. First, user interaction is performed
to generate strokes. Then the harmonic field of the mesh surface is con-
structed by combining the mesh geometric information. Afterwards a set
of isoline lines is formed by using the scalar field values generated by the
harmonic field and select the best isoline selected as the segmentation path.
Finally, the results are optimized by local mesh density enhancement. Fig.1
shows the pipeline of our method.

Construct the harmonic field 

and select the best isoline
Boundary optimization

The results of  binary 

segmentation
Input Model User Interaction

Figure 1: The pipeline of the proposed method.
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3.1. Harmonic Field construction

3.1.1. Interactive harmonic field

To achieve the semi-automatic 3D mesh segmentation combined with the
user intention, it is necessary to introduce interaction. The harmonic field is
just a continuous and smooth scalar field, which is characterized by passivity,
non-rotational and non-local extremum. When acting on the mesh surface, it
may well meet the requirements of mesh deformation, quadrilateral and semi-
automatic mesh segmentation. For this reason, we should initially construct
the harmonic field on the mesh surface.

First construct a scalar function u : V → R, which defines the corre-
sponding scalar value at all mesh points. By linear interpolation on each
triangular slice this function is generalized to define a slice linear function on
the entire mesh. Secondly, it is specified that the line segment identified by
the user on the mesh surface is a directed line segment, which has the same
function as identifying the foreground and background in image segmenta-
tion and extracting the subject image. The segment identified by the user
are illustrated in Fig.2.

Figure 2: The line segments identified by the user.

Let P = {p1, p2, · · · pc} and Q = {q1, q2, · · · qc} represent the correspond-
ing set of mesh vertex indexes at the beginning and end of line segments
respectively, where c is the number of strokes. Our method introduces the
Poisson equation:

∆u = 0 (1)

In particular, we are focused on the construction of the harmonic function
u, which satisfies the Laplace equation corresponding to a specific Dirichlet
boundary condition. Combined with the Dirichlet constraints:

E1 =

{
ux = 1, xεP
ux = 0, xεQ

(2)
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where u satisfying the above Dirichlet constraints is a discrete harmonic
function and ∆ is a Laplace operator with cotangent weighting.

The Poisson equation can be solved in least squares sense by applying the
matrix form Au = b, with:

A =

[
L

WP

]
and b =

[
0

WB

]
(3)

where L is the cotangent Laplacian matrix, W is positional weighting matrix,
P is the positional matrix of size 2c×n, with n denoting the number of mesh
vertices, and B is a 2c× 1 matrix solving the solution of Poisson’s equation
is equivalent to calculating u = (A>A)−1A>b.

The Laplace operator on the mesh is commonly expressed as:

(∆u)i =
1

Ai

∑
jεNi

ωij(ui − uj)
(4)

where Ni is the set of neighbor points for the vertex, wij is the weight cor-
responding to edge ij and

∑
wij = 1, therefore the Laplace equation is dis-

cretized into a sparse linear system Lu = b , where the matrix L is the
discrete Laplace operator matrix. Thus, we obtain the harmonic field gen-
erated by the mesh surface, which can achieve that each vertex matches a
harmonic field value.

3.1.2. Characteristic reservation

It can be noted that the construction of harmonic function has certain
parameters to choose, which also reflects the advantage of semi-automatic
segmentation that respects the intention of the user. The parameter as a
harmonic function mentioned in the discretization of the Laplace operator
mentioned in the Sec.3.1.1 is mainly used to adjust the adaptability of har-
monic fields to the mesh. Different harmonic fields and harmonic field values,
acting on mesh vertices can be obtained by different parameters.

We introduce discrete cotangent weighting ωij = 1
2
(cotαij + cot βij) as

here. αij and βij are the two angles opposite of the edge ij, by using the
characteristics of cotangent weighting, we can represent the local geometric
information.

Additionally, we combine various geometrical information and geometric
features on the mesh and adopt the weight:

ωij = σωnij + (1− σ)ωcij (5)
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where ωnij = (1+
αij

avg(αij)
)−1, αij is the angle between the normal vectors ni and

nj of the vertex vi and vj, ω
c
ij = 1√

(|kn|)+1
, kn = 2

(vi−vj)ni
||vi−vj ||2 is approximately

the normal curvature on edge ij, σ is the weight between ωnij and ωcij, which is
used to balance the vertex normal angle and normal curvature of the vertex.
It is set to 0.5 in most cases.

