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Abstract

In this study, an optimisation model is developed for two-stage energy management of a residential building to minimise energy

cost under monthly power-based tariffs for peak demand and time variable electricity prices. The expected peak demand is

determined in the first stage, and then the energy management system minimises the energy cost in the second stage. The

optimisation problem of the second stage is solved in a rolling time window for the real-time operation of the flexible energy

sources in the building. The optimal charging and discharging of the battery energy system, the charging of the electric vehicle

battery, the operation of the heating system and the optimal start times of washing machines and dishwashers are determined

close to real-time. The proposed approach allows the user to determine the expected peak during the month ahead and try

to keep the peak demand in daily operation below that value using a close to real-time energy management system. The

performance of the two-stage approach for demand-side management of a residential building has been validated by a realistic

case study.
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Abstract: In this study, an optimisation model is developed for two-stage energy management of a residential building to minimise
energy cost under monthly power-based tariffs for peak demand and time variable electricity prices. The expected peak demand
is determined in the first stage, and then the energy management system minimises the energy cost in the second stage. The
optimisation problem of the second stage is solved in a rolling time window for the real-time operation of the flexible energy sources
in the building. The optimal charging and discharging of the battery energy system, the charging of the electric vehicle battery,
the operation of the heating system and the optimal start times of washing machines and dishwashers are determined close to
real-time. The proposed approach allows the user to determine the expected peak during the month ahead and try to keep the
peak demand in daily operation below that value using a close to real-time energy management system. The performance of the
two-stage approach for demand-side management of a residential building has been validated by a realistic case study.

Nomenclature

Sets and indices
A/a Set and index of uninterruptible electric devices
B/b Set and index of time blocks for demand flexibility
D/d Set and index of the days in the calendar month
I/i Set and index of iterations of the rolling horizon

approach
T /t Set and index of time slots
T v Set of time periods that electric vehicle v is connected
Tb Set of time periods in block b
V/v Set and index of electric vehicles
Parameters
ηCh Charge efficiency of the ES/EV unit
ηDch Discharge efficiency of the ES/EV unit
λ Electricity price [e/kWh]
λpeak Monthly power-based network tariff [e/kW]
τ Duration of time periods [h]
ζ District heating energy price [$/kWh]
COPHP Coefficient of performance of the heat pump
Dheat Heat demand of the building [kW]
PPV Forecasted PV production [kW]
PDn Lower limit of consumption profile [kW]
PFT Forecasted electricity consumption of the building

loads [kW]
PCh
Min/Max Minimum/Maximum charging power of the ES/EV

battery [kW]
PDch
Min/Max Minimum/Maximum discharging power of the ES/EV

battery [kW]
PNC(t) Forecasted consumption of non-controllable load

[kW]
PUp Upper limit of consumption profile [kW]
SoCMax Maximum allowed state of charge for the ES/EV

battery [kWh]
SoCMin Minimum allowed state of charge for the ES/EV

battery [kWh]
Variables
MEC Monthly electricity cost [$]
g Heat delivered to the building from the district heating

network [kW]

p(t) Electric power drawn from the grid [kW]
pa Power consumption of appliance a [kW]
pCh Charging power of the battery [kW]
pDch Discharging power of the battery [kW]
pMax Peak electric power drawn from the grid [kW]
SoCES/EV State of charge of the ES/EV battery [kWh]
xCh Binary decision variable for the charging status of the

ES
xDch Binary decision variable for the discharging status of

the ES

1 Introduction

The energy systems are undergoing rapid changes in technology
and operation, such as the growing electrification of the heating and
the transport sectors and the shift from a highly centralised to a
more decentralised energy system with high penetration of renew-
able energy sources (RES). These changes are the key measures
for decarbonizing the energy systems, and thus considered as the
most contributing factors in the transition towards sustainable energy
systems [1].

1.1 Motivation

Electrification of the heating and transportation can lead to in-
creased peak in electric power demand, which is undesired for the
power grid [2]. This is expected to cause congestion in the grid in
short-term and create the need for grid reinforcement in long-term
[2]. Grid operators typically have to make substantial investments
into new infrastructure to support the peak growth [3].

Dimensioning of the distribution network is based on the peak
demand, though the consumers are mainly charged for the deliv-
ered energy [4]. Therefore, there is a growing trend to charge the
consumers partly depending on the peak demand using power-based
tariffs for a cost reflective distribution pricing [4].

Besides the benefits of RES in energy decarbonization, large-scale
penetration of these sources can cause crucial operational issues for
power systems, such as supply-demand imbalances [5–7].

Using the flexibility at the demand-side is a sustainable and prac-
tical solution for the challenges caused by the increasing electrifica-
tion and penetration of RES. Flexibility provision from multi-energy
systems, where different energy vectors such as gas, electricity
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and heat are integrated, becomes more effective despite the plan-
ning challenges caused by the uncertainty in the underlying energy
vectors [8].

