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Abstract

This paper considers the inverse problem of determining the time-dependent coefficient in the time-fractional diffusion-wave

equation. In this case, an initial boundary value problem was set for the fractional diffusion-wave equation, and an additional

condition was given for the inverse problem of determining the coefficient from this equation. First of all, it was considered the

initial boundary value problem. By the Fourier method, this problem is reduced to equivalent integral equations. Then, using

the Mittag-Leffler function and the generalized singular Gronwall inequality, we get apriori estimate for solution via unknown

coefficient which we will need to study of the inverse problem. The inverse problem is reduced to the equivalent integral of

equation of Volterra type. The principle of contracted mapping is used to solve this equation. Local existence and global

uniqueness results are proved. The stability estimate is also obtained.
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Abstract - This paper considers the inverse problem of determining the time-dependent
coefficient in the time-fractional diffusion-wave equation. In this case, an initial boundary value
problem was set for the fractional diffusion-wave equation, and an additional condition was
given for the inverse problem of determining the coefficient from this equation. First of all, it was
considered the initial boundary value problem. By the Fourier method, this problem is reduced
to equivalent integral equations. Then, using the Mittag-Leffler function and the generalized
singular Gronwall inequality, we get apriori estimate for solution via unknown coefficient which
we will need to study of the inverse problem. The inverse problem is reduced to the equivalent
integral of equation of Volterra type. The principle of contracted mapping is used to solve this
equation. Local existence and global uniqueness results are proved. The stability estimate is also
obtained.
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1. Introduction

Recently, a large number of applied problems have been formulated on fractional differential
equations and consequently considerable attention has been given to the solutions of those
equations. Many physical and chemical processes are described by fractional differential equations
[1-3]. Problems in viscoelasticity, dynamic processes in self-similar structures, system control
theory, electrochemistry, diffusion processes leading to fractional order differential equations are
consider in [4-7]. Fractional time derivatives are used to model diffusion wave or dispersion, a
phenomenon observed in many problems. Some works providing an introduction to fractional
calculus related to diffusion problems are, for instance [8,9].

The existence and uniqueness of the solution to an Cauchy type problem for the fractional
differential equations were studied in many papers (see [10-12]). The idea of reducing the Cauchy
problem for fractional differential equations to the Volterra integral equation was carried out by
Pitcher and Sewel [13]. While is known that one can consider the initial - boundary value problems
for differential equation with Riemann-Liouville fractional derivative were investigated [14].

Inverse problems for classical integro-differential wave propagation equations have been extensively
studied. Nonlinear inverse coefficient problems with various types of sufficient determination
conditions are often found in the literature (e.g., [15-22] and references therein). In [23-26] both
the existence and uniqueness of a solution to the inverse problem are proved.

In this paper, we investigate the local existence and global uniqueness of an inverse problem
of determining time-dependent coefficient in the time-fractional diffusion wave equation with
initial-boundary and overdetermination conditions.
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In the domain ΩT := {(x, t) : 0 < x < l, 0 < t ≤ T} consider the time-fractional diffusion
wave equation (

Dα0+,tu
)

(x, t)− uxx + q(t)u(x, t) = f(x, t), (x, t) ∈ ΩT , (1)

with initial and boundary conditions(
Dα−1

0+,tu(x, t)
)
t=0+

= ϕ(x),
(
Dα−2

0+,tu(x, t)
)
t=0+

= ψ(x), x ∈ [0, l], (2)

u(0, t) = u(l, t) = 0, 0 ≤ t ≤ T, (3)

where Dα0+,t is the Reimann-Liouville fractional derivative of order 1 < α < 2 in the time variable
(see definition 1, 2 in preliminaries) and ϕ(x), ψ(x), f(x, t) are given smooth functions.

