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Abstract

Extreme climatic events may influence individual-level variability in phenotypes, survival, and reproduction, and thereby drive

the pace of evolution. Here, we quantify how experiencing major hurricanes influences individual life courses in the Cayo Santiago

rhesus macaques. Our results show that major hurricanes increase heterogeneity in reproductive life courses despite an average

reduction in mean fertility and survival, i.e. shortened life courses. In agreement with this, the population is expected to achieve

stable population dynamics faster after a hurricane. Our work suggests that natural disasters force individuals into new niches

to potentially reduce strong competition during poor environments where mean reproduction and survival are compromised.

We also demonstrate that variance in lifetime reproductive success and longevity are differently affected by hurricanes, and

such variability is mostly driven by survival.
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Abstract. Extreme climatic events may influence individual-level variability in phenotypes, 26 

survival, and reproduction, and thereby drive the pace of evolution. Here, we quantify how 27 

experiencing major hurricanes influences individual life courses in the Cayo Santiago rhesus 28 

macaques. Our results show that major hurricanes increase heterogeneity in reproductive life 29 

courses despite an average reduction in mean fertility and survival, i.e. shortened life courses.  In 30 

agreement with this, the population is expected to achieve stable population dynamics faster after 31 

a hurricane. Our work suggests that natural disasters force individuals into new niches to 32 

potentially reduce strong competition during poor environments where mean reproduction and 33 

survival are compromised. We also demonstrate that variance in lifetime reproductive success and 34 

longevity are differently affected by hurricanes, and such variability is mostly driven by survival.  35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 



Introduction 49 

Hurricanes are rare, yet their extreme acute nature can have profound impacts on life 50 

courses. They can reduce long-term population fitness through direct mortality (Batista & Platt, 51 

2003; Wiley & Wunderle, 1993), suppressed fertility (Gannon & Willig, 1994; Luevano et al., 52 

2022; Morcillo et al., 2020), increased physiological stress (Behie & Pavelka, 2014), increased 53 

social disorganization (Pavelka et al., 2003), and alterations in gene expression (Watowich et al., 54 

2022). Climate models predict increases in the frequency of intense hurricanes (Bloemendaal et 55 

al., 2022; Holland & Webster, 2007), but how populations will respond to such sustained 56 

environmental change remains unclear. This reflects limitations in our current ecological and 57 

evolutionary understanding which mostly focuses on average population-level processes even 58 

though individual heterogeneity is what evolution acts on (Vindenes et al., 2008; Vindenes & 59 

Langangen, 2015). To predict the eco-evolutionary dynamics of populations under rapid 60 

environmental change, we must first investigate whether and how extreme climatic events affect 61 

the emergence and maintenance of individual heterogeneity (Caswell, 2001; Metcalf & Pavard, 62 

2007). If adaptive, individual heterogeneity could support the persistence of populations by 63 

counteracting the negative effects of extreme environmental conditions (Chevin & Hoffmann, 64 

2017). However, if the observed individual heterogeneity is neutral or fully stochastic, its potential 65 

for selection is hindered and the pace of evolutionary adaptation is significantly lowered, 66 

compromising the viability of populations at risk (Chevin & Lande, 2010; Steiner et al., 2021; 67 

Steiner & Tuljapurkar, 2012). 68 

Here, we aim to understand how tropical cyclones influence individual heterogeneity in 69 

life courses by contrasting individual performance during years of major hurricanes with 70 

performance during ordinary years using a long-lived primate population. We first define 71 



individual heterogeneity as differences in individual life courses and characterize it using metrics 72 

of population entropy and stage persistence (Tuljapurkar et al., 2009). Starting at birth, life courses 73 

can be described by the sequence of stages an individual experiences until death (Caswell 2001). 74 

As life progresses through time, individuals may remain in the same stage (i.e., stasis) or transition 75 

among developmental, morphological, reproductive, behavioral, and physiological stages. 76 

Population entropy measures the rate at which these stage trajectories diversify with age 77 