1.2 Research objectives

This paper aims to shed light on the economic value and the po-
tential role of energy management systems (EMS) in reducing the
peak and the energy cost at residential buildings. The building EMS
is an intelligent automation system that provides decision support for
the consumers in order to manage the energy and peak power con-
sumption. To achieve this, the EMS sends control commands to the
energy sources over the home-area network (HAN) [9, 10]. Without
an EMS it would be particularly difficult to manage the peak de-
mand, because the overall peak depends on the coincidence of the
consumption of many devices in a building [11].

This model is developed for a smart building with a photo-voltaic
(PV) installation coupled with a battery energy storage (BES). The
main energy intensive appliances in the building are the electric ve-
hicles (EVs) and the heat pumps (HPs). The controllable household
appliances are washing machines (WM) and dishwashers (DW). The
heating demand in the building is served by the district heating (DH)
network and HPs. The proposed building EMS model enables au-
tomated response to price signals or critical events from the utility
company.

1.3 Literature review

The energy management problem has been extensively studied
in the literature, mainly as a day-ahead scheduling problem. The
day-ahead consumption scheduling for controllable energy sources
such as an electric water heater and an EV at a smart household
is performed using an optimisation-based EMS in [12]. The results
showed significant benefits for the end-users, who were able to re-
duce energy cost by around 30%, thanks to the proposed intelligent
algorithm that controlled the devices and determined the sales to the
grid. A home EMS is modelled in [10], which allows the end-users
to participate in demand response (DR) programs. The EMS sched-
ules the operation of the household appliances and BES as well as
the EV charging, considering the uncertainty in supply, demand, and
electricity prices.

Apart from the day-ahead scheduling, there is also research that
focuses on model predictive control (MPC) [13], also known as re-
ceding or rolling horizon (RH) control, which utilise feedback in
an iterative process that adjusts and improves the control output
multiple times within the (typically daily) time horizon. Ref. [13]
proposes a MPC controller with a discrete two level control signal
for operating the heating, ventilation, and air-conditioning (HVAC)
system of a building equipped with PVs.

Reducing the peak consumption is also considered in the energy
management models through peak power tariffs or penalties. Such a
penalty, in addition to a real-time energy pricing scheme, was con-
sidered in scheduling implemented by the home EMS developed in
[9]. The proposed EMS controls the energy resources in a residential
building, including the lifestyle-related operational dependencies of
the appliances as a set of constraints in its integrated optimisation
model. As a result, the load is shifted from peak pricing periods to
off-peak pricing time slots. Wang et al. proposed a multi-objective
optimisation model for a multiple home EMS in [14]. The three ob-
jective functions are the energy cost minimisation, minimisation of
peak-to-average ratio (PAR) of the load profile, and maximisation of
the consumer satisfaction. Thus, the objectives of the consumer and
the grid are both incorporated in this model. Qayyum et al. [15] for-
mulated the operation of a home EMS with two objective functions
with the aim to minimise both the maximum peak load and the total
cost. Mainly, when studies seek to reduce peak power costs, the peak
demand is minimised in the short-term, with the assumption that the
consumer will be charged with respect to the daily peak demand.
However, this approach is sub-optimal, as in reality, households are
billed for their monthly peak consumption.

Due to the coupling of their multi-energy resources, the residen-
tial buildings have recently being modelled as multi-energy systems
and, in this case, they are often referred as "energy hubs" in the liter-
ature. In these systems, the management of the resources is studied
in an environment where different networks and carriers can inter-
act with each other. Su et al. [16] addressed the problem of dynamic
switching between natural gas and electricity for households with
gas-electric heater and stove. Other controllable sources in this paper
are the air conditioning system and the washing machine. The objec-
tive functions are the minimisation of the total operating cost and the
minimisation of the emissions of the harmful gases. The users’ tol-
erance degree of hot water temperature and room temperature are
considered as system constraints.

Day-ahead consumption scheduling of controllable household ap-
pliances such as electrical energy and thermal storage, electric HP,
boiler, and absorption chiller is formulated in [17] by an energy hub
model, considering electricity and natural gas as inputs. The objec-
tive is to fulfill the daily cooling, heating and electric demand of
the building while maximising the profit, considering the possibil-
ity of exchanging electrical energy with the grid. The integration
of the electricity and heat distribution networks is modelled from
the perspective of deregulated markets in [18] to evaluate the strate-
gic behaviours of a profit-driven energy hub in the electricity and
heat market. Such models can be used by the energy hub owners to
determine the optimal bidding strategies in the market and by the
investors to examine the profit of an energy hub under a given sys-
tem design. A probabilistic EMS for a renewable-based energy hub
is developed in [19] for a system with different energy converters
and storage units. The uncertainty associated with the output power
of the PV panels is modelled with the two-point estimate method to
reduce the computation burden. The optimal investment and opera-
tion of a nearly zero energy building is studied in [20]. Both the cost
optimal sizing of the energy technology and the technology type are
considered, while making investment decisions from the perspective
of the building owner’s perspective.