We pose the inverse problem as follows: find the function q(t), t > 0 in (1), if the solution of
the initial-boundary problem (1)-(3) satisfies condition:

l∫
0

w(x)u(x, t)dx = g(t), 0 ≤ t ≤ T, (4)

g(t) is a given function.
The functions ϕ(x), ϕ(x), f(x, t) and g(t) satisfy the following assumptions
A1) {ϕ,ψ} ∈ C3[0, l], {ϕ(4), ψ(4)} ∈ L2[0, l], ϕ(0) = ϕ(l) = 0, ψ(0) = ψ(l) = 0, ϕ′′(0) = ϕ′′(l) =

0, ψ′′(0) = ψ′′(l) = 0 and ϕ(4)(0) = ϕ(4)(l) = 0, ψ(4)(0) = ψ(4)(l) = 0;
A2) f(x, ·) ∈ C[0, T ] and for t ∈ [0, T ], f(·, t) ∈ C3[0, l], f(·, t)(4) ∈ L2[0, l], f(0, t) = f(l, t) =

0, fxx(0, t) = fxx(l, t) = 0 and fxxxx(0, t) = fxxxx(l, t) = 0;
A3) w(x) ∈ C2[0, T ] and w(0) = w(l) = 0 and w

′′
(0) = w

′′
(l) = 0;

A4)Dα0+,tg(t) ∈ C[0, T ] and |g(t)| ≥ g0 > 0, g0 is a given number,
l∫
0

w(x)ϕ(x)dx =
(
Dα−10+ g(t)

)
t=0+

,

l∫
0

w(x)ψ(x)dx =
(
Dα−20+ g(t)

)
t=0+

.

The article is organized as follows: In Section 2, we give some basic definitions and results
needed in the sequel. In Section 3, the existence and uniqueness of the solution to direct problem
(1)-(3) are obtained. Here also the stability estimate for this solution is given. Section 4 is devoted
to the solving of inverse problem (1)-(4).

2. PRELIMINARIES

In this section, we present some useful definitions and results , which will be use in the future.
Definition 1. The Riemann-Liouville fractional integral of order n − 1 < α < n for an

integrable function u(x, t) is defined by

In−α0+,t u(x, t) :=
1

Γ(n− α)

∫ t

0

u(x, τ)

(t− τ)α−n+1
dτ, t > 0.

Definition 2. The Riemann-Liouville fractional derivative of order n − 1 < α < n of the
integrable function u(x, t) is defined by

(
Dα

0+,tu
)

(x, t) =
1

Γ(n− α)

(
d

dt

)n ∫ t

0

u(x, τ)

(t− τ)α−n+1
dτ, t > 0.
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Two parameter Mittag-Leffler (M-L) function. The two parameter M-L function Eα,β(z)
is defined by the following series:

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
,

where α, β, z ∈ C with R(α) > 0, R(α)−denote the real part of the complex number α, Γ(·)
is Euler’s Gamma function. The Mittag-Leffler function has been studied by many authors who
have proposed and studied various generalizations and applications. A very interesting work that
meets many results about this function is due to Kilbas et al. (see [[1], pp. 42-44]).

Proposition 1. Let 0 < α < 2 and β ∈ R be arbitrary. We suppose that κ is such that
πα/2 < κ < min{π, πα}. Then there exists a constant C = C(α, β, κ) > 0 such that

|Eα,β(z)| ≤ C

1 + |z|
, κ ≤ |arg(z)| ≤ π.

For the proof, we refer to [[21], pp. 40-45] for example.
Definition 3. We consider the weighted spaces of continuous functions [[1], pp.4-5, 162-163].

Cγ [a, b] := {f : (a, b]→ R : (x− a)γ f(x) ∈ C[a, b], 0 ≤ γ < 1, },

C2,α
γ (Ω) =

{
u(x, t) : u(·, t) ∈ C2(0, 1); t ∈ [0, T ] and ∂α0tu(x, ·) ∈ Cγ(0, T ]; x ∈ [0, 1], 1 < α < 2

}
,

C0
γ [a, b] = Cγ [a, b],

with the norms
‖f‖Cγ = ‖(x− a)γf(x)‖C ,

and

‖f‖Cnγ =
n−1∑
k=0

‖f (k)‖C + ‖f (n)‖Cγ .

Lemma 1. [[27], p.188] Suppose b ≥ 0, α > 0 and a(t) nonnegative function locally integrable
on 0 ≤ t < T (some T ≤ +∞) and suppose u(t) is nonnegative and locally integrable on 0 ≤ t < T
with

u(t) ≤ a(t) + b

∫ t

0
(t− s)α−1u(s)ds

on this interval; then

u(t) ≤ a(t) + bΓ(α)

∫ t

0
(t− s)α−1Eα,α (bΓ(α)(t− s)α) a(s)ds.