Figure 3: Harmonic field color change diagram.

As shown in Fig.3, the essence of constructing a harmonic field is to
construct a set of scalar fields on the mesh, use the smooth nature of the
harmonic field, and obtain the harmonic field values on the mesh surface by
interpolation on the mesh surface, so as to provide the basis of mathematical
theory and practical operation for the subsequent mesh segmentation method
using isolines.

3.2. Isoline selection

The construction of harmonic field on the mesh surface allows us to seg-
ment the mesh by isoline. The key feature of isoline is that each isoline on
the mesh can divide the complete mesh model into two sub mesh models.
Additionally, the contour extracted from the interpolated harmonic field is
smooth, does not require post-processing, and can even cover the noise on
the mesh. Therefore, the present issue is how to select an isoline, in other
words, determines an isoline for segmentation combined with user intent and
local shape information. Isoline properties based upon the harmonic field
include:

(1) Each isoline is a smooth connecting loop, so it is suitable to use
directly as division boundary.

(2) The basic harmonic field and the extracted contour are essentially
smooth and insensitive to variations in noise, pose, mesh quality and user
strokes.
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(3)The computational efficiency of isoline selection in harmonic field is
high, which only involves solving sparse linear system.

Figure 4: The isolines generated on the mesh.

We uniformly deploy a set of isolines ISO = {I1, I2, ..., IN} on the har-
monic field generated in the specified interval, and the value of the isoline Ii
is i/(N + 1). The generated isoline generally runs through the user’s scribed
line, where N is generally 15. The generated isoline is shown in Fig.4.

Firstly, in order to solve the issue of understanding the intention of the
user, we introduce center-ness to measures each isoline of the two ends of the
stroke to ensure the best cut should runs across somewhere in the middle of

the stroke, but not near its two ends: Ceni = e−
(i−1)2

2t2 , with t = N
2

. Secondly,
the selection of isolines should be combined with local geometry information.
More precisely, for each isoline, we first calculate its local radius ri and divide
its length l by 2π. The radius distribution of the isoline assembly represents
the change of local volume of the mesh itself, where the radius is the local
thickness. Thirdly, we calculate Λi = 2ri−ri−1−ri+1 for each isoline Ii, where
smaller negative Λi value represents a larger concave region. In particular, to
avoid Λi from being zero due to dense isolines, we use Λik = 2ri− ri−k− ri+k,
k < 1 to provide a larger step size. In addition, we not only consider adjacent
isolines, but use a multi-scale metric Λi. In order to penalize isolines of large

distances from Ii, we convolute Λi with Gaussian function f(k) = e1
(k−1)2

2σ2 ,
with σ is 2. The Λi is defined as:

∆i =

∑
k f(k)∆ik∑
k f(k) (6)

Finally, we combine Λi with above-mentioned Ceni to achieve the final mea-
surement of each isoline:

Mi = CeniΛi (7)
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The isoline with the smallest Mi value is determined as the best segmentation
path, as shown in Fig.5.

Figure 5: The segmentation effect of the selected isoline.

3.3. Boundary optimization

In the previous section, we obtained the optimal segmentation. When
constructing the harmonic field, we use the interpolation method to extend
the vertex scalar field to the entire surface mesh scalar field, so as to obtain a
smooth harmonic field. However, the subsequent isolines do not necessarily
follow the vertices, but cross the mesh edges, as shown in Fig.6. We select the
segmentation according to the distance from the vertex to the isoline. In the
model with low accuracy, the edges of mesh segmentation may be uneven,
and even eliminate the benefits of the above isoline method.

Figure 6: Schematic diagram of isoline crossing boundary.

Therefore, We apply a local subdivision to the submesh on the original
mesh. The harmonic field of the submesh can be determined from the orig-
inal mesh. After selecting the optimal segmentation isoline, we mesh the
pre-segmented area to make the mesh itself close to the segmentation path
indicated by the contour. There is no change in the harmonic field before
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and after mesh density enhancement. The following is the energy function
after density enhancement E1 :

E1 =

{
ui, xi = 1

1− ui, xi = 0
(8)

where ui is the average value of harmonic function of each vertex of triangular
mesh surface f . Harmonic function E2:

E2(xi, xj) = ηEang(fi, fj) + (1− η)Eedge(i, j) (9)

where,

Eang(fi, fj) = (1 +
dang(fi, fj)

avg(dang(fi, fj))
)−1 (10)

dang(fi, fj) = 1− cos(αij) (11)

where αij is dihedral angle, Eedge(i, j) = length(i,j)
length(i,j)+avg(length)

, η is used to
balancing angle and edge energy, normally 0.5.