(Hernández-Pacheco & Steiner, 2017; Tuljapurkar, 1982; Tuljapurkar et al., 2009). Persistence in 78 

any life stage instead measures the correlation time between an individual’s current life stage and 79 

their stage at a later age. Contrary to stable environments which are expected to reduce individual 80 

heterogeneity because persistence of life stages is high (Tuljapurkar et al., 2009), extreme climatic 81 

events on animal populations leading to unfavorable conditions are expected to increase individual 82 

heterogeneity (Chambert et al., 2015; Jenouvrier et al., 2015). As major hurricanes result in 83 

extremely poor environments that lead to strong intraspecific competition (Schaffner et al., 2012), 84 

they may force individuals into new life history strategies or ecological niches increasing the 85 

expected rate of diversification in stage trajectories (i.e., high entropy, low stage persistence). 86 

Alternatively, major hurricanes may reveal potential trade-offs between survival and reproduction. 87 

Here, individuals are driven to an optimal life history strategy by either allocating more energy to 88 

maintenance processes to ensure future reproductive success after recovery (Morcillo et al. 2020) 89 

or by increasing reproduction and growth in certain life stages where survival is uncertain 90 

(Pascarella & Horvitz, 1998), thereby reducing entropy and increasing stage persistence. 91 

Individual heterogeneity can also be described by the exact probability distributions of life 92 

history traits and their higher moments, with life history traits being evaluated at the end of life 93 

(Caswell, 2009, 2011; Tuljapurkar et al., 2020; van Daalen & Caswell, 2020). As individuals age, 94 



their movement through the life cycle follows a random process determined by transition rates that 95 

generates variation in life-history traits. We thus follow by defining the exact probability 96 

distributions of lifetime reproductive success (LRS) and lifespan (Tuljapurkar et al., 2020), and 97 

the variation in the lifetime number of visits to any transient state (i.e., individual stochasticity; 98 

Caswell 2009). Given the negative effects of hurricanes on mean annual fertility and survival 99 

across populations (Gannon & Willig, 1994; Morcillo et al., 2020; Wiley & Wunderle, 1993), we 100 

predict that hurricanes shape the distributions of LRS and lifespan by reducing variance and 101 

showing positive skewness (Tuljapurkar et al., 2020).  102 

In this study, we evaluate the effects of major hurricanes on individual heterogeneity using 103 

the Cayo Santiago rhesus macaques, a population whose mean fertility is reduced during hurricane 104 

years likely to maintain high rates of survival (Morcillo et al., 2020). Here, we estimate multiple 105 

metrics of individual heterogeneity using annual stage-structured matrix population models. First, 106 

we estimate population entropy as a proxy of the expected annual rate of diversification in 107 

reproductive life courses of individuals (Hernández-Pacheco & Steiner, 2017) during hurricane 108 

years and contrast it to ordinary years. Next, we measure persistence time of life stages to 109 

determine the correlation between an individual’s current reproductive stage and its stage years 110 

later (Tuljapurkar et al. 2009). Lastly, we quantify within-trajectory variation in LRS and lifespan  111 

to obtain their exact probability distributions and higher moments (Caswell, 2009, 2011; Steiner 112 

et al., 2010; Tuljapurkar et al., 2020). Our analysis revealed that major hurricanes influence eco-113 

evolutionary processes by increasing entropy and lowering correlation time despite evidence of 114 

reductions in mean annual fertility and survival. We also find that the LRS and lifespan 115 

distributions are positively skewed and are mostly driven by survival. 116 

Methods 117 



Study population: 118 

Cayo Santiago is a 15.2ha sub-tropical island located 1km Southeast of Puerto Rico (lat. 119 

18°09’N, long. 65°44’W) that serves as a biological station for behavioral primate studies. The 120 

station was established in 1938 and is inhabited by free-ranging rhesus macaques (Macaca 121 

mulatta). Monkeys spend 50% of their daily activities foraging on natural vegetation on the island 122 

(Marriott et al., 1989) and are also provisioned ad libitum with water and approximately 0.23 123 

kg/animal/day of commercial monkey chow. Since 1973 the entire population has been monitored 124 

and a reliable longitudinal demographic database on all individuals has been maintained. 125 