Lemma 2. [[27], p.189] Suppose b ≥ 0, α > 0, γ > 0, α + γ > 1 and a(t) nonnegative
function locally integrable on 0 ≤ t < T and suppose tγ−1u(t) is nonnegative and locally
integrable on 0 ≤ t < T with

u(t) ≤ a(t) + b

∫ t

0
(t− s)α−1sγ−1u(s)ds

a.e. in (0, T ); then
u(t) ≤ a(t)Eα,γ

(
(bΓ(α))

1
α+γ−1 t

)
,
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where Eα,γ(t) =
∞∑
m=0

cmt
m(α+γ−1), c0 = 1, cm+1

cm
= Γ(m(α+γ−1)+γ)

Γ(m(α+γ−1)+α+γ) for m ≥ 0. As t → +∞

Eα,γ(t) = O
(
t
1
2
α+γ−1
α−γ exp

(
α+γ−1

α t
α+γ−1
α

))
.

In the next section we will deal with finding the solution of the initial-boundary problem
(1)-(3).

2. Existence and uniqueness result

By applying the Fourier method, the solution u(x; t) of the problem (1)-(3) can be expanded in
a uniformly convergent series in term of eigenfunctions of the form

u(x, t) =
∞∑
n=0

un(t)Xn(x), (5)

where

Xn(x) =

√
2

l
sin(λnx), λn =

πk

l
, n = 1, 2, 3, . . . . (6)

The coefficients un(t) for n ≥ 1 are to be found by making use of the orthogonality of the

eigenfunctions X(x). The scalar product in L2[0, 1] is defined by (f, g) =
1∫
0

f(x)g(x)dx. Let us

note the expansion coefficients of ϕ(x), ψ(x) and f(x, t) in the eigenfunctions of (6) for n ≥ 1
are definded respectively by

(f(x, t), Xn(x)) = fn(t),

(ϕ(x), Xn(x)) = ϕn, (ψ(x), Xn(x)) = ψn, n = 1, 2, . . . . (7)

We obtain in view of (1) and with (u(x, t), Xn(x)) =
l∫

0

u(x, t)Xn(x)dx = un(t), and we may

write
Dα0+,tun(t) + λ2

nun + q(t)un(t) = fn(t), (8)(
Dα−1

0+,tun(t)
) ∣∣

t=0
= ϕn,

(
Dα−2

0+,tun(t)
)∣∣
t=0

= ψn. (9)

We suppose that fn(t) ∈ Cγ [0, T ]. Then, by property 3.1(a) (see [[1], p. 172]), (8), (9) is
equivalent in the space Cαγ [0, T ] to the following Volterra integral equation:

un(t) = ϕnt
α−1Eα,α(−λ2

nt
α)+

+ψnt
α−2Eα,α−1(−λ2

nt
α) +

t∫
0

(t− τ)α−1Eα,α(−λ2
n(t− τ)α) (fn(τ)− q(τ)un(τ)) dτ. (10)

First we prove the following assertions:
Lemma 3. For large n ∈ N we have the estimates

tγ |un(t)| ≤ λn
(∣∣ϕn∣∣tγ+α−1 +

∣∣ψn∣∣tγ+α−2 + ‖fn‖γtαB(α, 1− γ)

)
×

×Eα,γ

((
1

λn
‖q‖C[0,T ]t

γΓ(α)

) 1
γ+α−1

t

)
, t ∈ [0, T ],
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tγ |Dα0+,tun(t)| ≤ ‖fn‖γ+

λn
(
λ2
n + ‖q‖C[0,T ]

)(∣∣ϕn∣∣tγ+α−1 +
∣∣ψn∣∣tγ+α−2 + ‖fn‖γtαB(α, 1− γ)

)
×

×Eα,γ

((
1

λn
‖q‖C[0,T ]t

γΓ(α)

) 1
γ+α−1

t

)
, t ∈ [0, T ],

where 1 > γ > 2− α.
Proof. We write the integral equation (10) in the following form:

un(t) = ϕnt
α−1Eα,α(−λ2

nt
α)+

+ψnt
α−2Eα,α−1(−λ2

nt
α) +

t∫
0

(t− τ)α−1 τ−γEα,α(−λ2
n(t− τ)α)τγfn(τ)dτ−

−
t∫

0

(t− τ)α−1Eα,α(−λ2
n(t− τ)α)q(τ)un(τ)dτ.