The majority of the studies on building energy management use
low time resolution of load and generation profiles, which also yields
a low-time resolution control. The time resolution, also known as
time granularity, is typically 1 hour, which is not sufficient to capture
the peak power patterns, as studies on the impact of time resolution
have shown [21]. Although the iterative process of the RH approach
brings the energy scheduling closer to real-time control, the low time
resolution of most recent studies [13] that employ RH control, which
typically use hourly time discretization steps, makes them incompat-
ible with close to real-time control. Moreover, these studies do not
consider the effect of peak power, which is particularly challenging
to assess with moving time horizon.

1.4 Key features and contributions

This paper presents an energy scheduling model proposed for
a practical building EMS for residential customers. The proposed
model offers significant advances over most other EMS models in
the literature, as: 1) it combines the RH approach with high time
granularity thus enabling close to real-time control; 2) it considers
both the heating and the electricity system of the building and can
therefore be applied for multi-energy scheduling; 3) applies energy
scheduling with a non-uniform time horizon to account for realistic
assessment of peak demand costs. To the best of the authors’ knowl-
edge, none of the previous studies have developed a building EMS
that provides all the above-mentioned advantages.

In contrast to most EMS models proposed in the literature, the fo-
cus of this paper is on close to real-time control of the sources rather
than the day-ahead load scheduling. Contrary to scheduling prob-
lems, the real-time operation control requires solving optimisation
problems iteratively, and determining the decision variables for the
control intervals. The specific contributions of this paper are:

(i) A two-stage optimisation model to minimise the energy cost
of the residential buildings, considering the peak demand charges
on the monthly bills is proposed. The model is used to formulate
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a month-ahead optimisation problem solved at the first stage and a
day-ahead optimisation problem solved at the second stage for real-
time energy scheduling.
(ii) A mixed-integer linear programming (MILP) framework is de-
veloped that incorporates both heating and electricity system into the
formulated optimisation problems. Thus, the model can be used for
multi-energy buildings to capture the interaction between the elec-
tricity and the DH networks and unlock energy flexibility potential
that can significantly reduce the buildings’ cost.
(iii) A building EMS is developed that employs the integrated
two-stage model to solve the formulated problems utilising a RH
approach with high time resolution. This approach enables close to
real-time energy dispatch of the controllable resources and loads.
(iv) A pragmatic case study based on a residential multi-family
building, which demonstrates and quantifies the savings and peak
reduction potential of implementing an optimisation-based close-to-
real-time EMS.

1.5 Paper organisation

This paper is structured as follows: Section 2 gives an overview
of energy management in smart buildings. The methodology is ex-
plained in Section 3. Section 4 introduces the test system and the
input data of the EMS. The results are presented and discussed in
Section 5. The paper ends with Section 6, which presents the main
findings whilst indicating the future extensions of this work.

2 Energy management in buildings

The building sector is a large energy consumer, and accounts for
the highest share of energy consumption among major economic
sectors. Specifically, it accounts for 33% of the global and 40% of
the European Union total energy consumption [13]. This leads to
high energy costs for the end-users, which are related to the amount
of energy consumed, the price, and the time of the peak power
consumption. Even without reducing the total amount of energy con-
sumption or upgrading to equipment and devices of higher energy
efficiency, these costs can significantly be reduced by changing the
energy schedule and altering the energy profile i.e., the amount and
time of energy consumption. In order to implement changes in the
energy profile without requiring too much effort from the end-users,
it is essential to use an advanced control system that will deploy
the demand-side energy flexibility schedule the buildings’ energy
sources by properly scheduling the buildings’ energy sources [22].
Buildings with automatic control systems that offer the potential to
modify their energy profile are called energy flexible buildings.

The building operators and the residents of energy flexible build-
ings can actively participate in DR, which is enabled by the deployed
automation system and advanced metering systems in the buildings,
as well as by two-way communication interfaces for interactions
among the energy sources, the building EMS, and the utility [9].
The level of engagement in DR is also influenced by the physical
characteristics of the building, its loads and energy sources, and the
willingness of the end-users [22]. Since the marginal cost of inte-
grating RESs into the building energy systems is decreasing, more
and more end-users are choosing to install RES in their residen-
cies. Thus, from passive consumers they become active prosumers,
which increases their potential to benefit from DR programs because
they can reduce their energy cost by properly utilising their self-
generation energy sources [9]. At the same time, these programs can
benefit the energy company [9], while they can also be designed to
support the operation of the grid by maintaining the balance between
supply and demand and limit the peak demand in grids with high
penetration of RES [9].

The residential loads can be divided into controllable and non-
controllable loads from the energy management point of view. The
non-controllable loads refer to must-run appliances over which the
building EMS has no control [23]. The operation of non-controllable
loads solely depends on the users’ will [24], as it is strictly dom-
inated by their comfort and their convenience. In addition, this

operation is mostly non-responsive to price signals [22, 25]. In con-
trast to non-controllable loads, the operation of controllable loads
can be scheduled and controlled in the allowable operation intervals
[19, 25]. The integration of the controllable loads into the build-
ing EMS leverages the decision-making of the consumers and their
participation in DR programs [10].