Individual data includes date of birth, sex, mother identification, social group membership, and 126 

date of death or permanent removal from the island for all individuals (for details on Cayo Santiago 127 

population data collection and management, see Hernández-Pacheco et al. (2016) and Ruiz-128 

Lambides et al. (2017)).   129 

 The Cayo Santiago rhesus macaque population has experienced the direct impact of three 130 

major hurricanes (category ³ 3) since the establishment of census records in 1956: Hugo (18 131 

September 1989), Georges (21 September 1998) and Maria (20 September 2017; Kessler & 132 

Rawlins, 2016; Morcillo et al., 2020). Hugo and Georges were category 3 hurricanes with 133 

sustained wind speed of  201 km h−1 and 185 km h−1, respectively (NOAA, 2014; USGS, 1999). 134 

Maria was a category 4 hurricane with sustained wind speed of 220 km h−1 (NOAA, 2019). 135 

Although food provisioning - and thus census taking - was resumed between 1 to 3 days after each 136 

hurricane (Morcillo et al., 2020), there is evidence of significant hurricane effects on several 137 

aspects of the population. Each hurricane caused 60-90% of canopy loss immediately after the 138 

event (Morcillo et al., 2020), and changes in the social structure (Testard et al., 2021), adverse 139 

demographic effects such as suppressed fertility (Luevano et al., 2022; Morcillo et al., 2020), as 140 



well as alterations in immune cell gene regulation (Watowich et al., 2022) associated to hurricanes 141 

have been reported.  142 

Demographic analysis: 143 

Our analysis was based on 46 years of individual data from 1973 to 2019. For each year, 144 

we parametrized female-only, birth-pulse matrix population models employing post-breeding 145 

censuses (Caswell 2001). Following Hernández-Pacheco and Steiner (2017), we defined the 146 

annual structure in our analysis from 1 June at time t to 31 May at time t + 1 to avoid significant 147 

overlap of birth seasons. Models were based on annual transition probabilities among 148 

developmental and reproductive stages (Hernández-Pacheco & Steiner, 2017; Morcillo et al., 149 

2020). In a given year, we classified sexually immature females in one of three age-specific 150 

developmental stages: infant (I; < 1 year of age), yearling (Y; 1-2 years of age) and juvenile (J; 2-151 

3 years of age). After reaching 3 years of age, we classified females in one of three reproductive 152 

stages: nonbreeder (NB), failed breeder (FB) and successful breeder (B). Nonbreeders were adult 153 

females who did not have an offspring a given year (i.e., birth season skipping). Failed breeders 154 

were adult females whose offspring died before reaching 1 year of age. Successful breeders were 155 

adult females whose offspring survived to 1 year of age (recruitment).  Adult females transitioned 156 

among these three reproductive stages until death or until being right censored due to permanent 157 

removal from the population or if alive at the end of our study. Although transitions from J to B 158 

or from J to FB are rare, they are expected to be non-zero as a small portion of 3-year-old females 159 

reproduce (Hernández-Pacheco et al., 2013). We only considered reproductive performance of 160 

females that survived to the census day, thus females dying during a given year were classified as 161 

transitioning to the absorbing death state independently of their reproduction.   162 



To address hurricane effects on individual heterogeneity, we parameterized four stage-163 

structured matrix models, one for each environment e, with stage-transition matrix, Pe, and stage-164 

specific survival rates, sje =! 𝑃!"# = 1 − 𝑑"#
$

!
, where dje is stage-specific mortality of stage j and 165 

environment e, and n is the number of stages. The four environments e were defined by the annual 166 

individual transitions belonging to (1) non-hurricane years (1973-1988, 1990-1997, 1999-2016, 167 

2018-2019), (2) Hugo (1989-1990), (3) Georges (1998-1999), and (4) Maria (2017-2018).  As only 168 

stage B females contributed to reproduction, we set their fertility to 1 (100%) and NB and FB 169 

fertility to 0. Survival of infants was set to 1, as only surviving infants were recruited into the 170 

population (Morcillo et al., 2020). In our analysis, we assumed stage-specific mortality for adults 171 

at any given time period to be non-zero. As no deaths were recorded among FB and B during 172 

hurricane Hugo (Supporting Material, Table S1), we performed all analyses after adjusting the 173 

