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ABSTRACT 
3D scans of real world objects are often represented by point clouds, creating XYZ-coordinates of 

individual scan points. However, unlike point clouds that are generated from CAD data, points generated 

from a real world scene lack information about their local context, making segmentation of the structural 

information contained in the data difficult. 

  

Using neural networks (e.g. PointNet) has shown promising results. However, this approach is not well 

suited for scans of large areas of similar objects, like e.g. a wheat field, because of limitations of the input 

vector size of the neural network. In addition, point clouds are often unordered, further complicating 

processing. Since point clouds of biological objects often contain recurring features, we propose to 

subdivide the point cloud into locally neighboring subsets with a fixed number of points.  

 

The collection of subsets can then be used to train neural networks. This approach preserves the original 

resolution of the point cloud while offering simple data augmentation concepts like creating a number of 

different subset collections from the same ground truth.  

 

There are several advantages to this approach, like significantly simplifying the training phase, because a 

single, large annotated scan can be sufficient for training, utilizing the similarity of the instances of a plant 

in the field. 

 

Keywords: Point Cloud, Semantic Segmentation, Neural Networks, Spherical Subsampling, 3D data 

augmentation. 

 

 

1. INTRODUCTION 
1.1   Problem statement 

Processing 3D point data of plants with the purpose of e.g. plant phenotyping presents a unique set of 

challenges. When it comes to semantic segmentation of a single plant’s scan into individual parts like 

leaves, fruit, etc. an analytic approach is normally very difficult, partly because the point data is not 

distributed evenly and the points lack neighborhood information, partly because a new algorithm needs to 

be developed every time an assumption the algorithm is based on changes. The problem is aggravated with 

multiple plants in close vicinity and color not being available for use in the segmentation process, for 

instance in a 3D scan of a wheat field. Recent advances in using a neural network (NN) like PointNet [1] 

for segmentation encouraged us to use NNs for segmentation of 3D point clouds of plants. 

Using a NN requires choosing an input vector of a fixed size, and a large number of annotated samples of 

the same vector size as training data. Since the time required to train the network largely depends on the 

size of the vector, it is impractical to use e.g. the scan for an entire wheat field because the NN would be 

impractically large. Also detailed annotation of thousands of scans of entire wheat fields with thousands of 

plants each is a paramount task. Wang et al. [2] propose to downsample the data to reduce the vector size, 
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but this severely affects data resolution and quality. Also, one needs to keep in mind that the point cloud 

data set is mathematically a set without inherent order, so unless assumptions can be made regarding the 

way the point cloud was generated, an algorithm should compute comparable results on all permutations of 

the point cloud data set. 

 

1.2   Approach: Spherical SubSampling (SSS) 

We propose an alternative approach, i.e. to subsample the large point cloud into spheres containing local 

subsets. The idea of subsampling a scene into spheres was used by Borgmann et al. [3] for detection of 

pedestrians in autonomous driving applications. Utilizing the fact that the data set of a plant field contains 

thousands of copies of similar – but not identical – instances of an object of the same kind, we suggest 

subsampling the original data set into spheres around random seed points, which will all contain similar 

content. Using a sphere greatly simplifies the calculation of the Euclidian distance of each point of the point 

set to the seed point at the center of the sphere. Each sphere will contain all points of the original data set 

within the radius, much like a puzzle piece contains a part of a larger image. So each sphere can be viewed 

individually as a scan of part of a scene, and if the original scan was annotated, the points in the sphere 

inherit the annotation and retain the full information of the original scan. By removing the points contained 

in a sphere from the dataset and iteratively repeating the process, a large number of annotated sample 

vectors can be generated. Having a considerably smaller vector size than the original data set, this reduces 

the time required to train the NN while at the same time generating thousands of separate samples for 

training. Also, since the spheres are created around random seed points, the same original data set can be 

processed multiple times, each time creating a new, unique set of spheres different from the ones generated 

previously on the same data set. The approach offers a number of straightforward parameters to control the 

behavior of the subsampling algorithm, allowing the user to adapt the performance to the problem at hand. 