Energy pricing plays an important role in consumption manage-
ment. It can considerably influence the consumption pattern. They
can be designed to support the system to achieve reliability ob-
jectives [26]. Energy can be charged with fixed rates or dynamic
tariffs. Many energy providers around the world have started to of-
fer real-time pricing rates for energy, specifically for the electricity.
In the dynamic tariff price scheme, the provider’s marginal costs are
directly passed to the consumer [11].

Energy billing is essential for the cost recovery of the supplied
service [26]. The final energy bill should cover all expenses of the
energy provider to deliver the service to the consumer [26]. A typi-
cal energy bill is composed of different components. It is composed
of energy charge, capacity charge and an access charge [9]. Some
providers also charge the consumers for the peak demand during the
billing cycle.

The demand charge tariff is a peak-load-dependent tariff [9]. It
can appear in energy bills in different forms. A possible consequence
of not charging consumers for the peak load is the reduction in the
business income of the utility companies. This happens when the
increase in the peak demand is accompanied by the reduction in the
total energy consumption [4].

Koski et al. [4] studied the case of Finland, in which the distri-
bution system operators (DSOs) can freely select the tariff structure.
The energy regulator monitors the market and ensures that the DSOs’
total revenue is regulated to avoid misusing the state-controlled
monopoly and to ensure equality among end-users. The impact of
using power-based tariffs on the customers’ power usage was inves-
tigated in that study. The power-based tariffs were compared with the
energy-based tariffs for the customers. The results revealed that the
actions of the consumers are not sufficient to compensate the peak
power increases in longer time. Based on the survey results, an au-
tomated system that does not affect the living comfort of the users,
even if controlled by a third party was a more acceptable option for
the customers.

Multi-carrier energy environments promote the evolution of sus-
tainable energy systems by facilitating the interaction among elec-
tricity, heat, cooling, fuels, and transport at different levels [27].

The concept of energy hub has been developed to study multi-
carrier energy environments [19]. It is defined as a virtual box with
different forms of energy carriers as inputs and a set of energy de-
mands as outputs, including several technologies to convert and store
different forms of energy [28]. It is the place where conversion, stor-
age, production and consumption of various energy carries take place
[19]. An energy hub is characterized by a set of formulations to
model the dynamic operation of electric and heat devices and re-
late the inputs and outputs of the model [29]. Fig. 1 illustrates the
components of the energy hub model used in this paper.

Electricity

District heating
Heat pumpPV panels Electrical appliances

EV

Space heating

Domestic hot water

Fig. 1: Energy hub representation of the building energy system
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3 Methodology

The energy management problem of residential buildings is for-
mulated as a two-stage problem, with the ultimate objective of
reducing the total energy cost. The problem is solved month-ahead
in the first stage, and the optimal values of the monthly peak demand
are used as inputs for the second stage.

In stage two, a close to real-time EMS is developed for a multi-
family residential building. This model is proposed for an energy
flexible smart building, and the control commands for the loads are
determined in a rolling time window to optimise the operation of
the loads in real-time. The building is equipped with PV system and
BES, which is used to maximise the self consumption of the solar
power. The heating system, EV charging and the operation of WMs
and DWs are controlled in this model.

PAR is used to evaluate the performance of the demand response
programs. PAR is calculated for the consumption profile modified
by the proposed EMS as well as for the consumption profile that
is not modified. Comparison of power PAR before and after imple-
menting the month-ahead scheduling reflects how energy flexibility
could reduce the peak power.

3.1 Stage one: month-ahead scheduling

In this stage, the optimal peak demand for the coming month is
determined with a linear programming model. The peak demand is
calculated and recorded as the moving average of the power con-
sumption over a specific period [9]. It is the maximum value of the
measurements of average power consumption over a specific time
interval (e.g., 15 min, 30 min or 1 hour). It is assumed that the utility
company charges consumers with calendar month billing cycle, and
the consumers are charged for the monthly peak load with power-
based tariffs. Therefore, it is essential to obtain this value and avoid
violating it during the whole month. The calculated peak is used in
the second stage as a parameter in the model, and the building EMS
will ensure that the average consumption power does not exceed this
threshold.

The objective function in this stage (1) is to minimise the monthly
electricity cost (MEC). In this model, the consumers are charged for
the peak electric demand, not for the peak consumption from the dis-
trict heating network. MEC is composed of the peak-load-dependent
costs and energy costs for electricity. Constraint (2) ensures that
pMax is equal to the peak consumption during the scheduling
horizon (T ). The duration of time intervals is τ hours.