Hugo matrix by adding a 1% of total mortality rate to FB and B. For completion, we present the 174 

analysis using the empirical Hugo matrix in the Supporting Material (Table S2). For each matrix 175 

model, we estimated the asymptotic growth rate (𝜆), the stable stage distribution (w), and the 176 

reproductive values (v) by computing the dominant eigenvalue, and the corresponding right and 177 

left eigen vectors, respectively (Caswell, 2001). 95% confidence intervals for 𝜆 were estimated 178 

using bootstrap methods (Supporting Material). Transient dynamics can inform us on how strong 179 

a perturbation disequilibrates the stage structure of the population and how fast these effects can 180 

be reversed, i.e. how fast a population reaches a stable equilibrium. To contrast each hurricane 181 

year with ordinary years, we compared the time the population takes to converge into stable 182 

equilibrium following each environment by estimating the damping ratio 𝜌# 	= 	
%
%!

, where 𝜆& is the 183 

subdominant eigenvalue, for each matrix Pe (Caswell 2001).   184 



Individual heterogeneity in stage trajectories: 185 

Individuals differ in their sequence of reproductive stages making up their life course. This 186 

sequence defines an individual’s reproductive trajectory (ω) and population entropy, H, describes 187 

the rate at which these trajectories diversify with age (Tuljapurkar et al., 2009; Table 1). We 188 

quantified this variation using matrix Re, a 3 x 3 submatrix of Pe including adult stages only, 189 

weighted by its corresponding quasi-stationary stage distribution,	ω' (Hernández-Pacheco & 190 

Steiner, 2017; Steiner et al., 2010). Here, we employed H as a proxy of the expected annual rate 191 

of diversification in life courses of mature individuals (Hernández-Pacheco & Steiner, 2017). If 192 

individuals follow the same sequence of reproductive stages across time, H is 0 (100% predictable 193 

stage trajectory). On the contrary, if individuals are equally likely to transition from any given 194 

state to any other state in the following year then entropy increases up to its maximum value ln(K), 195 

where K is the number of reproductive stages (Tuljapurkar et al., 2009). For comparison across 196 

environments, we scaled H to its maximum value and presented relative H which is bounded 197 

between 0 and 1. We also simulated heterogeneity in fitness estimates (survival and reproduction) 198 

using the mean population trajectory and the probability of observing a trajectory in transition 199 

matrices. Without heterogeneity in life courses, every individual would follow the same 200 

reproductive trajectory so that the populations reproductive variance becomes 0.  201 

We estimated the characteristic time τ	and defined it as the correlation between an 202 

individual’s current reproductive stage at time t and its stage t+1 years later (Table 1). In this way, 203 

τ	is a timescale that measures the persistence of reproductive success or failure (Tuljapurkar et al. 204 

2009). A low τ	indicates that an individual’s current reproductive stage little predicts its future 205 

reproductive stage, and thus life trajectories are less deterministic.  206 

Probability distributions and higher moments of LRS and longevity 207 



We computed the exact probability distributions of LRS and lifespan (i.e., age-distribution 208 

of death) for each matrix Pe following methods based on discrete convolutions and discrete Fourier 209 

transforms (Tuljapurkar et al., 2020; Supporting Material). The distributions were computed based 210 

on stage-only models where individuals may visit a stage any number of times before dying. To 211 

estimate higher moments in LRS and longevity, we computed the fundamental matrix N from 212 

matrix Pe. Matrix N allows us to estimate the expected mean number of visits to transient state i 213 

an individual that starts in transient state j makes before death, regardless the order of occurrence 214 

(sequence; Table 1, Caswell, 2009). In this way, we defined stage-specific mean LRS as the 215 

expected mean number of visits (including stasis) an individual in stage j makes to the successful 216 

breeder stage before death (i.e., last row of N). Similarly, we defined longevity as the mean number 217 

of visits an individual in stage j makes to all other stages before being absorbed in the death stage 218 