This solution is bounded in Cαγ [0, T ] in view of A1), A2). Multiplying the last equation by
tγ , we get

tγ |un(t)| ≤ tγ
∣∣ϕn∣∣∣∣∣∣tα−1Eα,α(−λ2

nt
α)

∣∣∣∣+
+tγ

∣∣ψn∣∣∣∣∣∣tα−2Eα,α−1(−λ2
nt
α)

∣∣∣∣+ tγ

∣∣∣∣∣∣
t∫

0

(t− τ)α−1 τ−γEα,α(−λ2
n(t− τ)α)τγfn(τ)dτ

∣∣∣∣∣∣+
+tγ

∣∣∣∣∣∣
t∫

0

(t− τ)α−1Eα,α(−λ2
n(t− τ)α)q(τ)un(τ)dτ

∣∣∣∣∣∣ ≤
≤ λn

(∣∣ϕn∣∣tγ+α−1 +
∣∣ψn∣∣tγ+α−2 + ‖fn‖γtαB(α, 1− γ)

)
+

+
1

λn
‖q‖C[0,T ]t

γ

t∫
0

(t− τ)α−1 |un(τ)|dτ,

where B(α, 1− γ) is Euler’s beta function.
Next, according to Lemma 2, we have

tγ |un(t)| ≤ λn
(∣∣ϕn∣∣tγ+α−1 +

∣∣ψn∣∣tγ+α−2 + ‖fn‖γtαB(α, 1− γ)

)
×

×Eα,γ

((
1

λn
‖q‖C[0,T ]t

γΓ(α)

) 1
γ+α−1

t

)
. (11)

We get the second part of the lemma 3, from equation (8) and the first estimate of Lemma 3

tγ |Dα0+,tun(t)| ≤



6

≤ ‖fn‖γ + λn
(
λ2
n + ‖q‖C[0,T ]

)(∣∣ϕn∣∣tγ+α−1 +
∣∣ψn∣∣tγ+α−2 + ‖fn‖γtαB(α, 1− γ)

)
×

×Eα,γ

((
1

λn
‖q‖C[0,T ]t

γΓ(α)

) 1
γ+α−1

t

)
. (12)

From the last two inequalities we immediately obtain the estimates of lemma 3 for any t ∈ [0, T ].
Lemma proven.

Formally, from (5) by term-by-term differentiation we compose the series

Dα0+,tu(x, t) =

√
2

l

∞∑
n=1

Dα0+,tun(t) sin(λnx), (13)

uxx(x, t) =

√
2

l

∞∑
n=0

λ2
nun(t) sin(λnx). (14)

Let us prove the uniform convergence of series (5), (13) and (14) in the domain Ω. This series
for any (x, t) ∈ Ω is majorized by√

2

l

∞∑
n=1

(
λn|ϕn|T γ+α−1 + λn|ψn|T γ+α−2 + λn‖fn‖γTαB(α, 1− γ)

)
, (15)

√
2

l

∞∑
n=1

[ (
λ3
n + λn‖q‖C[0,T ]

)
T γ+α−1|ϕn|+

(
λ3
n + λn‖q‖C[0,T ]

)
T γ+α−2|ψn|+

+
[
1 +

(
λ3
n + λn‖q‖C[0,T ]

)
Tα
]
‖fn‖γB(α, 1− γ)

]
, (16)√

2

l

∞∑
n=1

(
λ3
n|ϕn|T γ+α−1 + λ3

n|ψn|T γ+α−2 + λ3
n‖fn‖γTαB(α, 1− γ)

)
, (17)

where ΩT := {(x, t) : 0 ≤ x ≤< l, 0 ≤ t ≤ T}.
We hold the following auxiliary lemma.
Lemma 4. If the conditions A1), A2) are fulfilled then there are equalities