Minimize MEC =
∑
t∈T

[
p(t) · λ(t) · τ + pMax · λpeak

]
(1)

p(t) ≤ pMax, ∀t ∈ T (2)

Several techniques are proposed in the literature to characterise
the energy flexibility potential of buildings. The two techniques gen-
erally used to estimate the flexibility potential employ the building
simulation tools and models based on the experimental data [22].
For instance, Junker at al. [22] proposed a model to characterise the
energy flexibility of buildings with a dynamic function that can de-
scribe to what extent a building can respond to grid requests for the
flexibility. A flexibility index is used in this model.

The flexibility of the load is specified by the direction (upward or
downward), size (kWh and kW) and time [26]. Characterisation and
quantification of power-related flexibility in the building is beyond
the scope of this paper, and thus it is assumed that the flexibility
of the demand is already estimated and it is considered as input to
the model. The variations of the load are bounded by an upper and
a lower limit in this model. PDn and PUp in constraint (3) are re-
spectively the lower and upper limits that represent the range for
variations of the load around the forecasted demand (PFT ). Con-
straint (4) ensures that the energy consumption during a set of time
periods remains the same and the load is only shifted to other pe-
riods. Tb which is subset of T denotes the set of time periods that

belong to block b, in which the energy consumption should remain
same.

PDn(t) ≤ p(t) ≤ PUp(t), ∀t ∈ T (3)

∑
t∈Tb

p(t) =
∑
t∈Tb

PFT (t), ∀b ∈ B (4)

3.2 Stage two: real-time energy management

A real-time rolling horizon energy management model is pro-
posed in stage two to control the consumption of controllable energy
sources in the building. The input information is periodically up-
dated for the online optimal energy/power control of the energy
sources [30]. The control variables are determined by repeatedly
solving a MILP problem over a moving window [31]. The rolling
horizon approach mimics the environment in which the users can
change their requirements on a daily basis. The EMS is designed to
operate continuously in the building, and ensures that the optimal
peak demand calculated in the first stage is not violated.

Fig. 2 shows the main inputs and outputs of the proposed building
EMS. The control commands are the the decision variables of the
optimization problems solved in each iteration. They are determined
for the next time interval in each iteration, and can be sent to the
loads and appliances in the building. Although the decision variables
are determined for the next 24 hours in each iteration of the problem,
only the decisions for the next time interval are considered as the
control commands.

.  .  . 
𝑡

𝑡-1 𝑇𝑡+1

𝑇-1 𝑇 + 1

T: Number of time periods in the moving scheduling horizon

Scheduling at the 
beginning of time period 
t-1 for the scheduling 

horizon [t,T]

Scheduling at the 
beginning of time period t
for the scheduling horizon 

[t+1,T+1]

Real-time Building EMS

Users’
preferences

Utility signals
(price or the

critical periods)

Built-in 
parameters

of the devices

Sensors data

Inputs

Decision variable (Changes in real-time, updates each 5-minutes)

Charge/
Discharge 
and power 

settings

Delay the 
start time

Appliances

Forecasted 
values (demand, 
PV production)

Fig. 2: Schematic of the proposed building EMS in stage 2

The control commands can activate, de-activate or delay the func-
tion of the controllable building appliances and energy sources,
switch between different sources and specify operation set-points.
The control commands transmitted to the EV charger determine
the charging current. Control signals can set the BES to charging,
discharging, or rest mode (open-circuit), while the BES power set-
points during charging and discharging mode are also transmitted.
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Another control signal triggers the switch between HP and DH to
serve the heat demand. The EMS also decides the optimal time to
start uninterruptible loads like WM and DW. Therefore, it can send
control commands that delay the operation of these loads.

The EMS operates based on the inputs from the users. As the ac-
ceptance of a building EMS depends on the satisfaction of the users,
it is essential to consider the preferences of the users as inputs to the
model. For instance, the users determine when to have the dishes
or the clothes washed and what washing program to choose. For
the case of EV charging, the departure time of the EV and the ex-
pected state of charge are the main inputs given by the users when
the vehicle is plugged in.

The objective function is minimising the energy cost in a rolling
time window, considering the energy prices and the operational lim-
its of the loads. In this model, the users should be allowed to alter
their preferences in real-time over the operation. The cost function
for each iteration i is presented in (5). Besides the energy cost for
electricity (denoted by λ), the objective function of stage two also
includes the cost of heating energy delivered to the building from
the DH network (this cost is denoted by ζ). The power-based net-
work tariff is not included in this cost function, because the user is
charged for the peak power in the monthly basis and it is impor-
tant not to violate the peak power determined in stage one. Equation
(6) ensures that the load always remains below the peak power de-
termined in stage one. In stage two, the length of time interval τ
depends on the frequency of the update of the control commands. In
stage one, the choice of τ depends on how the power-based network
tariff is applied. For example, if the users are charged for the peak
demand considering the hourly average power measurements, then
τ in the first stage is 1 hour.