(i.e., the sum of each column of N). We also estimated the variance, skewness, and the coefficient 219 

of variation (CV) for LRS (Table 1; Caswell, 2011, 2013; Varas Enríquez et al., 2022). A high 220 

magnitude in skewness indicates that rare individuals experience an unusually short (negative 221 

skew) or long (positive skew) life. A higher CV indicates that reproduction is highly spread over 222 

the life stages (more variation), relative to the mean expectation. All analyses were performed 223 

using the R software, version 4.1.3 (R Studio Team, 2022).  224 

Results 225 

Our analysis was based on 20,891 individual transitions from 4,075 females.  During the 226 

46-year period, λ was 1.119 (95% CI: 1.114, 1.123), for a mean annual population growth of 227 

11.9%. During non-hurricane years, λ = 1.121 (1.116, 1.125), while during hurricane years λ was 228 

reduced to 1.100 (1.084 1.114). Specifically, during hurricanes Hugo, Georges, and Maria λ was 229 

1.128 (1.099, 1.152), 1.101 (1.058, 1.119), and 1.087 (1.060, 1.113), respectively. On average, 230 



hurricane years revealed a higher proportion of NB and FB in the stable stage distribution relative 231 

to non-hurricane years (Fig. 1). Contrary to this, hurricane years show a lower proportion of B and 232 

I in the stable stage distribution (e.g., females transitioned less to the B stage and more to the NB 233 

and FB stage; Fig. 1; Table 2). Moreover, FB showed the lowest survival during mean hurricane 234 

years compared to non-hurricane years (0.865 and 0.912, respectively; Table S3). Years of major 235 

hurricanes showed an increased damping ratio (Hugo = 1.532, Georges = 1.502, Maria = 1.504) 236 

relative to years of no hurricanes (𝜌	 = 	1.482), suggesting that the population takes a shorter time 237 

to converge into stable stage dynamics during poor environment years.   238 

Population entropy increased during hurricane years (H = 0.744), relative to the non-239 

hurricane environment (H = 0.718) and such increase was related to hurricane intensity defined by 240 

sustained wind speed. During Georges, the population entropy was H = 0.663, followed by Hugo 241 

with H = 0.757, and Maria with H = 0.784. The different entropies characterizing our population 242 

across environments can be further visualized with simulated cumulative reproduction (CR) 243 

trajectories which show a higher diversification in reproductive trajectories as a function of age 244 

(Fig. 2, top panel). Similarly, the corresponding simulated cumulative survival trajectories showed 245 

a higher diversification with hurricane intensity (Fig. 2, bottom panel). In agreement with this, 246 

stage persistence was reduced with increasing hurricane intensity (Georges = 0.014,Hugo = 0.009, 247 

Maria = 0.006), while ordinary years showed the lowest value (τ	= 0.0005).  248 

The LRS distribution across all environments was positively skewed with rare females 249 

having an unusually high number of offspring (Fig. 3, top panel). This skewness was more 250 

pronounced for Georges and Maria where the probability of having no offspring was greater (33% 251 

and 35%, respectively) than that of the non-hurricane environment (23%). Visits to the breeder 252 

stage was reduced during hurricanes Georges and Maria where females were expected to have a 253 



mean LRS of 4 and 3 offspring, respectively (Table 3). During non-hurricane environments, 254 

females were expected to have a mean LRS of 5 offspring. Variance in LRS from birth was highest 255 

for non-hurricane years, followed by Georges and Maria (35.289, 25.003, 17.153, respectively, 256 

Table 3). In contrast, during hurricane Hugo females had a mean LRS of 9 offspring with the 257 

highest variance of 102.617. Immature stages showed the highest variability in LRS with respect 258 

to their mean (CV; Table 3).  259 

The distribution of lifespan was also positively skewed across all environments revealing 260 

that individuals have a low probability of mortality past maturity (≥3 years of age) and that there 261 

is no major differences in the likelihood to live long (Fig. 3, bottom panel). Hurricane Georges and 262 