ϕn =
1

λ4
n

ϕ(4)
n , ψn =

1

λ4
n

ψ(4)
n , fn =

1

λ4
n

f (4)
n , (18)

where

ϕ(4)
n =

√
2

l

l∫
0

ϕ(4)(x)sin(λnx)dx, ψ(4)
n =

√
2

l

l∫
0

ψ(4)(x)sin(λnx)dx,

f (4)
n =

√
2

l

l∫
0

f (4)(x)sin(λnx)dx,

with the following estimates:

∞∑
n=1

∣∣∣ϕ(4)
n

∣∣∣2 ≤ ‖ϕ(4)‖L2[0,l],

∞∑
n=1

∣∣∣ψ(4)
n

∣∣∣2 ≤ ‖ψ(4)‖L2[0,l],

∞∑
n=1

∣∣∣f (4)
n

∣∣∣2 ≤ ‖f (4)‖L2[0,T ]. (19)
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If the functions ϕ(x), ψ(x) and f(x, t) satisfy the conditions of Lemma 4, then due to representations
(18) and (19) series (5), (13) and (14) converge uniformly in the rectangle Ω, therefore, function
u(x, t) satisfies relations (1)–(3).

Using the above results, we obtain the following assertion.
Theorem 1. Let q(t) ∈ C[0, T ], A1), A2) are satisfied, then there exists a unique solution of

the direct problem (1)-(3) u(x, t) ∈ C2,α
γ (Ω).

Let us derive an estimate for the norm of the difference between the solution of the original
integral equation (10) and the solution of this equation with perturbed functions q̃, ϕ̃n, ψ̃n and
f̃n. Let ũn(t) be solution of the integral equation (10) corresponding to the functions q̃, ϕ̃n, ψ̃n,
f̃n; i.e.,

ũn(t) = ϕ̃nt
α−1Eα,α(−λ2

nt
α)+

+ψ̃nt
α−2Eα,α−1(−λ2

nt
α) +

t∫
0

(t− τ)α−1Eα,α(−λ2
n(t− τ)α)

(
f̃n(τ)− q̃(τ)ũn(τ)

)
dτ. (20)

Composing the difference un(t)−ũn(t) with the help of the equations (10), (20) and introducing
the notations ûn(t) = un(t)− ũn(t), q̂ = q(t)− q̃(t), ϕ̂n(t) = ϕn(t)− ϕ̃n(t), ψ̂n(t) = ψn(t)− ψ̃n(t),
f̂n(t) = fn(t)− f̃n(t) we obtain the integral equation

ûn(t) = ϕ̂nt
α−1Eα,α(−λ2

nt
α)+

+ψ̂nt
α−2Eα,α−1(−λ2

nt
α) +

t∫
0

(t− τ)α−1Eα,α(−λ2
n(t− τ)α)

(
f̂n(τ)− q̂(τ)un(τ)

)
dτ−

−
t∫

0

(t− τ)α−1Eα,α(−λ2
n(t− τ)α)q̃(τ)ûn(τ)dτ, (21)

from which, is derived the following linear integral inequality for tγ |ûn(t)|

tγ |ûn(t)| ≤ λn
(∣∣ϕ̂n∣∣tγ+α−1 +

∣∣ψ̂n∣∣tγ+α−2 + ‖f̂n‖γtαB(α, 1− γ)

)
+

+‖q̂‖C[0,T ]t
γ

(∣∣ϕn∣∣tγ+α−1 +
∣∣ψn∣∣tγ+α−2 + ‖fn‖γtαB(α, 1− γ)

)
×

×Eα,γ

((
1

λn
‖q‖C[0,T ]t

γΓ(α)

) 1
γ+α−1

t

)
+

1

λn
‖q̃‖C[0,T ]t

γ

t∫
0

(t− τ)α−1 |ûn(τ)|dτ.

Using the Lemma 2 from last inequality, we arrive at the estimate:

tγ |ûn(t)| ≤

[
λn

(∣∣ϕ̂n∣∣tγ+α−1 +
∣∣ψ̂n∣∣tγ+α−2 + ‖f̂n‖γtαB(α, 1− γ)

)
+

+‖q̂‖C[0,T ]t
γ

(∣∣ϕn∣∣tγ+α−1 +
∣∣ψn∣∣tγ+α−2 + ‖fn‖γtαB(α, 1− γ)

)
×

×Eα,γ

((
1

λn
‖q‖C[0,T ]t

γΓ(α)

) 1
γ+α−1

t

)]
Eα,γ

((
1

λn
‖q̃‖C[0,T ]t

γΓ(α)

) 1
γ+α−1

t

)
. (22)
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Indeed, the expression (22) is stability estimate for the solution to the problem (1)-(3). The
uniqueness of this solution follows from (22).