 

 

2. THE ALGORITHM: SSS 
2.1   Basic concept 

SSS extracts subsets of points out of a point cloud based on their geometric relations. Initially, a randomly 

chosen point acts as the first sphere’s center point. Then, all points within a given Euclidian distance  of 

this point are stored as a separate sub-sphere entity. The points of this sub-sphere are subsequently deleted 

from the original point cloud to assure termination of the algorithm and the process is repeated until a 

threshold is reached or all data points have been processed. 

Extending this basic sub-sampling algorithm, there are many options for variations e.g. for data 

augmentation. In addition, further approaches with a less random center selection in order to subsample the 

dataset more systematically or using other parametrizations like restraints regarding the number of points 

per sub-sphere are explored. 

 
2.2   Example SSS Variation: nested double Spheres 

In this variation of SSS not all of the points within an extracted sub-sphere are removed from the original 

point cloud. Instead, only points within a smaller radius around the same given center point are deleted in 

each iteration. Thus, a certain partition of data points remains in the original point cloud despite being also 

part of an already extracted sub-sphere. These data points remain available to become part of another sub-

sphere as the algorithm further proceeds, which means that some points are extracted multiple times, but in 

different and unique local environments. It also means that this variation of the algorithm can create 

overlapping spheres as opposed to the unmodified version, which only creates disjunctive spheres by 

design. This allows SSS to artificially increase the volume of a dataset, maintaining object details in each 

sphere.  
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Figure 1: Pseudo code of algorithm for SSS with nested double spheres 

Based on this variation of SSS several experiments ensured that the sub-sampling procedure does accurately 

represent the original dataset in terms of target class distribution and general feature representation. Since 

all resulting sub-spheres should contain the same number of points N, we implemented optional point 

padding and deletion procedures. 

 

The resulting sub-spheres provide a foundation for further processing steps. Since the spheres consist of a 

fixed number of data points, they can be used directly as input for training or inference of NNs. Moreover, 

multiple data augmentation applications are possible: the use of the spheres as a basis for super-points, 

sampling datasets multiple times, generation of additional features like a coordinate transformation relative 

to the center to facilitate location invariant training of the NN, or further augmentations like point dropout, 

rotation, noise, etc. 

 

3. RESULTS 

 
3.1   Wheat Field Segments representative for homogenous biological Data 

The point cloud data of a wheat field used in this paper was created using a Field Scanalyzer [4], which 

uses the sheet-of-light triangulation principle. A scan of one of the field segments that were used in our 

experiments is displayed in Figure 3. The core metric used for evaluation of the NNs predictive performance 

used is mean intersection over union (mIoU). 

 

 
Figure 3: Raw (L) and labeled point cloud (R) with color-encoded target classes: ear (green), stem (red), rest (blue) 

 
 

Figure 2: Example illustration of one nested 

double sphere 

 



 

4 

 
3.2   Initial Results applying SSS 

Experiments with PointNet++ [5] showed that models trained with data sampled using basic SSS 

outperformed their counterparts trained with data of grid based, e.g. oct-tree. SSS improves mIoU by an 

average of ~7%. Furthermore, for use-cases where only limited data is available SSS simplifies artificially 

increasing the training data, which has led to further improvements in our experiments. Using the nested 

double sphere approach has shown promising results in form of additional prediction performance 

increases of 2-8% mIoU. This proved to be especially effective, when only very limited quantities of data 

were used for training. The NNs trained with sub-spheres proved to be robust in transfer learning tasks 

and generalized well to other wheat segments with different phenotypes.  

 

 

4. CONCLUSION 
 

SSS provides data formatting suitable directly for training of NNs for semantic plant segmentation. One 

wheat field segment (as seen in Figure 3) was sufficient for training a NN that can generalize well to other 

field sections – even if they contain different phenotypes of wheat. The concept of reusing data points in 

different local environments potentially enables the application of NNs even if the available amount of 

labeled data is insufficient when using traditional data preparation methods. Due to its simplicity and 

reliance on spheres containing similar content, SSS has the potential to perform real-time sub-sampling 

for classification tasks in the field, e.g. in robotic applications.  

 

As next steps, we plan to investigate the influence of all parameters and aim to simplify our approach to 

make it universally usable without prior dataset specific parametrization. Optimizing parameters and 

evaluating a dynamic version of the algorithm that creates spheres of varying radii but equal cardinality 

will potentially further improve our method and thus contribute to the practicability of using NNs for 3D 

semantic segmentation in plant phenotyping research.  
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