Contrasting leaf thickness and saturated water content explain wide-ranging air/water fractions, nutrient contents, and water-use efficiency among arid succulents

Byron Lamont¹ and Heather C. Lamont¹

¹Curtin University School of Molecular and Life Sciences

November 29, 2022

Abstract

Eight species in the Namib Desert, South Africa were assessed for their leaf area (A), thickness (z), saturated (Q) and dry mass, relative volume of air (F_a), water and dry mass, intrinsic water-use efficiency (based on δ^{-13} C), and N, P and cation (Na+K) contents. As water-storage capacity is a function of Q_v and z, this means Q/A (= Q_v^*z) is an ideal index of succulence compared with specific-leaf-area and other indices that highlight mass rather than volume. Specific gravity (ρ_1) has a different relationship with the F_a of sclero-mesophylls: rising ρ_1 infers decreasing air content is replaced by water rather than dry matter. The trend among succulent species, including Argentinian/Spanish added to our study, was Q/A exceeding 1 mg water/mm² whose overall slope was ten times that for co-occurring sclerophyll-mesophyll species, and shows the futility of seeking a universal relationship among plants regarding their water-storing properties. (Na+K), N and P concentrations varied on a dry-matter, but not water-volume, basis. W_1 relationships were essentially functions of variations in z and increased metabolic efficiency. We conclude that z and Q_v are keys to the special physiological properties of succulent leaves. Adding succulents would force many current monotonic relationships to dichotomize.

Hosted file

Lamont Succulent ms.doc available at https://authorea.com/users/502401/articles/607194-contrasting-leaf-thickness-and-saturated-water-content-explain-wide-ranging-air-water-fractions-nutrient-contents-and-water-use-efficiency-among-arid-succulents