(b)(a)

Figure 7: Comparison diagram before and after optimization. a:Before optimization;
b:After optimization.

As shown in Fig.7, after the segmentation boundary optimization, the seg-
mented sub-mesh boundary will be smoother and the segmentation boundary
will fit the original isoline better.

4. Experimental results and discussion

In this section, we present experimental results obtained on the triangu-
lated mesh models, which mainly come from the Princeton shape Benchmark
database. The experimental hardware platform of the proposed algorithm is
a notebook computer, equipped with AMD Ryzen 7 4800u 2.10 GHz six core
processor and 16GB RAM.
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Table 1: The parametersthe of generated isoline lines by strokes of users

Isoline Contour radius Central index Isoline local index Final evaluation index

line 1 0.329619 0.686908 0.069181 0.0475209
line 2 0.291536 0.764228 0.0145211 0.0110974
line 3 0.263238 0.83527 -0.0125843 -0.0105113
line 4 0.241766 0.89683 -0.0218866 -0.0196285
line 5 0.224106 0.945959 -0.0251432 -0.0237845
line 6 0.209203 0.9801994 -0.0290432 -0.0284681
line 7 0.197797 0.99778 -0.0343168 -0.0342406
line 8 0.191638 0.99778 -0.0376692 -0.0375856
line 9 0.192596 0.980199 -0.0334415 -0.0327793
line 10 0.199868 0.9459594 -0.0206012 -0.0194879
line 11 0.210924 0.89683 0.00189612 0.00170049
line 12 0.223829 0.83527 0.0407296 0.0340203
line 13 0.237291 0.764228 0.104099 0.0795552

∗The best results are bold.

4.1. Isoline selection experiment

In this experiment, the 161st bear model in the data set was selected,
including 13826 points and 27648 faces. We draw a line between the bear’s
head and body to segment the head and body and obtain the details of 13
isoline lines, as shown in Table 1.

Figure 8: The Segmentation results of bear model based on the 8th segmentation line.

According to the section Isoline selection definition, the Mi smallest iso-
line is determined as the best optimal segmentation path, so we choose the
8th segmentation line, and the obtained segmentation result is shown in
Fig.8. Fig.9 presents the segmentation results of our method on the basis of
isoline selection experiment, we extract the two segmented parts. The head

11



has 1598 vertices and 7133 faces and the body has 10288 vertices and 20394
faces.

(a) (b)

Figure 9: The segmentation results of our method on the basis of isoline selection experi-
ment.a:The segmented head of bear model;b:The segmented body of bear model.

Figure 10: The results of multi-component segmentation.

Furthermore, the experiments have been carried out on a variety of mesh
models in this section. The segmentation effect is excellent. The user seg-
mentation intent is accurately identified and the segmentation isoline across
the boundary is formed. The results of multi-component segmentation and
binary segmentation are shown in Fig.10 and Fig.11 respectively.

4.2. Boundary optimization

An encrypted boundary optimization algorithm was introduced on the
basis of isoline selection. The increased mesh vertices and patches after
optimization are concentrated at the encrypted segmentation boundaries,
and the contrast results are displayed in Fig.12. The experimental results
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show that the segmented boundary is more fine-grained, and the boundary
fits the curved feature better.

Figure 11: The results of binary segmentation.

Figure 12: Comparison of boundary optimization, the right figure shows the optimized
result.

4.3. Comparison and Evaluation

To verify the effectiveness of the proposed method, several experiments
and quantitatively assessment are conducted to illustrate the effectiveness
of the proposed method. In comparative experiments, our proposed semi-
automatic segmentation method based on the harmonic field exhibits good
adaptability, combining the user’s intention and the actual geometry to ob-
tain good results. But it is still notable that the user’s strokes are required
to be long enough to generate enough isolines to select the final segmentation
isolines, however, this operation is difficult to perform in complex or feature-
adjacent regions. Fig.13 and Fig.14 demonstrate comparison of segmentation
results with two other methods.