Minimize

i−1+T∑
t=i

[
pi(t) · λi(t) · τ + gi(t) · ζi(t) · τ

]
,

∀i ∈ I

(5)

pi(t) ≤ p∗Max, ∀t ∈ T , ∀i ∈ I (6)

The electric power and heat flow balance equations are respec-
tively presented by (7) and (8). The electrical load, which consists
of the non-flexible load PNF

i (t), the electrical consumption pai (t),
pvi (t), and pHP

i (t) corresponding to smart appliances, EVs, and
HPs, respectively as well as the charging BES power pCh

i (t) can
be supplied at each iteration i by the power injected from the grid,
the PV panel, and the BES, which are denoted as pi(t), PPV

i (t),
and pDch

i (t), respectively.

pi(t) = PNF
i (t)− PPV

i (t) +
∑
∀a

pai (t) +
∑
∀v

pvi (t)

+pHP
i (t) + pCh

i (t)− pDch
i (t), ∀t ∈ T ,∀i ∈ I

(7)

The heating system is also composed of DH network and heat
pumps. The control commands for the inverter-based air-source HP
and DH network determine how the heating demand can be served
optimally from the two resources. The heat demand (Dheat) is com-
posed of the domestic hot water demand (DHW ) and space heating
demand (DSP ), which is supplied by the DH network and the heat
pump (8). The DH is modeled with a constant efficiency (ηDH ) in
(9).

qDH
i (t) + qHP

i (t) = Dheat
i (t), ∀t ∈ T , ∀i ∈ I (8)

qDH
i (t) = gi(t) · ηDH , ∀t ∈ T ,∀i ∈ I (9)

The variable efficiency model of HPs proposed in [20] is used for the
air-source HPs. COP is the conversion efficiency of electricity into

heat [20]. Equation (10) shows that the COP depends on the heat
source temperature (θsource), which is the outdoor air temperature
for air-source heat pumps, and the supply temperature (θsupply) .
The supply temperature (θsupply) for the domestic hot water can be
considered constant, but for the space heating it depends on the out-
door temperature, characterised by the heating curve of the HP. Thus,
the value of COP varies for the space heating and the domestic hot
water consumption. The coefficients k0, k1, and k2 are obtained by
fitting the manufacturers’ data with a polynomial function. The av-
erage COP when delivered to a storage tank is the weighted average
of the COP for the domestic hot water and space heating (11). The
relation between the heat generated from the HP and the electricity
consumed is expressed in (12).

COPHP
i (t) = k0 + k1 · (θsupplyi (t)− θsourcei (t))+

k2 · (θsupplyi (t)− θsourcei (t))2, ∀t ∈ T , ∀i ∈ I
(10)

COPHP
i (t) =

1

Dheat
i (t)

·
(
DSH

i (t) · COPSH
i (t)+

DHW
i (t) · COPHW

i (t)
)
, ∀t ∈ T , ∀i ∈ I

(11)

qHP
i (t) = pHP

i (t) · COPHP
i (t), ∀t ∈ T ,∀i ∈ I (12)

Charging of the EV battery is considered as a controllable demand
in this model. The charging does not necessarily begin when the EV
arrives. Although in the rolling horizon optimization the time span
during each iteration covers the whole set of periods, the decision
variables of the upcoming time period are only sent to the devices as
control commands. The variations of the SoC in each iteration and
each time period for EV v is shown in (13). The user determines the
departure time and the expected energy level at the departure time.
The SoC variable is limited by the battery capacity. EV v is plugged
in during T v , and its’ charging efficiency is shown by ηv,ch.

SoCv
i (t) = SoCv

i (t− 1) + pvi (t) · η
v,Ch · τ,

∀i ∈ I, ∀v ∈ V, ∀t ∈ T v
(13)

The SoC of the BES at the end of period t (SoCi(t)) depends
on the initial energy level of the battery (SoCi(0)) and the charg-
ing/discharging power (pCh

i (t)/pDch
i (t)). Equations (14) and (15)

respectively describe this relation for the first period in each iteration
and the remaining periods, considering the charging and discharg-
ing efficiency of the battery (ηCh, ηDch). The decision commands
are applied to the BES only for the first time period in each itera-
tion. Therefore, SoCi(0) in each iteration is equal to the SoC of the
battery at the first time period of the previous iteration (16).

SoCi(t) = SoCi(0) + τ · (pCh
i (t) · ηCh − pDch

i (t)

ηDch
),

∀i ∈ I, t = i

(14)

SoCi(t) = SoCi(t− 1) + τ · (pCh
i (t) · ηCh − pDch

i (t)

ηDch
),

∀i ∈ I, ∀t > i

(15)

SoCi′(0) =

{
SoC(0) i′ = 1

SoC(i=i′−1)(t = i′ − 1) ∀i′ 6= 0
(16)

Equations (17) and (18) limit the minimum and maximum power
in the charging and discharging modes, respectively. Equation (19)
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is used to avoid solutions that yield simultaneous charging and
discharging of the ES system.