Maria show the highest probability of dying early in life relative to Hugo and ordinary years. We 263 

observed a reduction in mean lifespan from birth during Georges (15.824 years) and Maria (15.555 264 

years) relative to the non-hurricane environment (19.730 years). However, Hugo had a mean 265 

lifespan of 38.227 years (Table 3). We found no evidence suggesting that Hugo was an unusually 266 

good year as mean vital rates in 1989 were similar to other years (Fig. S1).  267 

Discussion 268 

Our study revealed that major hurricanes generate heterogeneity in individual life courses 269 

despite an average reduction in mean fertility (i.e., decreased transitions to B) and survival (i.e., 270 

shortened life courses). Extreme climatic events may thus force individuals into new ecological 271 

niches increasing the rate of diversification in reproductive stage trajectories and decreasing 272 

reproductive stage persistence, while simultaneously shortening lifespans. By assessing life history 273 

trait distributions, we also demonstrate that hurricanes have different effects on the variation in 274 

LRS and lifespan and that such stochasticity is highly driven by survival in our long-lived primate 275 

population.  276 



Prior evidence show that hurricanes affect negatively the dynamics of animal populations 277 

mainly through changes in food and habitat structure (Klinger, 2006; Pavelka & Behie, 2005; 278 

Woolbright, 1991), but few studies have shown the long-term effects on fertility and mortality 279 

(Luevano et al., 2022; Morcillo et al., 2020; Pavelka et al., 2007). The effects of hurricanes on the 280 

population dynamics of Cayo Santiago rhesus macaques are mostly driven by reductions in mean 281 

annual fertility, suggesting that survival is maintained at the expense of reproduction (Morcillo et 282 

al. 2020). Yet, these population-level processes reveal no information about the role of these 283 

climatic events and consequent environmental changes on the emergence and maintenance of 284 

individual heterogeneity and trait variances. Our analysis shows that population entropy increased 285 

with hurricane intensity, demonstrating that natural disasters generate heterogeneity in individual 286 

life courses and that such heterogeneity is independent of potential trade-offs between 287 

reproduction and longevity. In contrast to this, stage persistence was reduced with increasing 288 

hurricane intensity, thus the more extreme the environmental impact the more unpredictable life 289 

stages are given a female’s current stage (i.e., low correlation time). An increased population 290 

entropy and a decreased stage persistence during hurricanes could be the result of a strategy to 291 

avoid strong intraspecific competition during bad years through the exploration of ecological 292 

niches or demographic roles (Bolnick, 2001; Coulson et al., 2001). On the other hand, high-quality 293 

females (individuals that survive and breed successfully) could sustain breeding despite bad 294 

environmental conditions, whereas poor quality females might need to transition into other stages 295 

potentially contributing to the observed variability (Jenouvrier et al., 2022). In alignment with 296 

entropy, years of major hurricanes had the highest rate of convergence to a stable stage structure. 297 

This suggests that populations in which individuals explore stages that can maximize fitness at 298 



higher rates may reach equilibrium sooner than populations where individuals are performing less 299 

randomly.  300 

Our findings also reveal that other unknown factors are contributing to individual 301 

heterogeneity as non-hurricane years had a relatively high entropy. For example, unmeasured 302 

physiology (Plard et al., 2015), as well as maternal and genetic (fixed) heterogeneity (Peripato et 303 

al., 2002) may contribute to differences in life history outcomes. Although our population exhibits 304 

negative density-dependence in fertility (Hernández-Pacheco et al., 2013), entropy was not found 305 

to be driven by density (Hernández-Pacheco & Steiner, 2017). We also found stage persistence to 306 

be the lowest during ordinary years. Such low correlation between current stage and a future stage 307 

could be due to individuals randomly exploring new stages to maximize the available variability 308 

for eco-evolutionary processes. Future research has yet to explore what other factors drive 309 

population entropy and stage persistence in ordinary environments.  310 

In agreement with previous studies, our analysis shows that life history trait distributions 311 

are highly skewed (Colchero et al., 2016; Tatarenkov et al., 2008; Tuljapurkar et al., 2020; Fig. 3). 312 

In our population, only rare females produce a large number of daughters mainly because most 313 

females do not live their entire reproductive life (3-24 years of age) as they die at younger ages 314 