INVESTIGATION OF THE INVERSE PROBLEM (1)-(4)
Let us now we in westigate to inverse problem (1)-(4)
Applying Dα0+,t to the over-determination condition (4), we obtain the following equation

l∫
0

w(x)

{(
Dα0+,tu

)
(x, t)− uxx + q(t)u(x, t)

}
dx =

l∫
0

w(x)f(x, t)dx,

we form (
Dα0+,tg

)
(t) + q(t)g(t)−

l∫
0

w
′′
(x)u(x, t)dx =

l∫
0

w(x)f(x, t)dx,

which yields

q(t) =
1

g(t)

 l∫
0

w(x)f(x, t)dx−
(
Dα0+g

)
(t) +

l∫
0

w
′′
(x)u(x, t)dx

 .

The functions un(t) depend on q(t), i.e. un(t; q). After simple converting, we get the following
integral equation for determining q(t):

q(t) = q0(t) +
1

g(t)

∞∑
n=1

wnun(t; q), (23)

where

wn =

√
2

l

l∫
0

w
′′
(x) sin(λnx)dx, q0(t) =

1

g(t)

 l∫
0

w(x)f(x, t)dx−
(
Dα0+g

)
(t)

 .

We introduce an operator F defining it by the right hand side of (23):

F [q](t) = q0(t) +
1

g(t)

∞∑
n=1

wnun(t; q). (24)

Then, the equation (24) is written in more convenient form as

F [q](t) = q(t). (25)

Let

q00 := max
t∈[0;T ]

|q0(t)| =

∥∥∥∥∥∥ 1

g(t)

 l∫
0

w(x)f(x, t)dx−
(
Dα0+g

)
(t)

∥∥∥∥∥∥
C[0,T ]

.

Fix a number r > 0 and consider the ball

B(q0, r) := {q(t) : q(t) ∈ C[0, T ], ‖q − q0‖ ≤ r}.

Theorem 2. Let A1)-A3) are satisfied. Then there exists a number T ∗ ∈ (0;T ), such that
there exists a unique solution q(t) ∈ C[0, T ∗] of the inverse problem (1)-(4).
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Proof. Let us first prove that for an enough small T > 0 the operator F maps the ball
B(q0, r) implies that F [q](t) ∈ B(q0, r). Indeed, for any continuous function q(t), the function
F [q](t) calculated using formula (25) will be continuous. Moreover, estimating the norm of the
differences, we find that

‖F [q](t)− q0(t)‖ ≤ w0

g0

∞∑
n=1

λn

(∣∣ϕn∣∣T γ+α−1 +
∣∣ψn∣∣T γ+α−2 + ‖fn‖γTαB(α, 1− γ)

)
×

×Eα,γ

((
1

λn
‖q‖C[0,T ]T

γΓ(α)

) 1
γ+α−1

T

)
.

Here we have used the estimate (11). In view of Lemmas 3 and 4 last series is convergent
series. Note that the function occurring on the right-hand side in this inequality is monotone
increasing with T , and the fact that the function q(t) belongs to the ball B(q0, r) implies the
inequality ‖q‖ ≤ ‖q0‖+ r. Therefore, we only strengthen the inequality if we replace ‖q‖ in this
inequality with the expression ‖q0‖+ r. Performing these replacements, we obtain the estimate

‖F [q](t)− q0(t)‖ ≤ w0

g0

∞∑
n=1

λn

(∣∣ϕn∣∣T γ+α−1 +
∣∣ψn∣∣T γ+α−2 + ‖fn‖γTαB(α, 1− γ)

)
×

×Eα,γ

((
1

λn
(‖q0‖+ r)T γΓ(α)

) 1
γ+α−1

T

)
.