PCh
Min · x

Ch
i (t) ≤ pCh

i (t) ≤ PCh
Max · x

Ch
i (t),

∀i ∈ I, ∀t ∈ T
(17)

PDch
Min · x

Dch
i (t) ≤ pDch

i (t) ≤ PDch
Max · x

Dch
i (t),

∀i ∈ I,∀t ∈ T
(18)

xCh
i (t) + xDch

i (t) ≤ 1, ∀i ∈ I, ∀t ∈ T (19)

In this model, the shiftable non-interruptible appliances are the
WMs and the DWs. The operation of WM and DW is modeled with
uninterruptible sequence phases [15]. The consumption profile of
one complete operation cycle of appliance a is considered as input
to the model. The EMS starts determining the optimal start time of
the WM or the DW as soon as the user puts the clothes or the dishes
inside the machine and presses the start button. At the beginning
of each iteration, various scenarios for the consumption of appli-
ance a can occur depending on the number of time periods allowed
by the user. sai is a dynamic set which changes in each iteration,
and represents the scenarios that might occur. In each iteration only
one scenario will be selected. Equations (20) and (21) impose these
conditions on the model.

pai (t) =
∑
∀sai

xs
a
i (t) · P sai

i (t), ∀i ∈ I, ∀t ∈ T ,∀a ∈ A (20)

∑
∀sai

xs
a
i (t) = 1, ∀i ∈ I, ∀t ∈ T ,∀a ∈ A (21)

4 Case studies

The proposed two-stage energy management model is tested us-
ing the HSB Living Lab [32] data for December 2018 and the price
data of Nordpool [33]. HSB Living Lab is a multi-family residential
building of 29 apartments with the total usable floor area of 1,720
m2 [32, 34]. This smart building is a unique testbed for sustainable
living solutions, where the living lab approach focuses on applying
innovation in human-centered systems. There is an 18 kWp PV sys-
tem in the building coupled with a 7.2 kWh battery. The battery can
be charged from the PVs and the AC grid. The PV and battery energy
storage system is connected to the AC grid via a converter [35]. An
overview of the controllable loads at the HSB Living Lab is shown
in Figure 3.

In stage 1, the forecast of the total electricity load and the ex-
pected flexibility characteristics of the demand is used to calculate
the optimal monthly peak.

The forecasted demand for electricity in 15 minutes time resolu-
tion for December 2018 is shown in figure 4. Since the development
of forecast algorithms was not in the scope of this paper, the
historical consumption of the building used.

In the first stage of the model, the optimal peak value is calculated.
For this problem, the flexibility potential of the demand is required.
The flexibility characteristics of the demand is represented by two
set of graphs.

Figure 5 shows the time blocks for load shifting for weekdays and
weekends in December. The demand can shift in such a way that the
total energy consumption remains constant in each of the blocks.

Figure 6 show the upper and lower boundaries for load shifting
during the weekdays and weekends in December.

The forecast of the electricity price is required for one month
ahead. The price could be fixed or time variable, depending on the
end-users’ subscription. Figure 7 presents the electricity price for
one month ahead. The end-users’ prices are assumed to be time vari-
able in the case study.The retail price that the customer pays follows
the Nordpool prices plus a marked up for VAT, taxes, base rate charge

Fig. 3: An overview of the controllable loads at the HSB LL
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Fig. 4: Forecasted demand of the building consumption during
December 2018.
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Fig. 5: Time blocks for flexibility during weekend and weekdays
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Fig. 6: Flexibility of the power profile of the building

and the guarantee of origin [36, 37]. The power based network tar-
iff for charging the customers’ peak consumption is determined in a
way that the cost of peak demand charges does not violate 30% of
the energy cost. In this case study, it is assumed that the customers
are charged 16 Euros/kW.
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Fig. 7: Time variable electricity price for one month ahead
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Since the time intervals in stage 2 are 5 minutes, the resolution of
both forecasted data are in 5 minutes intervals. The scheduling hori-
zon in each iteration of the stage 2 problem is composed of 24 hours
with 5 minutes time intervals. The development and implementation
of forecast algorithms is not the focus of the paper. Thus, historical
data recorded by sensors and smart meters in the building are used
instead of actual forecasted values.

The proposed model is implemented for real-time optimal control
of an energy hub over 24 hours, starting from December 11, 2018
at 7:00. The PV production and demand profile of the nonflexible
electric loads are shown in Fig. 8. The resolution of the data is 5
minutes. The heat demand in the building is shown in Figure 9.

The data for two consecutive days are presented for scheduling in
stage 2. The reason is the rolling window of the real-time scheduling
and the need for the data for the next 24 hours when making the
decisions for each time interval.
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Fig. 8: Power profile for PV production and consumption of non-
flexible loads
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Fig. 9: Heat demand profile

Figures 10 and 11 respectively show the consumption profiles of
washing machines and dishwashers.
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Fig. 10: Consumption profile of washing machines [38]

The characteristics of the the ES battery, EVs, washing machines
and dishwashers are respectively depicted in Tables 1, 2, and 3. An
ES system with 7.2 kWh exists in the building. Four EVs are plugged
in for several hours during the day. The inhabitants use four washing
machines and three dishwashers and allow the EMS to delay the start
time of the machine.
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Fig. 11: Consumption profile of dish washers [38]