(Hernández-Pacheco et al., 2013). In particular, the LRS distributions show that hurricanes can 315 

increase the probability of having no offspring as Georges and Maria had the largest probability 316 

of 0 LRS, a larger skewness, and a reduced mean and variance, compared to ordinary years. The 317 

lifespan distributions revealed that the probability of mortality is highest before sexual maturity 318 

with one single large mortality schedule, in contrast to other mammal populations exhibiting one 319 

mortality schedule during juvenility and a second during old ages (belugas: Schindler et al., 2012; 320 

humans: Edwards & Tuljapurkar, 2005). This mortality schedule was more accentuated during 321 



Georges and Maria (Fig 3., bottom panel). However, this effect was eliminated when adult survival 322 

was not negatively affected as during Hugo. Similar to hurricanes Georges and Maria in which 323 

transitions into the breeder stage were reduced (Table 2), the population suffered a reduction in 324 

mean annual fertility during hurricane Hugo, however during Hugo mortality was also reduced 325 

among adults.  As a result, this hurricane event showed a substantial increase in mean and variance 326 

of life history traits, supporting prior evidence of the unbalanced contribution of survival and 327 

fertility to variability in this long-lived primate population (Morcillo et al., 2020). The fact that 328 

Hugo showed high survival was not surprising as no evidence that hurricanes affect survival was 329 

found previously (Morcillo et al., 2020). Rather than a rare year, during Hugo females showed 330 

similar survival rates as many other years in the history of the population (Fig. S1).  331 

Our findings support the hypothesis that intraspecific competition drives niche exploration, 332 

and this effect is more pronounced during extreme climatic events as seen by an increased 333 

heterogeneity in life histories following major hurricanes. Future studies investigating the viability 334 

of vulnerable populations should address the effects of extreme climatic events on individual 335 

heterogeneity. This will help to better understand in what direction significant environmental 336 

changes drive individual life courses and trait distributions, especially for traits (heritable or 337 

plastic) that have high adaptive potential (Conner & White, 1999). In particular, quantifying these 338 

changes may reveal if populations are at risk of extinction, especially if extreme events are drivers 339 

of evolutionary change (Grant et al., 2017). Future directions in modelling the effects of extreme 340 

climatic events on demography also include the description of probability distributions of life 341 

history traits (Schindler et al., 2012). Such approach can be used to further understand how the 342 

long-term fitness of a population (i.e., growth of a stable population) at risk is shaped by the LRS 343 

distribution and the age-distribution of death.  344 
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Tables 529 
 530 
Table 1. Parameters and definitions. Taken from Caswell 2009 and Tuljapurkar et al. 2009. 531 
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 543 

Parameter Definition 

τ	 =
−1

𝑙𝑛(𝜆")
 

Correlation time  
Subdominant eigenvalue (𝜆" ≠ 1; 
solves det( 𝜆 I- 𝑹) =0 

𝐻 =	−∑ ∑ 𝜋#$
%	&	" 𝑹#%log𝑹#%$

#	&	"   
(with 0 log(0) = 0)	
 

Population entropy  

𝑉4𝑣#%6 = (2𝐍'#() 	− 	𝐼)𝐍 −	𝐍* Variance in stage occupancy time LRS 

	𝑆𝐷(𝑣#%) 	= <𝑉(𝑣#%)+ 
 
Standard deviation in LRS 

𝜂* =	 (2𝐍'#() − 𝐼)𝐍 Second moment in LRS 

 𝜂+ 	= (6𝐍'#()* − 6𝐍'#() + 𝐼)𝐍 	Third moment in LRS 

Skew = (𝜂+ 	− 	3𝜂*𝐍 + 2𝐍+)/𝑆𝐷(𝑣#%)+ Skewness in LRS  

CV =  𝑆𝐷(𝑣#%)/mean Coefficient of variation  



Table 2. Mean transition matrices Pe for environment e where the columns represent stage j at 544 

time t and rows represent stage i at time t + 1. I = immatures; Y = yearlings; J = juveniles; NB = 545 

nonbreeders; FB = failed breeders; B = successful breeders; qx represents stage-specific mortality 546 

calculated after rounding. Bolded transition probabilities represent the 3x3 submatrix Pe used to 547 

estimate matrix Re.  548 

  I Y J NB FB B 
Non-hurricane years       

I 0 0 0 0 0 1 
Y 1 0 0 0 0 0 
J 0 0.948 0 0 0 0 
NB 0 0 0.968 0.606 0.533 0.605 
FB 0 0 0.003 0.042 0.070 0.039 
B 0 0 0.006 0.294 0.310 0.311 
qx 0 0.052 0.023 0.058 0.087 0.045 
Hurricane Hugo       