Let T1 be a positive root of the equation
Therefore if by T1 we denote the positive root of the equation (for T )

w0

g0

∞∑
n=1

λn

(∣∣ϕn∣∣T γ+α−1 +
∣∣ψn∣∣T γ+α−2 + ‖fn‖γTαB(α, 1− γ)

)
×

×Eα,γ

((
1

λn
(‖q0‖+ r)T γΓ(α)

) 1
γ+α−1

T

)
= r,

then ‖F [q](t)− q0(t)‖ ≤ r for T ≤ T1; i.e. F [q](t) ∈ B(q0, r).
Now let us take any functions q(t), q̃(t) ∈ B(q0, r) and estimate the distance between their

images F [q](t) and F [q̃](t) in the space C[0, T ]. The function ũn(t) corresponding to q̃(t) satisfies
the integral equation (20) with ϕn = ϕn, ψ = ψn and fn = f̃n. Composing the difference
F [q](t)−F [q̃](t) with the help of equations (10), (20) and then estimating its norm, we obtain

‖F [q](t)−F [q̃](t)‖ ≤ w0

g0

∞∑
n=1

‖un(t, q)− ũn(t, q̃)‖ ≤

≤ w0

g0

∞∑
n=1

T γ
(∣∣ϕn∣∣T γ+α−1 +

∣∣ψn∣∣T γ+α−2 + ‖fn‖γTαB(α, 1− γ)

)
×

×Eα,γ

((
1

λn
‖q‖C[0,T ]T

γΓ(α)

) 1
γ+α−1

T

))
Eα,γ

((
1

λn
‖q̃‖C[0,T ]T

γΓ(α)

) 1
γ+α−1

T

)
‖q̂‖C[0,T ].

(26)
The functions q(t) and q̃(t) belong to the ball B(q0, r), and hence for each of these functions one
has inequality ‖q‖ ≤ ‖q0‖ + r. Note that the function on the right-hand side in inequality (26)
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at the factor ‖q‖−‖q̃‖ is monotone increasing with ‖q‖, ‖q̃‖ and T. Consequently, replacing ‖q‖
and ‖q̃‖ in inequality (26) with ‖q‖+ r will only strengthen the inequality. This, we have

‖F [q](t)−F [q̃](t)‖ ≤ w0

g0

∞∑
n=1

‖un(t, q)− ũn(t, q̃)‖

≤ w0

g0

∞∑
n=1

T γ
(∣∣ϕn∣∣T γ+α−1 +

∣∣ψn∣∣T γ+α−2 + ‖fn‖γTαB(α, 1− γ)

)
×

×

(
Eα,γ

((
1

λn
(‖q‖+ r)T γΓ(α)

) 1
γ+α−1

T

))2

‖q̂‖C[0,T ].

Therefore, if T2 is the positive root of the equation (for T )

w0

g0

∞∑
n=1

T γ
(∣∣ϕn∣∣T γ+α−1 +

∣∣ψn∣∣T γ+α−2 + ‖fn‖γTαB(α, 1− γ)

)
×

×

(
Eα,γ

((
1

λn
(‖q‖+ r)T γΓ(α)

) 1
γ+α−1

T

))2

= 1

then for T ∈ [0, T2) the operator F contracts the distance between the elements q(t), q̃(t) ∈
B(q0, r). Consequently, if we choose T ∗ < min(T1, T2) then the operator F is a contraction in
the ball B(q0, r). However, in accordance with the Banach theorem (see [[28], p.p. 87–97]), the
operator F has unique fixed point in the ball B(q0, r) i.e., there exists a unique solution of
equation (25). Theorem 2 is proven.

Let T, l be positive fixed numbers. Consider the set Dν0 of the given functions (ϕ, ψ, g, f)
for which all conditions from A1)-A4) are fulfilled and

max{‖ϕ‖C4[0,l], ‖ψ‖C4[0,l], ‖g‖Cα[0,T ], ‖f‖C4(Ω)} ≤ ν0.

We denote by Qν1 the set of function q(t) that for some T > 0, l > 0 satisfy the following
condition ‖Q‖C[0,T ] ≤ ν1, ν1 > 0.