Besides the subjective visual comparison, we also carry out quantitative
comparison. We use the evaluation measures proposed by Chen et al. [36]to
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quantitate the segmentation results.The specific indicators contain segmenta-
tion difference, Hamming distance, Rand index, and consistency error. Each
of these metrics is specified as follows:

Figure 13: Comparison of segmentation results with two other methods. Results in the
first and second column are inner dihedral angle and spectral clustering respectively, the
last column represent our segmentation results.

Figure 14: Comparison of segmentation results with two other methods on human model.
Results in the third column represent our segmentation results.

Segmentation difference: It is used to calculate the discrepancy of
segmentation paths on the mesh. For two segmentations S1 and S2, the
point sets of the segmentation paths are C1 and C2, respectively, and the
segmentation difference is:
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CD(S1, S2) =
mean{dG(p1, C2)}+ mean{dG(p2, C1)}

avgRadius
(12)

∀p1 ∈ C1,∀p2 ∈ C2,

dG(p1, C2) = min{dG(p1, p2), ∀p2 ∈ C2} (13)

dG(p2, C1) = min{dG(p2, p1), ∀p1 ∈ C1} (14)

where dG(p1, C2) is the geodesic distance from point p1 ∈ C1 to C2, dG(p2, C1)
is the geodesic distance from point p2 ∈ C2 to C1, mean is the mean value,
and agvRadius is the average Euclidean distance from the point to the model
center of mass.

Figure 15: The quantitative comparison evaluation of the proposed method, the last
column represent our segmentation method.

Hamming distance:It is used to calculate the difference between the
two segmentations S1, S2, which is expressed as:

HD(S1, S2) =
1

2
(
DH(S1 ⇒ S2)

‖S‖
+
DH(S2 ⇒ S1)

‖S‖
) (15)
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where DH(S1 ⇒ S2) =
∑

i ‖Si2 \ Sit1 ‖,\ is the set of difference operators.
Rand index: used to measure whether faces p and q belong to the same

partition, which is defined as:

RI = 1−
(

2

N

)−1 ∑
p,q,p<q

[BpqPpq + (1−Bpq)(1− Ppq)] (16)

where N is the number of faces, BpqPpq = 1 indicates that two faces belong
to the same partition in both methods, and (1−Bpq)(1−Ppq) indicates that
two faces do not belong to the same partition in both methods.

Consistency error: It includes two types of local and globalwhich are
used to determine the similarity and dissimilarity of the nested or hierar-
chical structure in partition S1 and S2, local is LCE(S1, S2) and global is
GCE(S1, S2) :

LCE(S1, S2) =
1

n

∑
i

min{‖R(S1, fi) \R(S2, fi))‖
‖R(S1, fi)‖

,
‖R(S2, fi) \R(S1, fi)‖

‖R(S2, fi)‖
}

(17)

GCE(S1, S2) =
1

n
min{

∑
i

‖R(S1, fi) \R(S2, fi))‖
‖R(S1, fi)‖

,
∑
i

‖R(S2, fi) \R(S1, fi)‖
‖R(S2, fi)‖

}

(18)
where R(S1, fi)is a set of connected faces of the segmented region.

Fig.15 shows the quantitative comparison results on several models which
come from the Princeton shape benchmark database of our method compared
with other segmentation methods, including Manual, Dihedral angle and
Spectral clustering.

The metric (Cut Discrepancy) is boundary-based, and the last three met-
ric (Hamming Distance, Rand Index, Consistency Error) are region-based.
These four metrics are used to evaluate the similarity between segmenta-
tion results generated by different methods with human-generated ones. The
quantitative evaluation results and the visual segmentation results demon-
strate that our method can achieve the visually meaningful segmentation
results, especially for a specific semantic component (such as the head, ex-
tremities and tail) according to the needs of users.

5. Conclusion

In this paper, we propose a semi-automatic interactive 3D mesh segmen-
tation method based on stroke-constrain. We use the harmonic field as the
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mesh metric, a smooth harmonic field is introduced based on Laplace oper-
ator and Poisson equation. With carefully selected of weight, the generated
harmonic field is more suitable for the geometric characteristics of the mesh
itself, and the user strokes are used as constraints to seek a set of contour
lines, and the most suitable contour line is selected as the segmentation
path, finally the segmentation path is optimized to obtain the segmented
sub-graph. The experiment of this method proves that the semi-automatic
mesh segmentation can fully understand the user’s intention, combining the
mesh information and the intuitive principle of minimum negative curvature
to achieve visually meaningful segmentation.
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