I 0 0 0 0 0 1 
Y 1 0 0 0 0 0 
J 0 0.975 0 0 0 0 
NB 0 0 0.980 0.628 0.663 0.659 
FB 0 0 0 0.071 0.163 0.069 
B 0 0 0 0.265 0.163 0.262 
qx 0 0.025 0.020 0.036 0.011 0.010 
Hurricane Georges       
I 0 0 0 0 0 1 
Y 1 0 0 0 0 0 
J 0 0.825 0 0 0 0 
NB 0 0 0.971 0.583 0.643 0.694 
FB 0 0 0 0.021 0.071 0.035 
B 0 0 0 0.333 0.214 0.212 
qx 0 0.175 0.029 0.063 0.072 0.059 
Hurricane Maria       
I 0 0 0 0 0 1 
Y 1 0 0 0 0 0 
J 0 0.963 0 0 0 0 
NB 0 0 0.929 0.588 0.574 0.586 
FB 0 0 0 0.110 0.019 0.080 
B 0 0 0 0.227 0.241 0.310 
qx 0 0.037 0.071 0.075 0.166 0.024 

  Note: numbers in italics represent simulated mortality of 1% for NB and B stages. 549 



Table 3. Mean, variance, skewness, and coefficient of variation of lifetime reproductive output. I 550 

= infants; Y = yearlings; J = juveniles; NB = nonbreeders; FB = failed breeders; B = successful 551 

breeders.  552 

 553 
         I      Y       J     NB     FB      B 
Non-hurricane years       

Mean 5.035 5.036 5.310 5.430 5.282 6.522 
Variance 35.288 35.288 35.754 35.911 35.714 36.011 
Skew 2.062 2.062 2.027 2.015 2.030 2.007 
CV 1.180 1.180 1.126 1.104 1.131 0.920 
Hurricane Hugo       
Mean 9.040 9.040 9.271 9.457 9.586 10.696 
Variance 102.617 102.617 103.099 103.407 103.581 103.703 
Skew 2.032 2.032 2.019 2.011 2.006 2.002 
CV 1.121 1.121 1.095 1.075 1.062 0.952 
Hurricane Georges       
Mean 3.827 3.827 4.639 4.775 4.617 5.680 
Variance 25.003 25.003 26.542 26.671 26.518 26.585 
Skew 3.492 3.492 3.197 3.185 3.286 3.140 
CV 1.307 1.307 1.111 1.082 1.115 0.908 
Hurricane Maria       
Mean 3.134 3.134 3.255 3.502 3.227 4.804 
Variance 17.153 17.153 17.420 17.878 17.361 18.270 
Skew 2.177 2.177 2.138 2.072 2.147 2.014 
CV 1.321 1.321 1.282 1.207 1.291 0.890 
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Figures 562 
 563 

 564 

 565 

Figure 1. Stable stage distribution during non-hurricane and hurricane years. 566 
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 569 

Figure 2. Simulated cumulative reproduction (CR, top panel) and survivorship (bottom panel) 570 

for non-hurricane and hurricane environments. Hurricanes are presented in increasing order of 571 

intensity (sustained wind speed; Georges: 185 km×h-1; Hugo, 201 km×h-1; Maria 220 km×h-1). 572 

Lines represent mean trajectories (thick line) and individual trajectories (thin lines). Ribbons 573 

indicate 95% confidence intervals based on 1000 simulated trajectories.  574 
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 577 
 578 
Figure 3. Probability distributions of lifetime reproductive success (LRS) and lifespan across 579 
environments.  580 
 581 
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