Table 1 Characteristics of the ES unit
Charging/Discharging

rate (kW/h)
Capacity

(kWh)
Charging/Discharging

efficiency
Initial

SoC (kWh)
Minimum

energy
4.5 7.2 0.92 2 0.6

Table 2 EVs characteristics
EV 1 EV 2 EV 3 EV 4

EV models
Mitsubishi

MiEV

Renault

Zoe

Nissan

Leaf

Hyundai

Ioniq Electric

Arrival SoC level (%) 19% 27% 31% 18%

Expected SoC
level at departure (%)

86% 82% 80% 62%

Charge rate (kW/h) 3.0 3.2 6.6 4.0

Charge/Discharge
efficiency

0.92 0.92 0.89 0.93

EV battery
capacity (kWh)

16 22 24 30

Arrival time 07:42 10:33 22:16 18:58

Departure time 12:20 17:15 06:45 01:05

Table 3 Flexibility provided by the washing machine and dishwasher

Start time
Requested
end time

Available
time periods

WM 1 08:53 18:50 118

WM 2 17:36 22:35 58

WM 3 22:58 06:15 86

WM 4 20:02 00:05 47

DW 1 23:39 06:55 86

DW 2 07:13 12:45 65

DW 3 12:36 20:45 96

5 Results and discussion

The optimisation problem for stage 1 is initially solved for the
whole month of December 2018. As a result of solving the prob-
lem for this stage, the optimal value of the peak is determined for
the scheduling horizon, considering the flexibility potential in the
building.

Figure 12 shows the scheduled consumption profile after consid-
ering the flexibility of the demand. The optimal peak demand in the
first iteration without considering the peak demand tariff is 19.5 kW,
and after considering the power-based network tariff, it reduces to
16.7 kW. Considering the power-based tariff in the monthly electric-
ity bill results to reduction of the peak demand for about 14%. As
shown in the figure, the peak has reduced and it is expected that the
same peak will be experienced several times during the month. This
means that optimised control of the demand limits the peak to 16.7
kW.

Table 4 shows the comparison between the scheduled and the
actual consumption profiles. As expected, the average value of the
scheduled demand does not change in stage 1, since the demand is
only shifted to other periods and there is no change in the total en-
ergy consumption. In both cases the average demand is 9.02 kW.
Although the peak reduces in the scheduled demand, the variance
increases compared to the actual case. The variance of the consump-
tion power profile increases when the flexibility in the building is
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Fig. 12: Scheduled demand using flexibility potential compared to
actual demand.

used. The value of the peak demand in stage 1 problem could change
by varying the value of power-based network tariff.

Table 4 Comparison of the consumption profiles

Consumption profiles Average PAR Variance
Scheduled demand 9.02 kW 1.85 5.77

Actual demand 9.02 kW 2.16 8.21

The rolling horizon approach in stage 2 is solved for a typical day
(i.e., December 8th) during the same month. The assumption here is
that the peak is also not violated during the past days (i.e., December
1 to December 7). The peak demand value obtained in the first stage
informs the customer that it is not economically beneficial to try to
reduce the demand below this value, since it is highly probable to
violate this value during the remaining days of the calendar month.
The distribution company will anyway charge the customer for the
peak value.

The rolling horizon model runs in real-time to determine the con-
trol variables. The control commands are determined for each time
slot, while the problem is being solved iteratively during the day. The
loads are controlled in such a way that the peak demand determined
in the first stage is not violated.

The electricity consumption profile is presented in Figure 13. The
consumption is controlled using the proposed strategy and it is com-
pared with the case that the EMS considers the peak penalty in the
objective function and thus leads to a minimised peak load. The re-
sults show that the 1.85 kW reduction in the peak is unnecessary,
since the peak would be higher in the next days and the user will
anyway be charged for that peak.
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Fig. 13: Power purchase from the grid

Figure 14 shows the consumption of the HP units.

6 Conclusions

A two stage optimisation model is proposed in this paper to
manage the energy consumption in smart buildings and reduce the
monthly peak demand. The real-time pricing tariff and power-based
peak tariff are considered in the model. In the first stage, the hourly
flexibility of the demand is used to schedule the expected consump-
tion, considering the tariff the peak consumption. The optimal value
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Fig. 14: Consumption of the HPs

of the peak demand is considered in the second stage of the optimi-
sation, and the model ensures that this value is not violated during
the month.

Although the month ahead scheduling guarantees lower peak de-
mand for the building, it can lead to an increase in the variance of
the consumption profile. The demand variations are used to benefit
from time variable electricity rates as well as reducing the peak to
avoid higher monthly charges for the peak demand.

In future, considering a more advanced model for the flexibility
characterization of the customer for the month ahead could increase
the reliability of the decisions in the first stage. In other words, the
optimal peak demand obtained in the first stage would be more re-
alistic. This approach could be applied to a community level, where
an an aggregator or a retailer is making decisions for a group of
customers.
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