Theorem 3. Let (ϕ, ψ, g, f) ∈ Dν0 , (ϕ̃, ψ̂, g̃, f̃) ∈ Dν0 and q ∈ Qν1 , q̃ ∈ Qν1 . Then, for
solution of the inverse problem (1)-(4) the following stability estimate holds:

‖q − q̃‖C[0,T ] ≤ ρ
[
‖ϕ− ϕ̃‖C[0,l] + ‖ψ − ψ̃‖C[0,l] + ‖g − g̃‖Cα[0,T ] + ‖f − f̃‖C(Ω)

]
, (27)

where the constant ρ depends only on ν0, ν1, T, l, α, and Γ(α), B(α, 1− γ).
Proof. To prove this theorem, using (23) we write down the equations for q̃(t) and compose

the difference q̂ = q(t)−q̃(t). Then after evaluating this expression and using estimates un(t),ûn(t),
we obtain following estimates

‖q − q̃‖C[0,T ] = max
0≤t≤T

∣∣∣∣∣ 1

g(t)

 l∫
0

w(x)f(x, t)dx−
(
Dα0+g

)
(t)

+
1

g(t)

l∫
0

w
′′
(x)u(x, t)dx−

1

g̃(t)

 l∫
0

w(x)f̃(x, t)dx−
(
Dα0+g̃

)
(t)

+
1

g̃(t)

l∫
0

w
′′
(x)ũ(x, t)dx

∣∣∣∣∣ ≤
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≤ max
0≤t≤T

{
w0

g2
0

∣∣∣∣∣
l∫

0

[
g̃(t)

(
f(x, t)− f̃(x, t)

)
+ f̃(x, t) (g(t)− g̃(t))

]
dx+

+

l∫
0

[
g̃(t)

((
Dα0+g

)
(t)−

(
Dα0+g̃

)
(t)
)

+
(
Dα0+g̃

)
(t)
(
g(t)− g̃(t)

)]
dx

∣∣∣∣∣
}

+

+ max
0≤t≤T

{
w0

g2
0

∣∣∣∣∣
l∫

0

[g̃(t) (u(x, t)− ũ(x, t)) + ũ(x, t) (g(t)− g̃(t))] dx

∣∣∣∣∣
}
≤

≤ ρ0

(
‖ϕ− ϕ̃‖+ ‖ψ − ψ̃‖+ ‖f − f̃‖+ ‖g − g̃‖+ ‖

(
Dα0+g

)
−
(
Dα0+g̃

)
‖
)

+

+ρ1

t∫
0

(t− τ)α−1‖q(τ)− q̃(τ)‖C[0,T ]dτ, t ∈ [0, T ], (28)

where ρ0, ρ1 depends only on ν0, ν1, T, l, α, and Γ(α), B(α, 1 − γ). From (28) using lemma
1, we get the estimate

‖q − q̃‖C[0,T ] ≤ ρ0

(
‖ϕ− ϕ̃‖+ ‖ψ − ψ̃‖+ ‖f − f̃‖+ ‖g − g̃‖+ ‖

(
Dα0+g

)
−
(
Dα0+g̃

)
‖
)
×

×Eα,1 (ρ1Γ(α)tα) , t ∈ [0, T ]. (29)

This inequality implies the estimate (27), if we set ρ = ρ0Eα,1 (ρ1Γ(α)tα).
From Theorem 3 follows also the next assertion on uniqueness in whole for solution to the

inverse problem.
Theorem 4. Let the functions ϕ, ψ, g, f and ϕ̃, ψ̂, g̃, f̃ have the same meaning as in

Theorem 3 and conditions A1)-A4). Moreover, if ϕ = ϕ̃, ψ = ψ̃, g = g̃, f = f̃ , for t ∈ [0, T ] then
q(t) = q̃(t) t ∈ [0, T ].

Conclusion

In this work, the solvability of a nonlinear inverse problem for a time-fractional diffusion
equation with initial-boundary conditions was studied. Firsty we investigated solvability the
initial-boundary conditional problem(1)-(3). The problem replaced by an equivalent of integral
equation. Existence and uniqueness of direct problem solution were proven. The inverse problem
was considered for determining the coefficient q(t) included in the equation (1) with additional
condition (4) of the solution of equation (1) with the initial and boundary conditions (2), (3).
Conditions for given functions are obtained, under which the inverse problem has unique solution
for a sufficiently small interval.
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